Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experiment Design
2.3. Measurements of Carbon Fluxes and Environmental Factors
2.4. Data Processing
2.5. Statistics
3. Results
3.1. Natural Rewetting
3.2. Controlled Rewetting
3.3. Temporal and Spatial Relationships between Carbon Emissions and Water Levels
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Turunen, J.; Tomppo, E.; Tolonen, K.; Reinikainen, A. Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal and subarctic regions. Holocene 2002, 12, 69–80. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosci. Discuss. 2008, 5, 1379–1419. [Google Scholar] [CrossRef]
- Chen, H.; Yang, G.; Peng, C.H.; Zhang, Y.; Zhu, D.; Zhu, Q.A.; Hu, J.; Wang, M.; Zhan, W.; Zhu, E.X.; Bai, Z.Z.; Li, W.; Wu, N. The carbon stock of alpine peatlands on the QinghaieTibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 2014, 95, 151–158. [Google Scholar] [CrossRef]
- Hao, Y.B.; Cui, X.Y.; Wang, Y.F.; Mei, X.R.; Kang, X.M.; Wu, N.; Luo, P.; Zhu, D. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands 2011, 31, 413–422. [Google Scholar] [CrossRef]
- Johnson, W.C.; Werner, B.; Guntenspergen, G.R. Non-linear responses of glaciated prairie wetlands to climate warming. Clim. Chang. 2016, 134, 209–223. [Google Scholar] [CrossRef]
- Kang, X.M.; Wang, Y.F.; Chen, H.; Tian, J.Q.; Cui, X.Y.; Rui, Y.C.; Zhong, L.; Kardol, P.; Hao, Y.B.; Xiao, X.M. Modeling carbon fluxes using multi-temporal MODIS imagery and CO2 eddy flux tower data in Zoige Alpine Wetland, South-West China. Wetlands 2014, 34, 603–618. [Google Scholar] [CrossRef]
- Kang, X.M.; Hao, Y.B.; Cui, X.Y.; Chen, H.; Huang, S.X.; Du, Y.G.; Li, W.; Kardol, P.; Xiao, X.M.; Cui, L.J. Variability and changes in climate, phenology, and gross primary production of an Alpine wetland ecosystem. Remote Sens. 2016, 8, 391. [Google Scholar] [CrossRef]
- Corrigan, E.; Nieuwenhuis, M. Using Goal-Programming to Model the Effect of Stakeholder Determined Policy and Industry Changes on the Future Management of and Ecosystem Services Provision by Ireland’s Western Peatland Forests. Sustainability 2017, 9, 11. [Google Scholar] [CrossRef]
- Chen, H.; Wu, N.; Wang, Y.; Gao, Y.H.; Peng, C.H. Methane fluxes from alpine wetlands of Zoige Plateau in relation to water regime and vegetation under two scales. Water Air Soil Poll. 2011, 217, 173–183. [Google Scholar] [CrossRef]
- Cui, M.; Ma, A.; Qi, H.; Zhuang, X.; Zhuang, G.; Zhao, G. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition. Sci. Rep. 2015, 5, 11616. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Roulet, N. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: Prospects and significance for Canada. Wetlands 2000, 20, 605–615. [Google Scholar] [CrossRef]
- Chen, H.; Wu, N.; Wang, Y.; Zhu, D.; Yang, G.; Gao, Y.; Fang, X.; Wang, X.; Peng, C. Inter-Annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: A three-year Study. PLoS ONE 2013, 8, e53878. [Google Scholar] [CrossRef] [PubMed]
- Artigas, F.; Jin, Y.S.; Hobble, C.; Marti-Donati, A.; Schäfer, K.V.R.; Pechmann, I. Long term carbon storage potential and CO2, sink strength of a restored salt marsh in New Jersey. Agric. For. Meteorol. 2015, 200, 313–321. [Google Scholar] [CrossRef]
- Fleischer, E.; Khashimov, I.; Hölzel, N.; Klemm, O. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change. Sci. Total Environ. 2016, 545, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.N.; Garnett, M.H.; Ward, S.E.; Oakley, S.; Bardgett, R.D.; Ostle, N.J. Vascular plants promote ancient peatland carbon loss with climate warming. Glob. Chang. Biol. 2016, 22, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Kang, X.M.; Li, C.Y.; Cui, L.J.; Wang, X.W. Comparison of the drainage effects on ecological characteristics in Sanjiang Plain and Zoige Plateau. Chin. J. Ecol. 2015, 34, 2030–2040. [Google Scholar]
