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Abstract: The haze pollution caused by fine particulate matter (PM 2.5) emissions has become one
of the most crucial topics of sustainable environmental governance in China. Using the average
concentration of PM 2.5 in China’s key cities from 2000 to 2012, as measured by aerosol optical
depth, this study tested the time-spatial convergence of fine particulate matter pollution in China.
The results show that there is a trend of absolute convergence between timespan and China’s PM 2.5
emissions. At the same time, in the geographic areas divided by the east, middle and west zones,
there is a significant difference in the convergence rate of PM 2.5. The growth rate of PM 2.5 in the
middle and west zones is significantly higher than that of the east zone. The correlation test between
regional economic growth and PM 2.5 emissions suggest a significant positive N-type Environmental
Kuznets Curve (EKC) after considering spatial lag and spatial error effect.

Keywords: PM 2.5; club convergence; non-linear time varying factor model; Environment
Kuznets Curve

1. Introduction

After more than 30 years of rapid economic development, China has made significant economic
achievements. Since the new millennium, the momentum of this rapid economic growth has not
stopped. From 2003 to 2015, after joining the World Trade Organization, China’s total gross domestic
product (GDP) increased from less than 15 trillion yuan to over 67.6 trillion yuan, and the national per
capita GDP from more than 10,000 yuan to over 52,000 yuan.

However, the improvement of material life also brought severe environmental damage. Extensive
economic development mode in China created an intensive outbreak of environmental problems within
30 years that took 100 years of industrialization in developed countries. Given this, many researchers
in the environmental and economic field have turned their attention to this area, such as research on
energy efficiency [1] and environmental impact [2], or the correlation between environmental [3] and
economic development [4].

Since 2012, fine particulate matter (PM 2.5) in China’s lower atmosphere increased due to stagnant
meteorological conditions. This has triggered nationwide haze pollution, which has become the
most-watched environmental pollution incident for China. Similar to water pollution and other “public
pond” pollution, haze is also considered to be a boundary environmental pollution [5], and is highly
correlated with economic activities. However, as a pollutant diffusing in the atmosphere, the diffusion
boundary of haze is much larger than the pollution boundary in lakes or rivers. Moreover, human
perceptibility of haze is much higher than that of carbon dioxide emissions in high concentrations.
Research on environmental science has demonstrated that exhaust emissions from heavy industry
production and the extensive use of motor vehicles, dust in open construction sites within the city, and
poor air circulation brought by urbanization are all important causes of haze [6].

The above characteristics of haze pollution determine that when studying how to prevent it,
on the one hand, we need to examine its main economic factors in order to define the relevant core
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control elements and on this basis explore the policy management program. On the other hand, it
is also necessary to examine the problem from the perspective of pollution diffusion and define its
boundaries in order to ensure an appropriate scope of government policy implementation. For the
former, many scholars [7] have discussed this issue from the public governance [8], economic [9]
or environmental [10] points of view. Some researchers also found that haze pollution was highly
correlated to human health, economic development and urban traffic issues [10].

For the latter, recent research mostly studied the existing temporal and spatial convergence
or stratified club convergence of diffuse pollutants; further policy discussions will be carried out
according to different convergence areas. Current study is divided into two pollutants. One area
examines carbon dioxide convergence problems, such as the study of Strazicich and List [11], who
measured the carbon dioxide emissions from 21 OECD countries from 1960 to 1997 by time series
and cross-sectional analysis, and verified the convergence. Camarero et al. [12] found that per capita
carbon dioxide emissions also converge in OECD countries and demonstrated that their decisive
factors are convergence of energy intensity and carbonization index. The other area of study relates to
the convergence of sulfur dioxide and nitrogen oxides emissions. List [13] used the time series method
to prove that the emissions of sulfur dioxide and nitrogen oxides in the United States converged, which
is the first attempt of applying convergence theory in the environmental field. Subsequently, more
studies were conducted using regional data. Bulte et al. [14] based their research on US state-level data
from 1929 to 1999, and investigated the existence of random convergence, β convergence and time
convergence of nitrogen oxides and sulfur dioxide.

In China, the detection and statistical work on outdoor PM 2.5 data has been officially carried out
since 2013, and subsequently in major cities across the country. The lack of such critical data has led to
few authoritative studies on the convergence and the impact of fine particulate matter pollution in the
fields of environmental science and economics so far.

This paper uses the non-linear time-varying factor model [15] to examine the time-spatial
convergence of Chinese PM 2.5 from the perspective of urban observation. It draws on Geographic
Information System data from the Columbia University International Earth Science Information
Network Center, the Battelle Memorial Institute’s idea of drawing the global PM 2.5 concentration
map [16], and the mean data of PM 2.5 concentration of 95 major cities in China from 2000 to 2012,
as predicted by aerosol optical depth (AOD) obtained from satellite monitoring. Furthermore, we
conducted a spatial econometrics analysis to examine whether an Environmental Kuznets Curve (EKC)
exists between the PM 2.5 pollution and economic development in China in the relevant convergence
area. Based on our empirical evidence, this paper provides policy recommendations for China’s future
PM 2.5 pollution control. The other parts are arranged as follows: in the second section, the non-linear
time-varying factor model used in the convergence test is introduced; the third section discusses time
and spatial dimension convergence of the PM 2.5 pollution in China; the fourth section analyzes the
relevance between the PM 2.5 pollution and regional economic development in convergence areas; the
fifth section gives policy recommendations and the last section summarizes.

