More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective
Abstract
:1. Introduction
2. State of the Art: Risk and the Social-Ecological Perspective
3. Social-Ecological Perspective in Risk Research
3.1. Pharmaceutical Residues in the Aquatic Environment
3.1.1. Case Outline
3.1.2. Risks as Side-Effects of Normal Operation
3.2. Microplastics in the Aquatic Environment
3.2.1. Case Outline
3.2.2. Societal Significance of Risks
3.3. Semicentralized Water Infrastructures
3.3.1. Case Outline
3.3.2. Integrative Risk Assessment
3.4. Sustainable Forest Management
3.4.1. Case Outline
3.4.2. Integrative Management Approach
4. Discussion
- The social-ecological perspective does not consider natural hazards such as earthquakes or volcanic events that might have catastrophic effects and require crisis management. The same holds true for risks that can be understood as “normal accidents” (cf. [77]) but have solely social implications, for instance working conditions or health risks such as smoking. In social-ecological research, the focus is set on risks that arise through specific society-nature interactions which are regulated in a non-sustainable way and affect ecological as well as social processes and structures. By framing risks as a product of the “normal” operation of a provisioning system, the analytical perspective focuses on the mode of risk production and, therefore, leads to the conception that the involved provisioning systems need to be reorganized, as shown by the case of pharmaceutical residues in the water cycle. The social-ecological analysis includes the fact that risks can be transboundary, traveling across the border of risk producing systems into other linked (provisioning) systems [78]. Thus, these risks can be characterized by a specific vibrancy which affects other linked entities or systems, as demonstrated in the case of pharmaceuticals and microplastics. On the one hand, these linkages result from a physical connection of the involved provisioning systems, like the connection of the health care system and the “water services” system through wastewater flows. On the other hand, these linkages emerge through social processes (like communication, practices) affecting different social, political and economic spheres, for instance societal aversion to beached plastic debris inducing income losses in the tourism sector. Thus, the social-ecological approach includes both so-called objective approaches, trying to assess risks with probability assessments, and constructivist approaches that consider how the risk is socially constructed and perceived.
- The social-ecological perspective takes into account that risk management approaches can always have (non-intended) side effects and affect other linked entities or systems, as shown in the cases of novel water infrastructures and forest management. In this regard, a social-ecological approach integrates interdependencies of involved systems with the respective stakeholders from the beginning. Thus, knowledge from the technical and natural sciences is combined with knowledge from the social sciences on everyday practices, for instance the behavior of users in the case of novel water infrastructures.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Neisser, F. ‘Riskscapes’ and risk management: Review and synthesis of an actor-network theory approach. Risk Manag. 2014, 16, 88–120. [Google Scholar] [CrossRef]
- Renn, O. Concepts of risk. An interdisciplinary review. Part 1: Disciplinary risk concepts. GAIA Ecol. Perspect. Sci. Soc. 2008, 17, 50–66. [Google Scholar] [CrossRef]
- Renn, O.; Dreyer, M.; Klinke, A.; Schweizer, P.-J. Systemische Risiken: Charakterisierung, Management und Intergration in eine aktive Nachhaltigkeitspolitik. In Jahrbuch Ökologische Ökonomik 5 (Soziale Nachhaltigkeit); Beckenbach, F., Hampicke, U., Leipert, C., Meran, G., Minsch, J., Nutzinger, H.G., Pfriem, R., Weimann, J., Wirl, F., Witt, U., Eds.; Metropolis: Marburg, Germany, 2007; pp. 157–158. [Google Scholar]