- Zhang, X.; Liu, H.; Baker, C.; Graham, S. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management. Ecol. Eng. 2012, 38, 86–92. [Google Scholar] [CrossRef]
- Chen, H.; Wu, N.; Gao, Y.H.; Wang, Y.F.; Luo, P.; Tian, J.Q. Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China. Sci. Total Environ. 2009, 407, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Luedeling, E.; Xu, J.C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yao, S.P.; Wu, N.; Wang, Y.F.; Luo, P.; Tian, J.Q.; Gao, Y.H. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J. Geophys. Res. 2008, 113, D12303. [Google Scholar] [CrossRef]
- Wang, M.; Yang, G.; Gao, Y.H.; Chen, H.; Wu, N.; Peng, C.H.; Zhu, Q.A.; Zhu, D.; Wu, J.H.; He, Y.X.; Tian, J.Q. Higher recent peat C accumulation than that during the Holocene on the Zoige Plateau. Quat. Sci. Rev. 2015, 114, 116–125. [Google Scholar] [CrossRef]
- Zheng, D.; Li, B.Y. Progress in studies on geographical environments of the Qinghai-Xizang plateau. Sci. Geogr. Sin. 1999, 19, 295–302. [Google Scholar]
- Yang, Y.X. Ecological environment deterioration, mire degeneration and their formation mechanism in the Zoige Plateau. J. Mt. Sci. 1999, 17, 318–323. [Google Scholar]
- Tian, Y.B.; Xiong, M.B.; Song, G.Y. Study on change of soil organic matter in the process of wetland ecological restoration in Ruoergai Plateau. Wetl. Sci. 2004, 2, 88–93. [Google Scholar]
- Zhou, W.C.; Suolang, D.E.J.; Cui, L.J.; Wang, Y.F.; Li, W. Effects of Fencing and Grazing on the Emissions of CO2 and CH4 in Zoige Peatland, East Qinghai-Tibetan Plateau. Ecol. Environ. Sci. 2015, 24, 183–189. [Google Scholar]
- Kaisermann, A.; Roguet, A.; Nunan, N.; Maron, P.A.; Ostle, N.; Lata, J.C. Agricultural management affects the response of soil bacterial community structure and respiration to water-stress. Soil Biol. Biochem. 2013, 66, 69–77. [Google Scholar] [CrossRef]
- Cabezas, A.; Gelbrecht, J.; Zak, D. The effect of rewetting drained fens with nitrate-polluted water on dissolved organic carbon and phosphorus release. Ecol. Eng. 2013, 53, 79–88. [Google Scholar] [CrossRef]
- Daou, L.; Périssol, C.; Luglia, M.; Calvert, V.; Criquet, S. Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils. Soil Biol. Biochem. 2016, 93, 142–149. [Google Scholar] [CrossRef]
- Estop-Aragonés, C.; Zając, K.; Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Chang. Biol. 2016, 22, 2285. [Google Scholar] [CrossRef] [PubMed]
- Mastepanov, M.; Sigsgaard, C.; Dlugokencky, E.J.; Houweling, S.; Ström, L.; Tamstorf, M.P.; Christensen, T.R. Large tundra methane burst during onset of freezing. Nature 2008, 456, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Vargas, R.; Bondlamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zeng, D.; Patrick, W.H., Jr. Characteristics of methane oxidation in a flooded rice soil profile. Nutr. Cycl. Agroecosyst. 1997, 49, 97–103. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Hu, X.; Li, X.; Wang, Y.; Li, H. Effect of water table level on CO2, CH4, and N2O emissions in a freshwater marsh of Northeast China. Soil Biol. Biochem. 2013, 61, 52–60. [Google Scholar] [CrossRef]
- Lombardi, J.E.; Epp, M.A.; Chanton, J.P. Investigation of the methyl fluoride technique for etermining rhizospheric methane oxidation. Biogeochemistry 1997, 36, 153–172. [Google Scholar] [CrossRef]
