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Abstract: Sustainable manufacturing is connected with the effectiveness of production processes.
There are several solutions to improve manufacturing sustainability. This paper deals with the
possibilities of the utilization of mathematical methods to solve optimization problems in the
production process of furniture. The aim of the paper is to create a mathematical model of the
key processes in order to maximize productivity and cost reduction by identifying key processes
and parameters influencing manufacturing effectiveness. After identification of the parameters
describing the key process (milling), an abstract model of the manufacturing process was created.
Identified input parameters were the cutting velocity, feed rate, and a total volume of removed
material. The output parameters were surface roughness, process duration, and process cost.
The experimentally measured and calculated values of the output parameters were analyzed by a
multiple regression tool. The method of an artificial neural network was used as a numeric method for
optimization. The results showed that the maximal effectiveness of the sub-process can be achieved if
the CNC machine is set at the cutting velocity of 4398.23 m·min−1 and feed rate of 11.00 m·min−1.
Maximal values of the created neural network showed optimal values of input and output parameters.

Keywords: sustainable optimization; process effectiveness; furniture production; artificial neural
networks; key sub-process

1. Introduction

An improvement of business processes is necessary in order to maintain the competitiveness
of the business and increase the financial performance. The enterprises have to carry out various
innovative activities, not only for the outputs, but also for the processes. The presumption of effective
management and a sustainable enterprise improvement are measuring, assessment, control, and further
optimization of the enterprise processes. Efficiency and effectivity are the main parameters of processes
optimization. These two terms relate to each other closely and are often confused, though there is a
certain distinction in their definitions. While the effectiveness expresses the ability of completing the
proper steps to achieve the purpose, in other words, the level which the system achieves in the relation
to the level which was stated (the current output to the expected output), the efficiency describes the
level when the system uses the proper sources in a proper way, so it addresses the question of whether
we do the right steps in the right way (the currently used sources to anticipate source consumption) [1].

According to Leong et al. [2], there are five key dimensions of the effectiveness of a production
process including costs, delivery efficiency, quality, flexibility, and innovation. Vickery, Dröbe,
and Markland [3] synthesized the knowledge on priorities within the enterprise competitiveness
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raise. They included process flexibility: the ability to produce a few products so that the production
remains cost efficient, i.e., it has the ability to rapidly adapt to changes in the product mix.

Hossain and Prybutok [4] designed the model of enterprise effectiveness management which
consists of eight parts (innovation, competitive advantage, production output, customer-driven output,
financial and market output, employee-driven output, process efficiency outputs, and leadership
outputs). The process effectiveness measures included indicators of efficiency and effectiveness
(cost savings, higher productivity, emission reduction, etc.), indicators of internal response ability
(circle time, production flexibility, delivery time, adjustment time, etc.), specific indicators of office
work/administration efficiency improvement and other support functions (innovation level, results of
Six Sigma initiative, and so on), and indicators of supplier—customer relationships (reduction of
supplier—customer chain management costs, reduction of supplies and input control, improvement of
electronic data exchange, etc.).

In the manufacturing process, narrow spots occur. In a graphical concept, the narrow spot of
the production is the narrowest spot in the line of manufacturing. It occurs at the moment when the
work objects come to a certain point faster than the point is able to process. It can be said that it is a
point of accumulation in the system. By optimizing, a manufacturing process is therefore needed to
focus on the key or critical sub-process. The key sub-process is related to the manufacturing of the key
product contributing to the final value of production at most. It could be used during the procedure of
calculating individual product shares in the total sale of an analyzed company. The sub-process in
which many errors occur provides a gap for improvement and optimization. The second important
aspect is the interconnection of the sub-process to the entire production process and its efficiency,
with an emphasis on the technological procedure. Therefore, higher weights are allocated to the
procedural errors occurring in the first phases of the production process.

The second step by optimizing the task is to identify the essential parameters of the critical
manufacturing sub-process (the process of chip formation in parts cutting). The variables which are
necessary to be defined within the problem solution can be divided into three groups:

• Modern indicators of effectiveness, which are connected to the vision, strategy, and objectives of the
reference enterprise, with an emphasis on critical success factors (CSF).

• Technical parameters of the sub-process to create a mathematical model that reflects the physical
nature of the particular process.

• Technical and economic output parameters of the sub-process, reflecting its overall effectiveness,
which is understood to be a complex goal consisting of cost minimization, quality maximization,
and productivity.

Technical and economic output parameters are focused on the solution of an optimization problem.
Optimization objectives are divided into the following three areas [5]:

• Input: optimization of raw materials, auxiliary materials, energy, human resources, investment,
etc. (costs reduction);

• Output: optimization of products, by-products, emissions, cash recovery, etc. (quality improvement);
• In Side process: optimization of technical and economical indexes in terms of production efficiency,

energy utilization, material yield, labor productivity, equipment operating rate, utilization of
current funds, etc. (increasing of process productivity and flexibility).

Finding the optimal solution while maintaining the required product quality lies in the
reduction of important factors of the manufacturing process which include material and energy
consumption, costs related to the product development, and time. The change of the variables in the
optimization problem design shall result in a reduction of material inputs, production costs, goods,
material properties of the product, and at the end, in the minimization of the optimization task.