2. Theoretical Model of Pollution Convergence

The convergence issue of environmental pollution has been discussed with the convergence of
economic development in the literature. However, there is no in-depth discussion of the existence of
absolute convergence in the time-spatial dimension of environmental pollution, especially for PM 2.5.
In this study, we use a non-linear time-varying factor model to investigate this issue. The model not
only considers the heterogeneity of the individual; it also allows individual heterogeneity over time,
and the heterogeneity of the evolution path. In more colloquial parlance, the mean of the individual is
allowed to be different, the mean of the individual is allowed to change at different time nodes, and
the change could follow different patterns.

In the short term, the development of different individuals varies, but from a longer perspective,
individuals may reach a similar steady state through different ways of development. This kind of
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characteristic of short-term divergence and long-term convergence will be falsely classified as no
convergence, according to the traditional methods of convergence. The non-linear time-varying factor
model provides a way to test such convergence features in terms of the law of large numbers and the
central limit theorem.

This section introduces the overall framework, ideas and main derivation of the non-linear
time-varying factor model and its application in this paper. In the next section, we use the model
to analyze whether there exists a trend of absolute time-spatial convergence or club convergence of
PM 2.5 emissions in Chinese cities. First, we set the following Equation (1).

Xit = δiµt + εit (1)

For Equation (1), µt is the common factor and εit is the disturbance term. The µt can be either the
cross-sectional mean of Xit or other variables. For example, in the process of economic convergence,
it can be a cross-sectional mean of each country’s economy performance, or a variable that has a big
impact on the economy, such as interest rates and exchange rates. δi is an individual feature that
measures the difference between Xit and the common factor.

In Equation (1), it is assumed that the individual characteristics do not change over time.
However, in the non-linear time-varying factor model, this assumption is relaxed, allowing flexibility
in individual idiosyncratic behavior over time and across sections through a time-varying factor δit to
reflect this heterogeneity, as shown in Equation (2).

Further, we assume that the time-varying factor δit includes a random part, which could absorb
the residual term in Equation (1). In fact, Equation (2) is a Laplace transformation process. δit can be
seen as a transfer function, which translates a physical process described by the time variable µt into a
process described by the variable Xit, but does not affect the nature of the process itself. In the general
economic growth model, δit is called the transitional path.

Xit = δitµt (2)

Assuming that the time-varying factor δit is in semi-parametric form, then it can be
decomposed into

δit = δi + σiξitL(t)
−1t−α (3)

where δi is a non-time-varying individual feature, and ξ satisfies a standard independent identical
distribution (i.i.d.) in the cross-section, but is weakly correlated in the time series. L(t) is a slow-varying
function for which L(t) → ∞ as t → ∞ . The function log(t), log(t + 1) conforms to this feature.
Equation (3) ensures that for all α >0, the time-varying factor δit will eventually tend to δi. Then,
the convergence test for the degree of haze between different regions is translated into the following
null hypothesis:

H0 : δi = δj, and a > 0 (4)

The alternative hypothesis is: H1: There is at least one i that makes

δi 6= δj or a < 0 (5)

In order to test the hypothesis, Phillips and Sul [15] defined a relative transition coefficient:

hit =
δit

1
N ∑N

i=1 δit
(6)

This coefficient compares the time-varying coefficient with the cross-sectional mean of the sample,
which reflects the deviation degree of the individual relative to the common steady state. If there is a
convergence, the relative transformation coefficient hit → 1 . At this time, the cross-sectional variance
of hit tends to zero, that is, when t → ∞ ,
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Ht = σ2
t =

1
N ∑N

i=1(hit − 1)2 → 0 (7)

If there is no convergence, then lim
t→∞

Ht > 0.

Based on this, we can use a fairly simple method to test the σ convergence, and the steps are
as follows:

(1) Construct the cross-sectional variance ratio H1/Ht

(2) Run the regression of the following formula:

log(H1/Ht) − 2logL(t) = a + b log(t) + εt (8)

where t = [rT], [rT] + 1, ..., T. Phillips and Sul [15] recommended r = 0.3 when the number of
samples was greater than 50 after a Monte Carlo simulation. In this article, we followed this
setting. The form of the slow-varying function is usually set to L(t) = log(t), so the test is also
called log(t) test.

(3) b conditionally converges to 2α. Let α = 0.5b, and calculate the t statistic of b using the
heteroskedasticity and autocorrelation consistent (HAC )standard. If α ≥ 0, and the one-sided
t test satisfies t < −1.65, it is considered that at the 5% significant level, the null hypothesis of
convergence is rejected. Otherwise, we accept the null hypothesis that there is convergence.