- Schramm, E.; Lux, A. Klimabedingte Biodiversitätsrisiken. Ein neues Forschungsgebiet für BiK-F; Knowledge Flow Paper, Biodiversität und Klima Forschungszentrum No. 16; LOEWE Biodiversität und Klima Forschungszentrum (BiK-F): Frankfurt am Main, Germany, 2014. [Google Scholar]
- Birkmann, J. Regulation and coupling of society and nature in the context of natural hazards. In Coping with Global Environmental Change, Disasters and Security: Threats, Challenges, Vulnerabilities and Risks; Brauch, H.G., Oswald Spring, Ú., Mesjasz, C., Grin, J., Kameri-Mbote, P., Chourou, B., Dunay, P., Birkmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1103–1127. [Google Scholar]
- Luhmann, N. Risk. A Sociological Theory; Aldine de Gruyter: New York, NY, USA, 1995. [Google Scholar]
- Douglas, M. Risk Acceptability According to the Social Sciences; Sage: New York, NY, USA, 1985. [Google Scholar]
- Eiser, R.; Miles, S.; Frewer, L. Trust, perceived risk and attitudes towards food technologies. J. Appl. Soc. Psychol. 2002, 32, 2423–2434. [Google Scholar] [CrossRef]
- Renn, O.; Schweizer, P.-J.; Dreyer, M.; Klinke, A. Risiko. Über den Gesellschaftlichen Umgang mit Unsicherheit; Oekom: München, Germany, 2007. [Google Scholar]
- Becker, E.; Jahn, T. (Eds.) Soziale Ökologie. Grundzüge einer Wissenschaft von den Gesellschaftlichen Naturverhältnissen; Campus Verlag: Frankfurt am Main, Germany, 2006. [Google Scholar]
- Hummel, D.; Jahn, T.; Schramm, E. Social-Ecological Analysis of Climate Induced Changes in Biodiversity. Outline of a Research Concept; Knowledge Flow Paper, Biodiversität und Klima Forschungszentrum No. 11; LOEWE Biodiversität und Klima Forschungszentrum (BiK-F): Frankfurt am Main, Germany, 2011. [Google Scholar]
- Hummel, D.; Jahn, T.; Keil, F.; Liehr, S.; Stieß, I. Social Ecology als Critical, Transdisciplinary Science—Conceptualizing, Analyzing, and Shaping Societal Relations to Nature. Sustainability 2017. submitted. [Google Scholar]
- Hampel, J. Different concepts of risk: A challenge for risk communication. Int. J. Med. Microbiol. 2006, 296, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Gooby, P.; Zinn, J.O. Current directions in risk research: New developments in Psychology and Sociology. Risk Anal. 2006, 26, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Béliveau, M.; Tardif, R.; Krishnan, K. A PBPK Modeling-Based Approach to Account for Interactions in the Health Risk Assessment of Chemical Mixtures. Toxicol. Sci. 2001, 63, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Bedford, T.; Cooke, R. Probabilistic Risk Analysis. Foundations and Methods; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Egner, H.; Pott, A. (Eds.) Geographische Risikoforschung. Zur Konstruktion Verräumlichter Risiken und Sicherheiten; Franz Steiner Verlag: Stuttgart, Germany, 2010. [Google Scholar]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef]
- Rohrmann, B.; Renn, O. Risk Perception Research. In Cross-Cultural Risk Perception: A Survey of Empirical Studies; Renn, O., Rohrmann, B., Eds.; Springer: Boston, MA, USA, 2000; pp. 11–53. [Google Scholar]
- Tagg, J. Grounds of Dispute. Art History, Cultural Politics and the Discursive Field; University of Minnesota Press: Minneapolis, MN, USA, 1992. [Google Scholar]
- Douglas, M.; Wildavsky, A. Risk and Culture. An Essay on the Selection of Technological and Environmental Dangers; University of California Press: Berkeley, CA, USA, 1983. [Google Scholar]
- Luhmann, N. Communication and Social Order. Risk: A Sociological Theory; Fourth Printing; Transaction Publishers: New Brunswick, NJ, USA, 2008. [Google Scholar]
- Habermas, J. Moral Consciousness and Communicative Action; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Jaeger, C.C.; Webler, T.; Rosa, E.A.; Renn, O. Risk, Uncertainty and Rational Action; Routledge: Oxon, NY, USA, 2001. [Google Scholar]
- Beck, U. Risk Society. Towards a New Modernity; Sage Publication: Los Angeles, CA, USA, 2010. [Google Scholar]