There exist several managerial methods and conceptions for process optimization.
Analysis techniques applied during the optimization have to include all relevant data sources and
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the individual analysts have to be able to spot the right designs amongst a plethora of choices [6].
Nowadays, basic tools and methods of every manager include budgets and calculations, in addition
to an effective and efficient usage of the Managerial Accounting information [7]. Zhou and Chen [8]
developed a systematic optimized design methodology of the business process that also outlines
the knowledge infrastructure of Business Process Reengineering (BPR) from strategic, tactical,
and operational levels. Bencsik et al. [9] consider the Lean Management optimization method to be the
most suitable for offering such solutions for changing the production environment, corresponding
to productivity increase and cost reduction expectations. Howell [10] used the Taguchi approach to
optimise the performance of the system in a minimum number of tests, without having to understand
the mechanisms by which each parameter affected the system. Zhenov [11] and Simanova [12] consider
the Lean and Six Sigma approaches to process optimization to be flexible because these methods allow
their application by both manufacturing and service providing companies. Modern techniques,
as well as Lean Six Sigma System, Lean Process Principles, Just-In-Time Production, and Total Quality
Management, are focused on the responsible use of resources by eliminating waste [13,14].

The mathematical solution of the optimization problem requires an application of a suitable model
with a finite number of parameters. These variables must be relevant considering the description of
the most important characteristics of the problem being constructed [15].

According to Fusek and Halama [16], there are two principal methods of optimization tasks
modeling, namely an analytical method and a numerical one. The analytical method provides
the result achieved by mathematical analysis, including differential and integral calculations in the
form of continuous functions. A numerical method is approximate. The problem of searching the
continuous functions is altered to the problem of searching a finite number of unknown parameters
due to which the searched functions approximate. This is referred to as discretization of a continuous
model. The discretized model is solved via algebraic means, which have a limited number of steps.
The numerical solution is principally available for any problem which is described mathematically.
The most common method of a numerical solution approach is Artificial Neural Networks and the
Finite Element Method.

Rubio et al. [17] described the general classification of optimization techniques and the main
methodologies and tools employed for predicting the surface roughness. The techniques could be
divided to Statistical Regression, Artificial Neural Networks, Fuzzy Set Theory, and Fuzzy Neural
Networks from an empirical point of view. Furthermore, optimization tools and techniques are divided
into two groups: a conventional one focusing on providing an Optimal Solution and Non-Conventional
Techniques focusing on providing a Near Optimal Solution. Conventional Techniques include
Design of Experiments (Taguchi Method, Factorial Design, and Response Surface Methodology)
and Mathematical Iteractive Search (Dynamic Programming, Non-linear and Linear Programming).
Non-Conventional Techniques include Meta-Heuristic Search (Genetic algorithm, Simulated Annealing,
and Tabu Search) and Problem Specific Heuristic Search.

In the case of the automated recognition of space objects, the prediction of time sequence signals,
and optimization problems, the use of the before mentioned methods seems rather useful and effective.
These models are called Artificial Neural Networks—ANN. Formally, the network has the structure
which is described by a directed graph with peaks (neurons) and directed edges (connections). One of
the simplest types of networks is a multilayer network with feed-forward propagation, which has one
input layer, one or more hidden layers, and one output layer. In general, the networks can be divided
into two groups:

• Feed-forward networks—the signal is only propagated forward,
• Recurrent networks—some neurons present both input and output types.

In their paper, Xu and Lee [18] presented a novel milling process optimization method based
on hybrid forward-reverse mappings (HFRM) of artificial neural networks. Mendyk et al. [19] used
ANNs and genetic programming (GP) and developed a mathematical model of the drug dissolution
(Q) from the solid lipid extrudes.
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The continuous search for the optimization of processes presents one of the solutions for economic
improvement and the sustainability of manufacturing process effectiveness. The aim of this article is
to design a mathematical model for the optimization of the key sub-process effectiveness in furniture
manufacturing, based on which it is possible to anticipate the levels of output parameters with different
levels of input parameters. The model enables the sustainable process effectiveness in manufacturing
at an optimal level.

2. Material and Methods

The first step in the optimization problem solution was to identify the critical sub-process
of manufacturing, its specific parameters, procedure, and duration of individual steps in the
due enterprise.

The key sub-process is the one which is associated with the manufacturing of the key product
that contributes the most to the final value of the production. In the reference enterprise, we decided
on the procedure of enumeration of the individual products share on the overall sale. The enterprise
introduced 21 new products in 2014, which required substantial investment costs. The enterprise
currently manufactures 48 products. Having consulted with a technologist in the enterprise, a wash
basin closet was chosen as a reference item. The lead time (the time necessary to manufacture the
product) was 34 min and 9.98 s. To optimize the process, it is necessary to concentrate on the activity
with the biggest defect rate because it presents the space for improvement. The next important aspect is
its link to the effectiveness of the overall manufacturing process, with an emphasis on the technological
procedure. Considering this, it is important to correct the faults immediately and as early as in the
initial stages of production so as not to incur costs in the further manufacturing of a faulty product.
The critical sub-process in furniture manufacturing is the milling process.