In this paper, in order to ensure the robustness of the non-linear time-varying factor model, we
selected L(t) = log(t + 1) and L(t) = log(t − 1), and the results are shown in the following sections.

3. Time-Space Test of Air Pollution Convergence in China

3.1. Data Description

In this study, PM 2.5 data of China was collected by the Columbia University International Earth
Science Information Network Center, the Battelle Memorial Institute, and satellite monitoring. From
their raw data, the three-year moving mean value of PM 2.5 from 1998 to 2012, which was calculated by
aerosol optical depth measured by Multi-angle Imaging SpectroRadiometer (MISR) [17] and Moderate
Resolution Imaging Spectroradiometer (MODIS) [18]. We used ArcGIS10.3 to extract the telemetry
data, and obtained PM 2.5 data for 288 cities in China during the same time period. After comparing
the average data from 2010 to 2012 with the PM 2.5 test values in national key cities in 2012 published
in the China Environmental Quality Report 2013 of the Environmental Protection Ministry of the People’s
Republic of China [19], the data was confirmed to be consistent. It can be considered that this data
set has a high degree of credibility for further simulation. In general, this database showed that
selected cities on average increased from 34.76 in the year 2000 to 51.4 in the year 2012, with a standard
deviation of 6.5. The annual growth rate for PM 2.5 increase was 3.3% (We have calculated all selected
cites PM 2.5’s descriptive statistics, which are not released here. If interested, please ask the author).

For the empirical study, we selected 100 major economic cities on the list of “Top 100 Cities”
published in the whole country in 2012 as the research object, and examined the development of PM
2.5 pollution in key cities nationwide. The distribution of specific provinces and city names are shown
in Table 1, below. Although the geographical area of these cities does not cover the majority of China,
the cities contribute more than 80% of the country’s economy. Therefore, these cities in our sample as
research objects should represent the situation in China sufficiently.
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Table 1. City names.

Province City Province City Province City Province City

Beijing Beijing

Zhejiang

Hangzhou

Guangdong

Guangzhou
Hubei

Wuhan
Tianjin Tianjin Ningbo Shenzhen Yichang

Hebei

Shijiazhuang Wenzhou Zhuhai Xiangyang
Tangshan Jiaxing Shantou

Hunan
Changsha

Qinghuangdao Huzhou Foshan Zhuzhou
Handan Shaoxing Jiangmen Changde
Baoding Jinhua Kanjiang Inner

Mongolia
Hohhot

Cangzhou Quzhou Huizhou Baotou
Langfang Zhoushan Dongguan

Guangxi
Nanning

Liaoning
Shenyang

Fujian

Fuzhou Zhongshan Liuzhou
Dalian Xiamen

Hainan
Haikou Guilin

Anshan Putian Sanya
Sichuan

Chengdu
Shanghai Shanghai Quanzhou Shanxi Taiyuan Mianyang

Jiangsu

Nanjing Zhangzhou
Jilin

Changchun Yunnan Kunming
Wuxi Longyan Jilin

Shannxi
Xi’an

Xuzhou

Shandong

Jinan Heilongjiang Harbin Baoji
Changzhou Qingdao Daqing Gansu Lanzhou

Suzhou Zibo
Anhui

Hefei Qinghai Xining
Nantong Dongying Wuhu Ningxia Yinchuan

Lianyungang Yantai Maanshan Xinjiang Urumqi
Huai’an Weifang Jiangxi Nanchang
Yanchen Jining

Henan

Zhenzhou
Yanzhou Weihai Luoyang

Zhenjiang Linyi Anyang
Chongqing Chongqing Guizhou Guiyang Nanyang

Furthermore, we removed five cities from the sample due to the lack of economic data. The sample
used included 95 major cities in China. Other data used in this article are from the China Urban Statistical
Almanac and the urban database of the National Research Institute DRCNET’s regional database.

3.2. Convergence Identification Process

For this study, we will validate the convergence of time dimensions and spatial dimensions of
China’s PM 2.5 by using the non-linear time varying factor model. The identification steps are as follows:

(1) The model was used to reconstruct Equation (8) across the whole sample selected in the study.
If the result satisfies the acceptance criteria of the original hypothesis as described in the preceding
sections, it is assumed that there is absolute convergence in time dimension for the whole sample.

(2) If the original hypothesis is rejected, it is assumed that there is no absolute convergence in the
time dimension of the original sample. Furthermore, the time convergence club recognition
algorithm rule constructed by Phillips and Sul [15] can be used to segment the sample population
and distinguish the convergence club in the time dimension. If the recognition result is not
significant, then the selected sample has no convergence in the time dimension.

(3) If step (1) is satisfied or step (2) is completed, it is necessary to further examine whether there
is convergence in the spatial dimension. First, the global Moran index is used to investigate
whether there is a spatial correlation in the whole sample. If the index shows that correlation
does not exist, it is considered that there is no need for a further spatial convergence test. If the
index indicates that there is a high spatial correlation, then the local Moran index is further used
to investigate the convergence of the spatial correlation in the sample, and the appropriate spatial
regions are divided.