- Egner, H.; Pott, A. Risiko und Raum: Das Angebot der Beobachtungstheorie. In Geographische Risikoforschung: Zur Konstruktion Verräumlichter Risiken und Sicherheiten; Egner, H., Pott, A., Eds.; Franz Steiner Verlag: Stuttgart, Germany, 2010; pp. 9–31. [Google Scholar]
- Aven, T. The risk concept–historical and recent development trends. Reliab. Eng. Syst. Saf. 2012, 99, 33–44. [Google Scholar] [CrossRef]
- Renn, O. Concepts of risk: An interdisciplinary review. Part 2: Integrative approaches. GAIA Ecol. Perspect. Sci. Soc. 2008, 17, 196–204. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Kasperson, J.X.; Emani, S. Social amplification of risk: The media and public response. In Waste Processing, Transportation, Storage and Disposal, Technical Programs and Public Education. Volume 1: High-Level Waste and General Interest; Post, R.G., Ed.; Arizona Board of Regents: Tucson, AZ, USA, 1989; pp. 131–135. [Google Scholar]
- WBGU—German Advisory Council on Global Change. World in Transition. Strategies for Managing Global Environmental Risks: Annual Report 1998; German Advisory Council on Global Change: Heidelberg, Germnay, 2000. [Google Scholar]
- International Risk Governance Council. An Introduction to the IRGC Risk Governance Framework; IRGC: Geneva, Switzerland, 2007. [Google Scholar]
- Millstone, E. Science, risk and governance: Radical rhetorics and the realities of reform in food safety governance. Res. Policy 2009, 38, 624–636. [Google Scholar] [CrossRef]
- Hummel, D.; Kluge, T. Regulationen. In Soziale Ökologie: Grundzüge einer Wissenschaft von den Gesellschaftlichen Naturverhältnissen; Becker, E., Jahn, T., Eds.; Campus Verlag: Frankfurt am Main, Germany, 2006; pp. 248–258. [Google Scholar]
- Tabak, H.H.; Bunch, R.L. Steroid hormones as water pollutants. I. Metabolism of natural and synthetic ovulation-inhibiting hormones by microorganisms of activated sludge and primary settled sewage. Dev. Ind. Microbiol. 1970, 11, 367–376. [Google Scholar]
- Norpoth, K.; Nehrkorn, A.; Kirchner, M.; Holsen, H.; Teipel, H. Untersuchungen zur Frage der Löslichkeit und Stabilität ovulationshemmender Steroide in Wasser, Abwässern und belebtschlamm. Z. Bakteriol. Mikrobiol. Hyg. 1973, 156, 500–511. [Google Scholar]
- Hignite, C.; Azarnoff, D.L. Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci. 1977, 20, 337–341. [Google Scholar] [CrossRef]
- Garrison, A.W.; Pope, J.D.; Allen, F.R. GC/MS analysis of organic compounds in domestic wastewaters. In Identification and Analysis of Organic Pollutants in Water; Ann Arbor Sicence Publisher Sicence Publisher, Inc.: Ann Arbor, MI, USA, 1976; pp. 517–556. [Google Scholar]
- Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2015, 34, 823–835. [Google Scholar]
- Webb, S.; Ternes, T.; Gibert, M.; Olejniczak, K. Indirect human exposure to pharmaceuticals via drinking water. Toxicol. Lett. 2003, 142, 157–167. [Google Scholar] [CrossRef]
- Keil, F.; Bechmann, G.; Kümmerer, K.; Schramm, E. Systemic risk governance for pharmaceutical residues in drinking water. GAIA Ecol. Perspect. Sci. Soc. 2008, 17, 355–361. [Google Scholar] [CrossRef]
- Brandmayr, C.; Kerber, H.; Winker, M.; Schramm, E. Impact assessment of emission management strategies of the pharmaceuticals Metformin and Metoprolol to the aquatic environment using Bayesian networks. Sci. Total Environ. 2015, 532, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine river. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Kramm, J.; Völker, C. Understanding risks of microplastics: A social-ecological risk perspective. In Freshwater Microplastics: Emerging Contaminants? Wagner, M., Lambert, S., Eds.; Springer: New York, NY, USA, 2017; in press. [Google Scholar]
- Von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 1. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the ocean: Contamination of freshwater ecosystems with (micro-) plastic particles. Environ. Chem. 2015, 12, 539–550. [Google Scholar] [CrossRef]
- Federal Institute for Risk Assessment. Mikroplastikpartikel in Lebensmitteln. Stellungnahme Nr. 013/2015. 2015. Available online: http://www.bfr.bund.de/cm/343/mikroplastikpartikel-in-lebensmitteln.pdf (accessed on 30 May 2017).