The second step was to identify the essential parameters of the critical manufacturing sub-process
(the process of chip formation in parts cutting-milling). The technical parameters of the sub-process
(milling) describe its physical nature (spindle speed, cutting speed, feed rate, depth of cut, etc.). It is
observed that the cutting speed is the most influential parameter for surface roughness, followed by the
feed rate [20–22]. In addition, it was not possible to vary the depth of cut during the experiment in the
reference enterprise. Therefore, the input parameters were the cutting speed and feed rate, which were
varied. The depth of cut was constant (a = 1 mm) and a total volume of removed material was
calculated. The output parameters of the process milling were the surface roughness, process duration,
and process cost.

Having identified the parameters describing the manufacturing sub-process (cutting–milling),
the next step was to create an abstract model of the manufacturing process which would allow an
investigation of the manufacturing process using the mathematical description of the progression
of the processes. The identified input parameters as independent variables were: the cutting speed
(vc), feed rate (vf), and the total volume of removed material (V). By our experiment, the cutting
speed and feed rate were varied using the CNC wood machine and in each variation, one output
parameter (surface roughness) was experimentally measured and the other parameters were calculated.
The variations of input variables used in the experiment are presented in Table 1.

To enumerate the total volume of the removed material, taking into account the complicated
shape of the workpiece, we used the SketchAndCalc™ (Domains by Proxy, Scottsdale, AZ, USA)
program, which was used to calculate the content of the removed area according to the cross-section
of the workpiece in the blueprints. Other areas were deducted, and consequently, the value of the
removed area was multiplied by the cumulated value of the length of the workpiece being machined.
The volume of the removed material was calculated (V) according to following Equation:

V = Sm × l × POD (1)



Sustainability 2017, 9, 923 5 of 15

where Sm is the size of the removed area, L is the length of the workpiece being machined, and POD is
the number of workpieces being machined (cumulated sum).

Table 1. Variations of cutting speed and feed rate used in the experiment.

Variant vc [m·min−1] vf [m·min−1]

1. 2513.27 4.00
2. 3141.59 4.00
3. 3769.91 4.00
4. 4398.23 4.00
5. 2513.27 8.00
6. 3141.59 8.00
7. 3769.91 8.00
8. 4398.23 8.00
9. 2513.27 10.00

10. 3141.59 10.00
11. 3769.91 10.00
12. 4398.23 10.00
13. 1884.96 4.00
14. 1884.96 8.00
15. 1884.96 10.00
16. 4084.07 4.00
17. 4084.07 8.00
18. 4084.07 10.00

Within the experiment, medium density fiberboard (MDF) was used. The fiberboards with
a density of 750 kg·m−3 are manufactured from wood fibers, mainly spruce, which are bound by
synthetic glue under the simultaneous effect of temperature and pressure. They meet the requirements
of EN 622-1 and EN 622-5 standards. The thickness of the input material was 22 mm, the length
1000 mm, and width 630 mm. The material was milled under conditions stated in advance, while the
thickness was the milling parameter and after the operation was finished, a sample of the dimensions:
length 1000 mm, width 22 mm, and thickness 29 mm, was cut out. The particular sample was used
for taking a sample object where the surface roughness was measured by two methods in the track of
11 mm (see Figure 1).
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Figure 1. Measurement marks on a tested sample—top view (unit: mm).

The samples were machined by a CNC wood machine of the HOMAG BOF 41/30/R make (see
Figure 2). The overall performance of the machine is 21 kW and engine performance of the arbor is
7.5 kW, while the revolutions can be set in the range of 0 to 18,000 revolutions per minute. The operation
span of the X axis is 3000 mm and the Y axis is 1150 mm. The dimensions of the operation table are
3400 mm × 1450 mm.

During the experiment, the arbor (Ø 100 mm) with three reversible milling blades made of hard
alloy (T03SMG) was used.
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Figure 2. CNC “Homag BOF 41/30/R”.

The first output parameter includes the quality indicator, surface roughness. The roughness
parameter Ra was measured experimentally at the laser profile meter LPM 4 (see Figure 3), which was
constructed at the Department of woodworking at the Technical University in Zvolen in cooperation
with Kvant, s.r.o. (Kvant spol. s.r.o. Ltd, Bratislava, Slovakia). Siklienka et al. [23] characterized the
machine as a compact laser profile meter serving to optically measure 2D profiles along a defined cut,
in a contact-free manner on a triangulate basis. Then, the size of the Ra parameter was measured by a
contact roughness tester MITUTOYO SJ-210 with a diamond stylus equipped with a support outrigger
to be used in a manufacturing environment. The used detection methods were inductive and the range
of the measurement was 350 µm (−200 µm to +150 µm). The length being measured was 12.5 mm.
A testing sample was comprised of five measurements.
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Consequently, the calculations of the output parameters of the critical sub-process were stated,
comprising the process duration Ts and process costs NO.

The process duration was calculated according to the following Equation:

Ts= Tf + TFN (2)

where Ts is the machine time, Tf is the milling time, and TFN is the idle time.
The total process costs (NO) were calculated as follows:

No = NE + NoP + NUH + NFN (3)

where NE represents the energy costs, NoP represents the labor costs (influenced by CNC setting),
NUH is the cost of the arbor, and NFN represents the costs of the cutting blades.