(4) For the partitioned spatial region, the regression test of the non-linear time-varying factor model
is carried out again for samples in each region. If the test result shows that there is a convergence
trend, it is determined that there is a convergence of fine particulate matter emission concentration
in the designated area. If the results are reversed, then step (2) is repeated to check whether there
is an independent club convergence in the domain.
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3.3. Time Convergence of Fine Particulate Matter

Based on PM 2.5 data from satellite telemetry, the convergence of PM 2.5 pollution in China’s
key cities is shown in Table 2. In Table 2, b is the estimated convergence coefficient required from
Equation (8). The value below the coefficient is t-test result. As can be seen from the contents of the
table, the estimate of b is positive, and t > −1.65, so it can be considered that the test should accept the
original hypothesis. In other words, from the city-level data between 2000–2012, China’s PM 2.5 has
a nationwide absolute convergence. The results of the regression tests of columns one and three in
Table 2 show the same trend, indicating that the result of this absolute convergence is robust.

Table 2. Study on convergence and robustness of whole city samples.

L(t) = log(t + 1) L(t) = log(t) L(t) = log(t − 1)

b
18.41003 18.40986 18.40966

2.83 2.83 2.83

a −52.02939 −52.02884 −52.02823
−2.88 −2.88 −2.88

Data under each coefficient is standard deviation.

Judging from the reality, these test results also meet actual expectations. In recent years, more and
more reports have shown that haze pollution caused by PM 2.5 is a common pollution phenomenon
within a country. When this pollution occurs, no area can be immune. This also shows that haze
cannot be effectively suppressed by simply relying on the management of a single city or regional
control. In terms of China, national joint governance can effectively control this pollution. In practice,
the improvement of air quality during Nanjing’s Youth Olympic Games in the Yangtze River Delta
region in 2014 and the “APEC Blue” raised for the holding of the APEC meeting in Beijing in the same
year are both embodiments of cross-regional joint governance.

The judgment of absolute convergence towards regression results of the non-linear time-varying
factor model of the whole sample data also shows that there is no club convergence of the pollution of
the China’s PM 2.5 in the time dimension. Does this mean that there is also an absolute convergence of
fine particulate matter in China emissions in spatial dimensions? In the next section, we will further
examine the spatial correlation of China’s PM 2.5 emissions.

3.4. Spatial Correlation Index Analysis of Fine Particles

The first law of geography according to Waldo Tobler [20] is that “everything is related to
everything else, but near things are more related than far things” (Tobler W., (2016) “A computer movie
simulating urban growth in the Detroit region”. Economic Geography, 46(2): 234–240). This means that
geographical objects or their attributes exhibit clustering, random, and regular distribution. A large
number of literature has begun to pay attention to the spatial correlation between adjacent regions [21].
We use the global Moran index to estimate the spatial correlation of PM 2.5 between regions. The global
Moran index is calculated as:

I =
∑n

i=1 ∑n
j=1 wij

(
Ai − Ā

)(
Aj − Ā

)
S2 ∑n

i=1 ∑n
j=1 Wij

(9)

where I is the global Moran index, representing the overall correlation of PM 2.5 between regions.
S2 = 1

n ∑n
i=1
(
Ai − Ā

)2, Ā = 1
n ∑n

i=1 Ai, Ai is the population-weighted concentration value of PM
2.5 in region i, n is the number of regions, and W is the spatial weight matrix. The range of I is
−1 ≤ I ≤ 1, and when I converges to 1, the PM 2.5 between regions exhibits a positive spatial
correlation. When I converges to −1, the PM 2.5 between regions is negatively correlated. When I
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converges to 0, there is no spatial correlation between regions. In this study, we set the spatial weight
matrix by using the rules shown in Equation (10).

Wij =


1 when region i is adjacent to region j

0 when region i is not adjacent to region j
0 when i = j

(10)

It should be noted that the aforementioned “adjacent” includes both left and right, upper and
lower adjacent, and diagonally adjacent. As long as the two regions have a common border or
intersection, they will be defined as adjacent.

Table 3 shows the global Moran index of fine particulate matter emissions in China’s key cities
from 2000 to 2012. We can see that since 2000, the global Moran indices have been hovering above
0.75, and the Z test is significant. This proves that the fine particulate matter emissions in China have
a very high spatial correlation. Particularly after 2009, the global Moran indices are more than 0.8
consecutively for three years, showing a strong spatial correlation.

Table 3. The global Moran index.