- Girard, N.; Lester, S.; Paton-Young, A.; Saner, M. Microbeads: “Tip of the Toxic Plastic-berg”? Regulation, Alternatives, and Future Implications; Institute for Science, Society and Policy: Ottawa, ON, Canada, 2016. [Google Scholar]
- Ballance, A.; Ryan, P.G.; Turpie, J.K. How much is a clean beach worth? The impact of litter on beach users in the Cape Peninsula, South Africa. S. Afr. J. Sci. 2000, 96, 210–230. [Google Scholar]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.C.; Hong, S.; Lee, J.; Lee, M.J.; Shim, W.J. Estimation of lost tourism revenue in Geoje Island from the 2011 marine debris pollution event in South Korea. Mar. Pollut. Bull. 2014, 81, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Der Spiegel. Plastikteilchen Verunreinigen Lebensmittel. Unterschätzte Gefahr, 2013. 17 November 2013. Available online: http://www.spiegel.de/wissenschaft/technik/winzige-plastikteile-verunreinigen-lebensmittel-a-934057.html (accessed on 30 September 2016).
- NDR. Mikroplastik in Mineralwasser und Bier. 2014. Available online: http://www.ndr.de/ratgeber/verbraucher/Mikroplastik-in-Mineralwasser-und-Bier,mikroplastik134.html (accessed on 30 September 2016).
- Federal Institute for Risk Assessment. BfR Consumer Monitor 02|2016; Federal Institute for Risk Assessment: Berlin, Germany, 2016. [Google Scholar]
- Renn, O. The Role of Risk Perception for Risk Management. Reliab. Eng. Syst. Saf. 1998, 59, 49–62. [Google Scholar] [CrossRef]
- Winker, M.; Schramm, E.; Schulz, O.; Zimmermann, M.; Liehr, S. Integrated water research and how it can help address the challenges faced by Germany’s water sector. Environ. Earth Sci. 2016, 75, 1226. [Google Scholar] [CrossRef]
- Otterpohl, R.; Albold, A.; Oldenburg, M. Source control in urban sanitation and waste management: Ten systems with reuse of resources. Water Sci. Technol. 1999, 39, 153–160. [Google Scholar] [CrossRef]
- Larsen, T.A.; Alder, A.C.; Eggen, R.I.L.; Maurer, M.; Lienert, J. Source separation: Will we see a paradigm shift in wastewater handling? Environ. Sci. Technol. 2009, 43, 6121–6125. [Google Scholar] [CrossRef] [PubMed]
- Schramm, E.; Kerber, H.; Trapp, J.H.; Zimmermann, M.; Winker, M. Novel urban water systems in Germany: Governance structures to encourage transformation. Urban Water J. 2017. accepted for publication. [Google Scholar]
- Birkmann, J. Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; United Nations University Press: New Delhi, India, 2006; pp. 7–54. [Google Scholar]
- Sutmöller, J.; Spellmann, H.; Fiebiger, C.; Albert, M. Der Klimawandel und seine Auswirkungen auf die Buchenwälder in Deutschland The effects of climate change on beech forests in Germany. Ergeb. Angew. Forsch. Buche 2008, 3, 135. [Google Scholar]
- Yousefpour, R.; Jacobsen, J.B.; Thorsen, B.J.; Meilby, H.; Hanewinkel, M.; Oehler, K. A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann. For. Sci. 2012, 69, 1–15. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Kromp-Kolb, H.; Lindenthal, T.; Bohunovsky, L. Österreichischer Sachstandsbericht Klimawandel 2014. GAIA Ecol. Perspect. Sci. Soc. 2014, 23, 363–365. [Google Scholar]
- Schramm, E.; Holland, V. Climate change management in Central European forestry and the perspective of risk sharing. For. Policy 2017. submitted. [Google Scholar]
- Schramm, E. Gesellschaftliche Wahrnehmung klimabedingter Biodiversitätsveränderungen in der Forstwirtschaft. In Klimawandel und Biodiversität: Folgen für Deutschland; Mosbrugger, V., Brasseur, G.P., Schaller, M., Eds.; WBG Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2012; pp. 374–376. [Google Scholar]
- Yousefpour, R.; Hanewinkel, M. Forestry professionals’ perceptions of climate change, impacts and adaptation strategies for forests in south-west Germany. Clim. Chang. 2015, 130, 273–286. [Google Scholar] [CrossRef]
- Schramm, E.; Litschel, J. Stakeholder-Dialoge—Ein Instrument zur Bearbeitung von Konflikten um Biodiversität in mitteleuropäischen Wäldern. Nat. Landsch. 2014, 478–482. [Google Scholar] [CrossRef]
- Perrow, C. Normal Accidents. Living with High Risk Technologies; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Klinke, A.; Renn, O. Systemic risks as challenge for policy making in risk governance. Forum Qual. Soc. Res. 2006, 7, Art.33. Available online: http://www.qualitative-research.net/index.php/fqs/article/viewArticle/64/131 (accessed on 30 May 2017).