The individual elements of the total costs were calculated by the Equations:

NE =

{[(
V
η
× 1000

)
÷ 60

]
× [CE ÷ 60]

}
×Ts (4)
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NoP = [[(MH ×OZl’)÷ 160]÷ 60]×Ts (5)

NUH = [[(TZ−TPaP)×PPN]÷CUH]×(T s) (6)

NN = {[[(MH×OZl’)÷ 160]÷ 60] + [[(TZ−TPaP)×PPN]÷CUH]}×(T C−Ts) (7)

where V is the machine performance per hour in kW; TZ is the guarantee time of the arbor in min;
TPaP is the time of failures and idle time for the machine in min; η is the efficiency; CE is the energy
cost per kW hour; PPN is the percentage of the tool usage (25%); MH is the gross wage of a CNC
operator—median; CUH is the price of the arbor; OZl’ is the fund and tax payments 35.2%; TC is the
total duration time of the sub-process; and NN is the cost non-affectable by the CNC setting.

In [24], the tool life cycle was calculated TL (10), and further, the percentage of removed life cycle
was calculated considering the milling time. Additionally, the costs of the cutting blades made of hard
alloy were calculated (11). The author [24] describes the calculation of constants CT (8) and m (9) in
her experiment. The medium density fiberboard and solid carbide tool were used in the work, as well
as in our experiment.

log CT =
∑ log vc

2 ∑ log T−∑ log vc ∑ log vc log T

2 ∑ log vc2 − (∑ log vc)
2 (8)

m =
2 ∑ vc log T−∑ log vc ∑ log T

2 ∑ log vc2 − (∑ log vc)
2 (9)

TL= CT × vc
−m= 115, 505, 891×vc

−2.11557 (10)

NFN= Tf÷TL×100%×CFN (11)

where CT is the constant, T is the tool duration, TL is the tool life, m is the exponent, vc is the cutting
speed, Tf is the milling time, and CFN is the tool price.

The measured and calculated values were analyzed in the Statistica 12 program by a multiple
regression tool. The following parameters were determined as independent variables: cutting speed
vc, feed rate vf, and the total removed material volume V. The dependent variables were stated,
respectively, as the surface roughness indicator Ra, machine time Ts, and the total influenceable costs
of the process NO. Consequently, we used the numeric method of optimization of the machining
processes, the method of the artificial neural network, which has rocketed in the last decades with
the use of computer supported solutions. The main building unit of ANN is a perceptron, or the
neuron model which receives the input signals x = (x1, x2, x3, . . . , xn + 1) through synaptic weights
creating the weight vector w = (w1, w2, w3, . . . , wn+1). The output of the perceptron is given by
the following relation [25]:

o = f (net) = f (w× x) = f

(
n+1

∑
j=1

wj xj

)
= f

(
n+1

∑
j=1

wj xj − θ

)
(12)

where f is the activation function of perceptron; net is the scalar product (dot product) of the scalar and
input vectors; and θ is the the threshold of the neuron.

Data by the creation of an artificial neural network are divided into two samples: trained and
tested. Through the data of the trained sample, a formula is created which describes the output
parameters on the basis of the best input parameters. In the tested sample, the data are verified and
the verification process is stopped when the deviation is at a minimal level.

The solution of the optimization problems by this method focused on the optimization of
adjustment of the cutting velocity and speed rate of a CNC machine. The last step was to create
relations of input parameters of the mathematical model and the overall effectiveness of the critical
manufacturing sub-process through the abstraction method (selection of essential characteristics and so
constructing a simplified model of only those characteristics or signs whose investigation can answer
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research questions of the scientific objectives of the paper) and defining the weights of the individual
output parameters, taking into account the critical success factors of the referenced enterprise.

Considering the aim of the work, in particular creating a mathematical model of sub-process
effectiveness optimization, the following hypothesis was stated and tested: There is a significant
dependency between the identified input parameters and manufacturing process effectiveness
represented by the cost level per sub-process, the quality of the workpiece being machined, and the total
duration of the sub-process. The hypothesis verification was carried out via the multiple regression
method and artificial neural network.

3. Results

In the furniture enterprise, the critical activity or sub-process of furniture manufacturing is the
milling process because it has the most significant impact on the consequent activities. The cost value
of sanding is directly proportional to the workpiece surface roughness degree after milling as the
smooth surface with a minimum roughness is an important prerequisite to manage the surface finish.
Aiming at the determination of the quality degree of the due sub-process, we measured the workpiece
roughness by two methods described in the previous sections.

3.1. Measurement, Calculation of Parameters and Dependence Verification

The determined input and output parameters influencing the effectiveness of the milling process
were measured and calculated within the experiment. Consequently, a dependence of the parameters
was verified by the statistical multiply regression method.

In Table 2, the data relating to the measured values of the operation duration (Tf), the size of
material removal per minute (MRR), the used energy amount for the particular operation (E) needed
for the calculation of energy costs and calculated values of total material removal (V), the durability of
the milling blade (TL), the median of the measured roughness Ra, and the overall costs of individual
operations (NO) are illustrated. The presented values were measured and calculated by 18 variations
of the cutting speed and feed rate (Nr.) mentioned in the previous section in Table 1.