Year Moran Index E(I) sd(I) p-Value

2000 0.768 −0.011 0.102 0.000
2001 0.749 −0.011 0.102 0.000
2002 0.786 −0.011 0.102 0.000
2003 0.806 −0.011 0.102 0.000
2004 0.786 −0.011 0.102 0.000
2005 0.764 −0.011 0.102 0.000
2006 0.769 −0.011 0.102 0.000
2007 0.761 −0.011 0.102 0.000
2008 0.777 −0.011 0.102 0.000
2009 0.817 −0.011 0.102 0.000
2010 0.840 −0.011 0.102 0.000
2011 0.820 −0.011 0.102 0.000
2012 0.764 −0.011 0.102 0.000

Anselin [22] pointed out that the overall evaluation might ignore the atypical characteristics
of local areas. We need to introduce local correlation index (LISA) to examine whether there is a
significant gathering phenomenon of local areas. The local Moran index is used as follows:

Ii =

(
Ai − Ā

)
S2 ∑n

j=1 Wij
(
Aj − Ā

)
(11)

where Ii is the local Moran index, representing the correlation of PM 2.5 between the region i and its
surrounding areas. Ai, Ā, n, W, S2 are the same as those of the global Moran index. When Ii > 0, the
PM 2.5 of region i is positively correlated with its surrounding areas, expressed as high–high type
clusters or low–low type clusters; when Ii < 0, the PM 2.5 of region i is negatively correlated with its
surrounding areas, expressed as high–low type clusters or low–high type clusters.

We further constructed the local Moran index based on the data of particulate matter emissions
in China’s key cities from 2000 to 2012, to see whether there is a difference between the local Moran
indices of different cities. Figures 1–4 show the local Moran indices of key cities in 2000, 2004, 2008 and
2012, respectively (In fact, we have estimated the local moran indexes for each year from 2000 to 2012,
which are not released here. If interested, please ask the author).



Sustainability 2017, 9, 1284 8 of 15
Sustainability 2017, 9, 1284 8 of 15 

 
Figure 1. The local Moran index in 2000. 

 
Figure 2. The local Moran index in 2004. 

 
Figure 3. The local Moran index in 2008. 

Figure 1. The local Moran index in 2000.

Sustainability 2017, 9, 1284 8 of 15 

 
Figure 1. The local Moran index in 2000. 

 
Figure 2. The local Moran index in 2004. 

 
Figure 3. The local Moran index in 2008. 

Figure 2. The local Moran index in 2004.

Sustainability 2017, 9, 1284 8 of 15 

 
Figure 1. The local Moran index in 2000. 

 
Figure 2. The local Moran index in 2004. 

 
Figure 3. The local Moran index in 2008. Figure 3. The local Moran index in 2008.



Sustainability 2017, 9, 1284 9 of 15
Sustainability 2017, 9, 1284 9 of 15 

 
Figure 4. The local Moran index in 2012. 

As shown in the figures, the local Moran indices of most cities fall in the first or third quadrants. 
This represents the existence of positive or negative correlations in the discharge of fine particulate 
matter in most cities. In the case of 2012, for example, there are only 11 cities displaying no spatial 
correlation. Through matching the relevant city serial number, there was an obvious correlation in 
eastern, central and western geographical space divisions. 

According to the three economic zone division criteria proposed in “the National Economic and 
Social Development Seven Five-Year Plan” adopted by the National People’s Congress in 1985, we 
divided the sample of 95 cities into the eastern, central and western regions, and once again tested 
the convergence of fine particle emissions in different regions. 

3.5. Spatial Convergence of PM 2.5 

The regression results of the non-linear time-varying factor model of the sub-regional urban 
agglomeration are classified in Table 4. It can be seen that the three regions show a steady spatial 
convergence within regions. However, it should be noted that the convergence rate of PM 2.5 in the 
middle and west sub-regions, especially in the middle sub-region, are significantly higher than that 
in the east. 

Table 4. Sub-regional convergence test and robustness study. 

Region Parameter L(t) = log(t + 1) L(t) = log(t) L(t) = log(t − 1) 

East 
b 

1.434791 1.434617 1.434422 
0.22 0.22 0.22 

a 
−4.860393 −4.859842 −4.859232 
−0.26 −0.26 −0.26 

Middle 
b 

79.61884 79.61868 79.61949 
4.78 4.78 4.78 

a 
−222.0877 −222.0872 −222.0866 
−4.79 −4.79 −4.79 

West 
b 

71.89226 71.89209 71.8919 
12.09 12.09 12.09 

a 
−200.5981 −200.5975 −200.5969 
−12.13 −12.13 −12.13 

Data under each coefficient is standard deviation. 

Through the sub-regional convergence test, we find that there exists an absolute time-converge 
of PM 2.5 emissions in 95 sample cities from 2000 to 2012. There has been a growing trend in the PM 
2.5 emissions of China. Further, through the spatial converge test, we found that the convergence 
rates of PM 2.5 emissions in the middle and western regions are significantly higher than that of the 

Figure 4. The local Moran index in 2012.

As shown in the figures, the local Moran indices of most cities fall in the first or third quadrants.
This represents the existence of positive or negative correlations in the discharge of fine particulate
matter in most cities. In the case of 2012, for example, there are only 11 cities displaying no spatial
correlation. Through matching the relevant city serial number, there was an obvious correlation in
eastern, central and western geographical space divisions.