- Strack, M.; Waddington, J.M.; Tuittila, E.S. Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Glob. Biogeochem. Cycl. 2004, 18, 286–289. [Google Scholar] [CrossRef]
- Freeman, C.; Lock, M.A.; Reynolds, B. Flux of CO2, CH4 and N2O from a Welsh peatland following simulation of water table drawdown: Potential feedback to climate change. Biogeochemistry 1993, 19, 51–56. [Google Scholar] [CrossRef]
- Song, C.C.; Wang, L.L.; Tian, H.Q.; Liu, D.Y.; Lu, C.Q.; Xu, X.F.; Zhang, L.H.; Yang, G.S.; Wan, Z.M. Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. J. Geophys. Res. 2013, 118, 741–751. [Google Scholar] [CrossRef]
- Yang, J.S.; Liu, J.S.; Wang, J.D.; Yu, J.B.; Sun, Z.G.; Li, X.H. Emissions of CH4 and N2O from a wetland in the Sanjiang plain. Chin. J. Plant Ecol. 2006, 30, 432–440. [Google Scholar]
- Yang, G.; Chen, H.; Wu, N.; Tian, J.Q.; Peng, C.H.; Zhu, Q.A.; Zhu, D.; He, Y.X.; Zheng, Q.Y.; Zhang, C.B. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol. Biochem. 2014, 78, 83–89. [Google Scholar] [CrossRef]
- Whalen, S.C.; Reeburgh, W.S. Interannual variations in tundra methane flux: A 4-year time series at fixed sites. Glob. Biogeochem. Cycl. 1992, 6, 139–160. [Google Scholar] [CrossRef]
- Zhu, X.; Song, C.; Guo, Y.; Sun, X.; Zhang, X.; Miao, Y. Methane emissions from temperate herbaceous peatland in the Sanjiang Plain of Northeast China. Atmos. Environ. 2014, 92, 478–483. [Google Scholar] [CrossRef]
- Verville, J.H.; Hobbie, S.E.; Champin III, F.S.; Hooper, D.U. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 1998, 41, 215–235. [Google Scholar] [CrossRef]
- Keller, J.; White, J.R.; Bridghamz, S.D.; Pasto, R.J. Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Glob. Chang. Biol. 2004, 10, 1053–1064. [Google Scholar] [CrossRef]
- Hirota, M.; Tang, Y.H.; Hu, Q.W.; Hirata, S.; Kato, T.; Mo, W.H.; Cao, G.M.; Mariko, S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol. Biochem. 2004, 36, 737–748. [Google Scholar] [CrossRef]
Treatment | SWC (%) at Three Depths of Water | CH4 (CO2) 1 | SD | CH4 (CO2) /ER (%) | SD | TCE (CH4 + ER) 1 | SD | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 cm | SD | 10 cm | SD | 20 cm | SD | |||||||
Before rewetting | 66.2 | ±7.5 | 58.2 | ±5.9 | 53.9 | ±4.7 | 26.9 | ±2.6 | 11.1 | ±0.9 | 269.6 | ±17.3 |
After rewetting | 104.5 | ±12.1 | 85.0 | ±8.7 | 71.1 | ±5.6 | 62.5 | ±4.3 | 66.1 | ±6.3 | 157.0 | ±12.8 |
Difference between the above two treatments | 38.3 | ±4.6 | 26.8 | ±2.8 | 17.2 | ±0.7 | 35.6 | ±1.7 | 55 | ±5.4 | –112.6 | ±4.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Kang, X.; Li, W.; Hao, Y.; Zhang, Y.; Wang, J.; Yan, L.; Zhang, X.; Zhang, M.; Zhou, J.; et al. Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau. Sustainability 2017, 9, 948. https://doi.org/10.3390/su9060948
Cui L, Kang X, Li W, Hao Y, Zhang Y, Wang J, Yan L, Zhang X, Zhang M, Zhou J, et al. Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau. Sustainability. 2017; 9(6):948. https://doi.org/10.3390/su9060948
Chicago/Turabian StyleCui, Lijuan, Xiaoming Kang, Wei Li, Yanbin Hao, Yuan Zhang, Jinzhi Wang, Liang Yan, Xiaodong Zhang, Manyin Zhang, Jian Zhou, and et al. 2017. "Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau" Sustainability 9, no. 6: 948. https://doi.org/10.3390/su9060948
APA StyleCui, L., Kang, X., Li, W., Hao, Y., Zhang, Y., Wang, J., Yan, L., Zhang, X., Zhang, M., Zhou, J., & Kardol, P. (2017). Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau. Sustainability, 9(6), 948. https://doi.org/10.3390/su9060948