Table 2. Measured and Calculated Values.

Nr. MRR [cm3·min−1] V [cm3] E [W] Tf [min] TL [min] NO [EUR] Ra [mm]

1. 407.56 101.890 101.7442 0.250 7.40 3.08 0.0114960
2. 407.56 203.780 101.7442 0.250 4.61 4.79 0.0107695
3. 407.56 305.670 101.7442 0.250 3.14 6.92 0.0118610
4. 407.56 407.560 101.7442 0.250 2.26 9.48 0.0108260
5. 815.12 509.450 50.87209 0.125 7.40 1.61 0.0143800
6. 815.12 611.340 50.87209 0.125 4.61 2.46 0.0142430
7. 815.12 713.230 50.87209 0.125 3.14 3.53 0.0125990
8. 815.12 815.120 50.87209 0.125 2.26 4.81 0.0122090
9. 1018.90 917.010 40.69767 0.100 7.40 1.31 0.0149325

10. 1018.90 1018.900 40.69767 0.100 4.61 1.99 0.0134010
11. 1018.90 1120.790 40.69767 0.100 3.14 2.85 0.0103585
12. 1018.90 1222.680 40.69767 0.100 2.26 3.87 0.0114045
13. 407.56 1324.570 101.7442 0.250 13.60 1.80 0.0118500
14. 815.12 1426.460 50.87209 0.125 13.60 0.96 0.0129370
15. 1018.90 1528.350 40.69767 0.100 13.60 0.80 0.0119000
16. 407.56 1630.240 101.7442 0.250 2.65 8.14 0.0106670
17. 815.12 1732.130 50.87209 0.125 2.65 4.14 0.0105500
18. 1018.90 1834.020 40.69767 0.100 2.65 3.34 0.0112180

The measured and calculated values were analyzed by the Statistica 12 program by multiple
regression tools. There were stated as independent variables: cutting speed vc, feed rate vf,
and total removed material volume V. The following parameters were selected in successive steps:
surface roughness parameter Ra, machine time T, and overall controllable costs per operation NO.
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The coefficient of correlation for the Ra variable is at the 0.70 level. Having calculated the
determination coefficient (R2), which is 0.49, we can state that 49% of changes in the roughness can be
explained as changes in the input variables. This coefficient is necessary to adjust and calculate the
adjusted determination coefficient which contains correction for the number of explaining variables.
In this case, it is (R2

adj.) 0.38. As there is no big difference, we can state that the model did not include
too many variables. The total value of test significance is lower than 0.02091, while the statistical
significance level (α) was set at 0.05 so with 95% confidence, so it can be expressed that the Ra variable
is statistically significantly dependent on the variables: cutting speed (vc), feed rate (vf), and total
removed material (V). The standard error in the model estimate is 0.00109. All three input parameters
(exogenous variables) are statistically significant because the value of significance is lower than 5%
in all three cases. Coefficients b * for the individual variables express their relative influence on the
dependent variable (see Table 3).

Table 3. Regression analysis for the Ra parameter (milling blade T03SMG).

N = 18 b * Standard
Error for b * b Standard

Error for b t Significance
Value p

Absolute variables 0.013598 0.001250 10.88250 3.25 × 10−8

vc [m·min−1] −0.450007 0.190930 −6.84 × 10−7 2.90 × 10−7 −2.35692 0.033519
vf [m·min−1] 0.531468 0.215402 0.000286 0.000116 2.46733 0.027123

V [cm3] −0.478004 0.215489 −1.22 × 10−6 5.48 × 10−7 −2.21823 0.043584

Model verification by model residual analysis was the next important step. The graph in Figure 4
is an illustration of the estimated values and residuals for the dependent variables Ra with a marked
95%-confidence interval.
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As reported by the value distribution in the point graph, it can be claimed that model residuals
are approximately distributed around the zero mean value, which means that the model is correctly
specified. This statement was verified by a Shapiro-Wilkov test, with a significance value of p = 0.0915.

The test is not statistically significant because a zero hypothesis for the normality of residual
distribution cannot be rejected. In other words, the residuals have a normal distribution, and therefore,
the individual parameters of the regression line are correctly specified. The regression line is of the
following form:

Ra = 0.013598− 6.84× 10−7×vc + 0.000286× vf − 1.22× 10−6 ×V + E (13)
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where Ra is the surface roughness, vc is the cutting speed, vf is the speed rate, V is the total material
removal, and E is the energy consumption.

3.2. Estimation of Input Variables Impact on Output Variables through Artificial Neural Networks

Based on the given Equations for the Ts and NO parameters calculation and the results of multiple
regression for Ra, it can be claimed that the given input parameters influence the individual variables.
This is the reason for the further use of the numerical method for the estimation of the impact of the
input independent variables on the output target dependent variables in their mutual combination.
Via the Statistica 12 program, artificial neural networks with three input variables (cutting speed,
feed rate, and total material removal) and three output variables (operation costs, surface finish quality,
and milling time) were created. To choose the most suitable neural network, an important role was
played by the fact that the Ra parameter has a high variability within one sample object, and therefore,
we favored the neural network whose correlation coefficients showed high values for the total costs
per the operation and milling time at the expense of parameter Ra estimation.