According to the three economic zone division criteria proposed in “the National Economic and
Social Development Seven Five-Year Plan” adopted by the National People’s Congress in 1985, we
divided the sample of 95 cities into the eastern, central and western regions, and once again tested the
convergence of fine particle emissions in different regions.

3.5. Spatial Convergence of PM 2.5

The regression results of the non-linear time-varying factor model of the sub-regional urban
agglomeration are classified in Table 4. It can be seen that the three regions show a steady spatial
convergence within regions. However, it should be noted that the convergence rate of PM 2.5 in the
middle and west sub-regions, especially in the middle sub-region, are significantly higher than that in
the east.

Table 4. Sub-regional convergence test and robustness study.

Region Parameter L(t) = log(t + 1) L(t) = log(t) L(t) = log(t − 1)

East
b

1.434791 1.434617 1.434422
0.22 0.22 0.22

a −4.860393 −4.859842 −4.859232
−0.26 −0.26 −0.26

Middle
b

79.61884 79.61868 79.61949
4.78 4.78 4.78

a −222.0877 −222.0872 −222.0866
−4.79 −4.79 −4.79

West
b

71.89226 71.89209 71.8919
12.09 12.09 12.09

a −200.5981 −200.5975 −200.5969
−12.13 −12.13 −12.13

Data under each coefficient is standard deviation.
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Through the sub-regional convergence test, we find that there exists an absolute time-converge
of PM 2.5 emissions in 95 sample cities from 2000 to 2012. There has been a growing trend in the
PM 2.5 emissions of China. Further, through the spatial converge test, we found that the convergence
rates of PM 2.5 emissions in the middle and western regions are significantly higher than that of the
eastern region. Since a large amount of previous research showed that China’s economic development
had an obvious three-regional convergence situation [23–25], the further question is whether there
is a different relation between the economic development and the pollution caused by the PM 2.5
emissions in different geographical regions in China. In the fourth section, we are prepared to test
this problem.

4. Relationship between Regional Air Pollution and Economic Development

4.1. Test Model Construction of Environment Kuznets Curve

Our basic idea is to use the traditional Environmental Kuznets Curve (EKC) equation to investigate
the existence of the EKC curve across the country as well as in different regions, and to further
determine the shape of the curve. On the basis of this, in view of the possible spatial influence in
different regions and the construction of the spatial panel for different regions, the existence of the
EKC relationship hypothesis between PM 2.5 and the regional economic development is examined
under the spatial effect.

Based on the idea above, we first construct the standard EKC test model shown in Equation (12):

PM25it = β0 + β1GDPit + β2GDP2
it + β3GDP3

it + ε (12)

where i is the number of the i-th city, and t is the corresponding year. β is the estimated coefficient of
the explained variable, ε is residual. PM25it refers to the average PM 2.5 concentration of city i in time
t. GDPit refers to the per capita GDP of city i in the year of t, expressed in yuan. GDP2

it is the square
of per capita GDP and GDP3

it refers to the cube of per capita GDP.
As in all EKC evaluation studies (e.g., Grossman G M, Krueger A B, 1992 [26]), Equation (12)

includes the square per capita GDP and cube per capita GDP, with their coefficients β2 and β3
representing the solution of the first-order condition and the second-order condition, which help to
evaluate the shape of ECK between pollution and economic development [26]. Different shape of EKC
could be found from Figure 5, and the decision rule could be shown as follows:

(1) when β1 > 0, and β2 = 0, β3 = 0, it indicates that environmental pollution becomes more
serious with economic growth, as shown in straight line a in the following graph;

(2) when β1 < 0, and β2 = 0, β3 = 0, it indicates that environmental pollution is improved with
economic growth, as shown by straight line b;

(3) when β1 < 0, and β2 > 0, β3 = 0, it indicates that the quality of the environment in the process
of economic growth improves after deterioration, and there is a positive U-shaped relationship,
as shown in curve c;

(4) when β1 < 0, and β2 < 0, β3 = 0, it indicates that the quality of the environment in the process
of economic growth deteriorates after improvement, there is an inverted U-shaped relationship,
which conforms to the typical EKC hypothesis, as shown in curve d;

(5) when β1 > 0 , and β2 < 0, β3 > 0, it shows that environmental pollution has a positive
N-type curve with the level of economic growth, that is, with economic growth, environmental
pollution increases first and then decreases, and then increases again, as shown by curve e;

(6) when β1 < 0, and β2 > 0, β3 < 0, it shows that there is an inverted N-type curve between
environmental pollution and the level of economic growth, as shown by curve f;

(7) when β1 = 0, and β2 = 0, β3 = 0, it suggests that there is no environmental EKC curve.
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After completing the judgment of the common panel model, we further construct the spatial lag
model, and the relationship between the PM 2.5 emissions and the regional economic development
is further tested. Since the spatial lag model assumes that the dependent variable depends on the
weighted average effects of the spatial adjacent unit variables, we construct the following equation:

PM 2.5i,t = ρ∑ W PM 2.5i,t + βXi,t + µi + ηt + εi,t (13)

where PM 2.5 refers to the dependent variable, X refers to independent variable, W is spatial
autoregressive coefficient and ε is expressed as random error terms.