- Beisheim, M.; Rudloff, B.; Ulmer, K. Risiko-Governance. Umgang Mit Globalen und Vernetzten Risiken; SWP Berlin: Berlin, Germany, 2012; Volume 8. [Google Scholar]
- Suda, M.; Pukall, K. Multifunktionale Forstwirtschaft zwischen Inklusion und Extinktion (Essay). Schweiz. Z. Forstwes. 2014, 165, 333–338. [Google Scholar] [CrossRef]
- Klinke, A.; Renn, O. A new approach to risk evaluation and management: Risk-based, precaution-based, and discourse-based strategies. Risk Anal. 2002, 22, 1071–1094. [Google Scholar] [CrossRef] [PubMed]
- Shaxson, L. Structuring policy problems for plastics, the environment and human health: Reflections from the UK. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
Frequently Applied Management Approaches | Management Approaches Derived from a Social-Ecological Analytical Framework | |
---|---|---|
Pharmaceutical residues | Advanced wastewater treatment (end-of-pipe solution) | Integrative sustainability policies [43] including
|
Microplastics | Regulations and measures focusing on primary microplastics | Integrative strategies for sustainable production, usage and disposal of plastics including
|
Semicentralized water infrastructures | Safe operation of the system by technical safety management | Widening the scope to the social and ecological environment of the technical system by taking into accountthe
|
Forest management | Adaptive management focusing on timber production | Adaptive management considering the “multifunctionality” of forests by
|
Reason for Uncertainty | Degree of Uncertainty | |
---|---|---|
Pharmaceutical residues | Lack of knowledge on subtle, chronic, and mixture effects | Knowledge base concerning specific adverse effects can be broadened, but never entirely be established. Some uncertainty will remain. |
Microplastics | Lack of knowledge on biological effects | Knowledge base concerning specific adverse effects can be broadened, but never entirely be established. Some uncertainty will remain. |
Semicentralized water infrastructures | Lack of experience of the systems’ processes and operations | Knowledge base and experience of the systems’ processes and operations will develop. Uncertainty will be low within the system boundaries. |
Forest management | Lack of predictability of climate change effects | Cause and effect are indeterminable and only visible in retrospect, uncertainty remains high. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Völker, C.; Kramm, J.; Kerber, H.; Schramm, E.; Winker, M.; Zimmermann, M. More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective. Sustainability 2017, 9, 1039. https://doi.org/10.3390/su9071039
Völker C, Kramm J, Kerber H, Schramm E, Winker M, Zimmermann M. More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective. Sustainability. 2017; 9(7):1039. https://doi.org/10.3390/su9071039
Chicago/Turabian StyleVölker, Carolin, Johanna Kramm, Heide Kerber, Engelbert Schramm, Martina Winker, and Martin Zimmermann. 2017. "More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective" Sustainability 9, no. 7: 1039. https://doi.org/10.3390/su9071039
APA StyleVölker, C., Kramm, J., Kerber, H., Schramm, E., Winker, M., & Zimmermann, M. (2017). More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective. Sustainability, 9(7), 1039. https://doi.org/10.3390/su9071039