The correlation coefficient of the total trained performance is 0.972719 and the test performance is
0.929163. The correlation coefficient for the Ra parameter, which was calculated as a median out of the
measured values of the sample roughness, is 0.920274 for the trained data and 0.812305 for the test data.
For the total costs per operation NO, the correlation coefficients are at the 0.999007 level for trained data
and 0.978657 for the test data. The Tf parameter (milling time) corresponds to correlation coefficients
0.998877 for the trained data and 0.996526 for the measured data. To choose the most suitable network,
we also took into account the distribution of values in the space, which can be compared to 3D graphs,
besides correlation coefficients. Another important aspect of the suitable network selection was the
minimization of the number of hidden neural layers, which should range within the number of input
and output variables. In our case, this condition is met. The resulting network has three hidden
neural layers, exponential hidden activation, and the output function and train algorithm is BFGS
(Quasi-Newton). Tables 4–6 illustrate the measured values of the given parameters in comparison
with the output variables of the due neural network (MLP 3-3-3), whereas individual deviations are
calculated as their ratio (the differences between the measured value and the network output) at the
measured values. Deviations verify whether the neural network is determined correctly and can serve
as a mathematical method for milling process optimization.

Table 4. Outputs of trained and tested samples for roughness parameter Ra.

Sample vc [m·min−1] vf [m·min−1] V [cm3] Ra-Median [mm] Ra-Network [mm] Deviation Ra

Test 2513.27 4.00 101.890 0.011496 0.011787 −2.53%
Train 3141.59 4.00 203.780 0.010770 0.011775 −9.34%
Train 3769.91 4.00 305.670 0.011861 0.011740 1.02%
Train 4398.23 4.00 407.560 0.012719 0.011683 8.15%
Train 2513.27 8.00 509.450 0.014380 0.014230 1.04%
Test 3141.59 8.00 611.340 0.014243 0.013610 4.45%

Train 3769.91 8.00 713.230 0.012599 0.012939 −2.70%
Train 4398.23 8.00 815.120 0.012209 0.012297 −0.72%
Train 2513.27 10.00 917.010 0.014933 0.014984 −0.35%
Train 3141.59 10.00 1018.900 0.013401 0.013263 1.03%
Test 3769.91 10.00 1120.790 0.010359 0.012040 −16.23%

Train 4398.23 10.00 1222.680 0.011405 0.011311 0.82%
Test 1884.96 4.00 1324.570 0.011850 0.011574 2.33%

Train 1884.96 8.00 1426.460 0.012937 0.012865 0.55%
Train 1884.96 10.00 1528.350 0.013171 0.013231 −0.45%
Test 4084.07 4.00 1630.240 0.010667 0.011402 −6.89%
Test 4084.07 8.00 1732.130 0.010550 0.011319 −7.29%
Test 4084.07 10.00 1834.020 0.011218 0.010917 2.68%

Average of deviations absolute values 3.81%
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Table 5. Outputs of trained and tested samples for operation costs NO.

Sample vc [m·min−1] vf [m·min−1] V [cm3] NO-Calculation [€] NO-Network [€] Deviation NO

Test 2513.27 4.00 101.890 3.08 2.95 4.47%
Train 3141.59 4.00 203.780 4.79 4.78 0.22%
Train 3769.91 4.00 305.670 6.92 7.00 −1.26%
Train 4398.23 4.00 407.560 9.48 9.37 1.16%
Train 2513.27 8.00 509.450 1.61 1.60 0.82%
Test 3141.59 8.00 611.340 2.46 2.43 1.07%

Train 3769.91 8.00 713.230 3.53 3.59 −1.91%
Train 4398.23 8.00 815.120 4.81 5.01 −4.22%
Train 2513.27 10.00 917.010 1.31 1.21 8.08%
Train 3141.59 10.00 1018.900 1.99 1.75 12.52%
Test 3769.91 10.00 1120.790 2.85 2.62 8.05%

Train 4398.23 10.00 1222.680 3.87 3.90 −0.68%
Test 1884.96 4.00 1324.570 1.80 1.27 29.36%

Train 1884.96 8.00 1426.460 0.96 0.98 −2.02%
Train 1884.96 10.00 1528.350 0.80 0.90 −12.82%
Test 4084.07 4.00 1630.240 8.14 7.23 11.25%
Test 4084.07 8.00 1732.130 4.14 4.43 −7.08%
Test 4084.07 10.00 1834.020 3.34 3.71 −11.28%

Average of deviations absolute values 6.57%

Table 6. Outputs of trained and tested samples for total milling time Ts.