According to the spatial error effect model (SEM), in the setting process of the model, it is likely
that some variables related to the explanatory variables will be omitted, and these variables have
spatial autocorrelation. At the same time, there may be random error shock space spillover effect
among regions. The equation is expressed as:

PM 2.5i,t = βXi,t + µi + ηt +φi,t (14)

φi,t = ρ∑φi,t + εi,t (15)

where φ refers to error of spatial autocorrelation.

4.2. Test Results

Table 5 shows the results of the correlation between PM 2.5 emissions and regional economic
development in the urban sample of the whole cities, and sub-regional urban samples shown by
panel regression.

According to the EKC judgment rules from the previous section, we can see from the table that
there is a positive N-type EKC curve between the economic growth and PM 2.5 emissions of the whole
sample. The same result also exists in the middle sub-region. The other test results show that, except
for an inverted E-type EKC curve in the eastern region under a fixed effect model test, other test
results do not support the hypothesis that correlation between economic growth and PM 2.5 emissions
conformed to EKC in the eastern and western regions of China.

However, recent studies on geographic data panel analysis have shown that spatial lag effect
and spatial error effect in spatial regional data may also have an effect on panel regression results.
Therefore, we attempt to construct the spatial lag effect model (SLM) and the spatial error effect model
(SEM) to try to further verify the relationship between economic growth and PM 2.5 emissions in the
three regions of China from the perspective of the spatial panel. Before the construction of the relevant
models, we consider what kind of spatial model should be tested.
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Table 5. Panel estimation of the sub-regional Environmental Kuznets Curve.

95 Cities East

GLS Random Fixed GLS Random Fixed

C
37.95818 *** 37.95818 *** 42.02255 *** 42.80357 *** 42.80357 *** 60.3849 ***

2.393372 1.314376 1.60851 4.629631 2.752783 3.326338

GDP
0.0003144 *** 0.0003144 *** 0.0001439 0.0002078 0.0002078 −0.000649 ***

0.0000671 0.0000548 0.0000662 0.0001927 0.0001743 0.0001933

GDP2 −1.26 × 10−9 *** −1.26 × 10−9 * −1.75 × 10−10 −9.70 × 10−10 −9.70 × 10−10 7.96 × 10−9 ***
4.16 × 10−10 4.70 × 10−10 5.15 × 10−10 2.42 × 10−9 2.81 × 10−9 2.89 × 10−9

GDP3 1.64 × 10−15 ** 1.64 × 10−15 * −9.55 × 10−17 1.06 × 10−15 1.06 × 10−15 −2.76 × 10−14 **
6.58 × 10−16 9.04 × 10−16 9.57 × 10−16 8.87 × 10−15 1.23 × 10−14 1.23 × 10−14

R2 0.0268 0.0268 0.0289 0.0062 0.0062 0.0174

Hausman 19.39 *** 71.17 ***

Middle West

GLS Random Fixed GLS Random Fixed

C
35.87851 *** 35.87851 *** 36.41891 *** 30.89278 *** 30.89278 *** 45.63498 ***

1.381159 2.349397 2.601868 2.132795 5.16157 6.787467

GDP
0.0005855 *** 0.0005855 *** 0.0005685 *** 0.0001557 0.0001557 −0.0010218

0.0000509 0.0000883 0.0000974 0.0003291 0.0006236 0.0007374

GDP2 −2.90 × 10−9 *** −2.90 × 10−9 *** −2.85 × 10−9 *** 1.89 × 10−9 1.89 × 10−9 2.37 × 10−8

3.72 × 10−10 6.27 × 10−10 6.67 × 10−10 1.10 × 10−8 2.05 × 10−8 2.30 × 10−8

GDP3 4.05 × 10−15 *** 4.05 × 10−15 *** 4.01 × 10−15 *** −4.79 × 10−14 −4.79 × 10−14 −1.82 × 10−13

6.58 × 10−16 1.09 × 10−15 1.15 × 10−15 9.77 × 10−14 1.90 × 10−13 2.07 × 10−13

R2 0.1932 0.1932 0.1933 0.0077 0.0077 0.0164

Hausman 0.19 8.99 ***

*, **, *** respectively represented the results were significant at the level of 10%, 5% and 1%, data under each
coefficient is standard deviation.

In general, the spatial model study applied SLM or SEM based on the comparison of SLM model
and SLM-LM and SEM-LM, as well as SLM-Robust and SEM-Robust. If SLM-LM is more significant
than SEM-LM, and SLM-Robust passes the significant test while SEM-Robust does not, SLM will be
selected. In the case of the contrary, SEM will be selected. In this study, our test results are shown in
Table 6.

Table 6. Test results of the Spatial Lag Effect (SLM) and Spatial Error Effect (SEM) Models.