Sample vc [m·min−1] vf [m·min−1] V [cm3] Ts-Calculation [min] Ts-Network [min] Deviation Ts

Test 2513.27 4.00 101.890 0.517 0.515 0.36%
Train 3141.59 4.00 203.780 0.517 0.517 −0.09%
Train 3769.91 4.00 305.670 0.517 0.518 −0.20%
Train 4398.23 4.00 407.560 0.517 0.517 −0.04%
Train 2513.27 8.00 509.450 0.392 0.391 0.06%
Test 3141.59 8.00 611.340 0.392 0.391 0.14%

Train 3769.91 8.00 713.230 0.392 0.390 0.34%
Train 4398.23 8.00 815.120 0.392 0.389 0.62%
Train 2513.27 10.00 917.010 0.367 0.372 −1.47%
Train 3141.59 10.00 1018.900 0.367 0.372 −1.39%
Test 3769.91 10.00 1120.790 0.367 0.371 −1.28%

Train 4398.23 10.00 1222.680 0.367 0.371 −1.15%
Test 1884.96 4.00 1324.570 0.517 0.497 3.73%

Train 1884.96 8.00 1426.460 0.392 0.388 0.96%
Train 1884.96 10.00 1528.350 0.367 0.371 −1.28%
Test 4084.07 4.00 1630.240 0.517 0.505 2.26%
Test 4084.07 8.00 1732.130 0.392 0.386 1.46%
Test 4084.07 10.00 1834.020 0.367 0.370 −0.96%

Average of deviations absolute values 0.99%

The lowest costs target does not contradict the requirement for quality or the lowest roughness,
because using a combination of the cutting speed (1600 m/min) and feed rate (3.42 to 6.37 m·min−1),
the workpieces will show the lowest values of costs per operation and meanwhile a low or medium
degree of roughness in the range of 10.575 µm až 11.704 µm (Ra = 11.173 µm). To achieve the highest
operation quality, it is necessary to set the CNC machine so that the cutting speed is in the range
of 1600 m·min−1 to 3072.75 m·min−1, and at the same time, the feed rate must be in the range of
3 m·min−1 to 3.84 m·min−1. The anticipated value of the NO parameter shall range within €0.65
to €5.30, whereas the cutting velocity shall have the major impact on the value of costs within this
range. This implies that the optimal cutting speed would be 1600 m·min−1 and feed rate would be
3.00 m·min−1 when the estimated workpiece surface roughness was 10.375 µm and the estimated costs
were €0.67. However, the operation duration shows very high values and from a high productivity
achievement point of view, it is not convenient to machine the workpieces at such a low feed rate.
To take Ts parameter into account, it is necessary to set the CNC machine so that the values would
occur in the area of the second local minimum of the parameter Ra.
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3.3. Identification of Mathematical Model for Optimizing the Milling Process

Based on the results achieved in the created artificial neural network (ANN), the optimal values
of the input and output parameters of the milling process were identified and are presented in Table 7.

Table 7. Optimal levels of setting cutting conditions considering the output parameters.

vc [m·min−1] N [rev·min−1] vf [m·min−1] Ra [µm] Mark Ra NO [€] Mark NO Ts [min] Mark Ts

1600.00 5093 3.00 10.375 VL 0.67 VL 0.534 VH
4398.23 14,000 11.00 10.548 L 3.64 M 0.373 VL
1600.00 5093 3.42 10.575 L 0.65 VL 0.515 H
4250.95 13,531 11.00 10.577 L 3.44 M 0.373 VL
4103.68 13,062 11.00 10.703 L 3.22 M 0.373 VL
1747.28 5562 3.00 10.748 L 1.04 L 0.538 VH
1600.00 5093 3.84 10.765 L 0.65 VL 0.497 H
4398.23 14,000 10.58 10.852 L 3.76 M 0.371 VL
4250.95 13,531 10.58 10.855 L 3.55 M 0.371 VL
3072.75 9781 3.00 10.928 L 5.30 MH 0.566 VH
1600.00 5093 4.68 11.116 L 0.64 VL 0.465 MH
1600.00 5093 5.11 11.278 L 0.64 VL 0.451 MH
1600.00 5093 4.26 10.945 L 0.64 VL 0.480 MH
1600.00 5093 5.53 11.429 L 0.65 VL 0.438 M
1600.00 5093 3.84 10.765 L 0.65 VL 0.497 H
1600.00 5093 5.95 11.571 M 0.65 VL 0.426 L
1600.00 5093 3.42 10.575 L 0.65 VL 0.515 H
1600.00 5093 6.37 11.704 M 0.66 VL 0.415 L
1600.00 5093 3.00 10.375 VL 0.67 VL 0.534 VH
1600.00 5093 6.79 11.826 M 0.68 VL 0.405 L
1600.00 5093 10.16 12.461 M 0.88 VL 0.369 VL
1600.00 5093 9.74 12.416 M 0.85 VL 0.369 VL
1600.00 5093 10.58 12.497 M 0.92 VL 0.369 VL
1747.28 5562 10.16 12.897 MH 0.89 VL 0.370 VL
4103.68 13,062 10.16 11.200 L 3.43 M 0.370 VL
4250.95 13,531 10.16 11.106 L 3.68 M 0.370 VL
1747.28 5562 10.58 12.936 MH 0.91 VL 0.371 VL
3956.40 12,594 10.16 11.454 L 3.13 M 0.371 VL
1747.28 5562 9.74 12.848 MH 0.88 VL 0.371 VL
4398.23 14,000 10.16 11.125 L 3.91 M 0.371 VL

N—spindle speed; Mark: VL—very low; L—low; M—middle; MH—medium high; H—high; VH—very high.

Based on the results given in Table 7, we could claim that the maximal effectiveness of the
sub-process milling shall be achieved if the CNC machine shall be set at the cutting speed (vc) of
4398.23 m·min−1 (14,000 rev·min−1) and feed rate (vf) of 11.00 m·min−1. These optimal values emerge
from the results of ANN, without considering the weights of the output parameters according to the
critical success factors of the firm.

To incorporate the weights formulated by the critical success factors, we created a neural network
whose output parameter was the function value estimated by:

f : y = wNO
× 1

NO
+ wRa ×

1
Ra

+ wTs ×
1
Ts

= 0.2× 1
NO

+ 0.4× 1
Ra

+ 0.4× 1
Ts

(14)

The weights were determined on the basis of the critical success factors for the due enterprise,
including the most important quality parameter (surface roughness) and process duration values.
The formulation determining the optimal values of the input parameters is:

z = 0.2× 1
3.03

+ 0.4× 1
0.007507

+ 0.4× 1
0.566

(15)

The maximal values of the created network (z) present the optimal setting of the input parameters.
The optimal values of the input and output parameters after considering the critical success factors of
the enterprise are shown in Table 8.
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Table 8. Optimal values.

Inputs ANN Outputs

vc [m·min−1] N * [rev·min−1] vf [m·min−1] V [cm3] Z Ra [µm] NO [EUR] Ts [min]

3072.75 9780.87 3.00 189.34 41.69 10.928 5.30 0.560
2925.48 9312.08 3.00 153.44 41.57 10.983 4.78 0.565
2483.65 7905.71 3.00 162.00 41.40 11.153 3.29 0.566

* N—spindle speed.

4. Discussion

The results of similar works dealing with the same topic are compared with the findings of the
paper in this section. Xu and Lee [18] state that with recent advances in five-axis milling technology,
feed rate optimization methods have shown significant effects in regard to enhancing milling
productivity, especially when machining complex surface parts. Davim, Clemente, and Silva [26]
devoted their research to the effect of the arbor revolutions setting and feed rate on the surface
roughness when milling the MDF board. In the research, a shank cutter (shank mill) made of hard alloy
with a diameter of 8 mm was used. They concluded that high revolutions have an apparent impact
on the surface finish parameters, while dependency is indirect, so an increase in revolutions means a
decrease in surface roughness. The impact of the feed rate is not so obvious; however, it can be stated
that its increase is connected to a decrease in the surface finish quality. These results were confirmed
by Sütcü a Karagöz [27] for the use of a shank cutter with a diameter of 6 mm, whereas they also
used the variance analysis (ANOVA) to assess the experimental data. The results of our experimental
research confirm these findings. Moreover, via the creation of ANN and owing to the prediction of
parameter Ra values with the required precision, we could determine the optimal cutting conditions
through considering the monitored parameters and their multiple impacts on the quality, productivity,
and costs value of the monitored sub-process, even out of the range of the input parameters used in
the experiment.

5. Conclusions

An important aspect of manufacturing process optimization is to identify a critical sub-process
based on the key indicators of effectiveness, and consequently, to correctly identify the input and output
parameters which have the greatest impact on the overall effectiveness of the process. In furniture
manufacturing, the critical sub-process is the milling process because it has the most significant impact
on the consequent activities. The technical parameters describing the physical nature of the milling
process, the cutting speed and feed rate, were identified as input parameters. Output parameters
reflecting the overall effectiveness of the milling process were economic, namely the surface roughness,
process duration, and total process costs. Correctness of parameters’ determination was verified by a
multiple regression tool. The dependence between parameters was proved and the hypothesis stated
was confirmed.

Within optimization, it is inevitable to follow the latest trends which have progressed,
especially with the development of computer supported solutions, because they offer a possibility to
deal with multi criteria and include contradictory objectives. These methods also include artificial
neural networks which play an essential role within the created mathematical optimization model.
Owing to these models, we can forecast the estimated value of output target parameters and determine
optimal conditions which will raise the effectiveness of the particular sub-process. The main objective
of this step in milling process optimization was to determine the optimal cutting speed and feed
rate, focusing on the optimal output parameters (surface roughness, process duration, and process
costs) in the furniture enterprise and respecting their contradictory character. The resulting artificial
neural network as a mathematical optimizing model has three input and three output variables,
three hidden neural layers, exponential hidden activation, and the output function and train algorithm
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is BFGS. This designed mathematical model was verified by deviations between the measured and
calculated values of the parameters in the experiment and the outputs of the artificial neural network.
Little deviations confirm a correctness of the mathematical model. We came to the conclusion that the
optimal values of the output parameters in the milling process will be achieved by cutting speed 4,
which is 438.23 m·min−1, and a feed rate of 11.0 m·min−1 if the weights of importance of the output
parameters according to the key success factors in the reference enterprise are not taken into account.
Additionally, to meet the aims of the enterprise, the weights of the individual target output measures
were chosen and an Equation for the manufacturer was stated, the maximum of which is considered as
the intersection of the optimal input-output values taking the specifics of the furniture manufacturing
into account.

The created methodology and the used methods of process optimization enable achieving
a sustainable effectiveness of the manufacturing process, as well as its constant improvement.
An application of the presented optimization model in practical conditions of enterprises is possible by
the creation of a software simulation model which will ease the implementation of optimization in
the practice.
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