East Middle West

Result p-Value Result p-Value Result p-Value

LM Test for Spatial Lag 342.16 0.0000 21.1906 0.0000 20.393 0.0000
Robust 8.7567 0.0031 12.3319 0.0004 4.3701 0.0366

LM Test for Spatial Error 335.5374 0.0000 17.9619 0.0000 17.8563 0.0000
Robust 2.1337 0.1441 9.1032 0.0026 1.8334 0.1757

From the results of spatial lag and spatial error models, there are both spatial lag effect and spatial
error effects in the sub-zone sample group. In this paper, we again carried out model tests of spatial
lag effect and spatial error effect on the three regions, the results of which are shown in Table 7.

It can be seen from the results that, after considering spatial lag effect and spatial error effect, in
the east, middle and west zones divided by study sample, there is a significant positive N-type EKC
curve relationship between PM 2.5 emissions and regional economy. This indicates that during the
observed period, China’s regional PM 2.5 emissions increased first, then declined, and then increased
again with the development of the economy. The results of this test are also in accordance with the fact
that Chinese residents had more significant physical reactions to haze pollution brought by PM 2.5
after the year of 2012.
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Table 7. Results of Spatial Lag Effect and Spatial Error Effect.

East Middle West

SLM SEM SLM SEM SLM SEM

GDP
1.251658 *** 0.921818 *** 0.00049175 *** 0.000430432 *** 0.001485549 *** 0.001329185 ***

22.55061 25.39407 12.232792 13.861633 8.427643 8.507777

GDP2 −1.28 × 10−2 *** −9.36 × 10−3 *** −1.90 × 10−9 *** −1.78 × 10−9 *** −3.54 × 10−8 *** −3.13 × 10−8 ***
−14.1 −16.2 −6.86 −8.75 −6.04 −6.07

GDP3 4.10 × 10−5 *** 3.10 × 10−5 *** 2.45 × 10−15 *** 2.35 × 10−15 *** 2.60 × 10−13 *** 2.30 × 10−13 ***
10.154337 12.4 5.34 7.06 −3.65 4.73

R2 0.8983 0.9552 0.896 0.9344 0.9119 0.9346

w −0.236068 *** −0.236068 *** −0.236068 ***

e 0.55599 *** 0.334969 *** 0.332994 ***

*, **, *** respectively represented the results were significant at the level of 10%, 5% and 1%, data under each
coefficient is standard deviation.

5. Policy Recommendations

Based on the above analysis of air pollution and economic growth, we can get the following
revelation on future sustainable governance policy for northeast Asia region and for China. First of
all, in northeast Asian countries, resources and environmental issues have become an important
factor affecting the economic growth. To some extent, they have even become the bottleneck of a
country’s economic growth. The conclusion of this paper also shows that haze pollution emissions
represented by PM 2.5 keep growing throughout China. Similar to all industrialized countries, China’s
haze pollution problems are accompanied by industrialization. Environmental problems caused by
industrial production are becoming more and more prominent, and the constraints of resources and
the environment are becoming increasingly significant. Therefore, whether it is for the use of resource
products or air pollution control, we should proceed from the overall situation paying attention
to pollution control policy and the top design of resource utilization policy, and strengthening the
consistency of policy implementation throughout the nation.

Secondly, although this paper mainly focused on the haze pollution issue inside China, as the
first section introduced, haze is a boundary environmental pollution. Considering that most northeast
Asian countries are border connected, the more haze pollution China faces, the more potential pollution
risk there will be for its neighboring countries. Hence, all of northeast Asia should face such challenges
together, and have more interaction through their governments and industries in order to bring out
more concerted actions in the future.

Thirdly, economic development is an important driving force for industrial environmental
efficiency convergence. China’s environmental efficiency and its cities’ respective levels of economic
development, urban scale, financial capacity, and industrial development characteristics are often
highly consistent. From 2000 to 2012, the phenomenon that PM 2.5 emissions increased first and
then declined and further increased again with the development of the economy occurred in the
east, middle and west regions of China. The selected cities, which again warned that the relationship
between the economy and the environment does not necessarily follow a transformation path where
the environmental quality improves, then deteriorates and further improves again with the economic
growth, as assumed in traditional economic theory. In real world, due to the changes in economic
structure and industrial structure, the environmental quality in the region is likely to have many
inflection points with the change of the size of an economy.

Therefore, China’s future economic development mode must be transformed from quantity
to quality to avoid the inhibition effect of China’s rising industrial development capacity to the
convergence of environmental efficiency, especially for the middle and western sub-regions. As the
main carriers to undertake the industrial transfer in the eastern developed areas, the middle and
western sub-regions are regarded as the key areas of the development of future industrialization,
urbanization, low-carbon industry and green transformation in China. Therefore, we need to start
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from the beginning to: reinforce the policy guidance of clean industrial production, energy saving, a
recycling economy, and other aspects; strengthen the support to capital, technology and personnel
of resource conservation and environmental protection; encourage the elimination of backward
technology and enhance environmental control to reduce environmental pollution and improve
industrial environmental efficiency.

Finally, there are significant differences in the environmental efficiency of industries in the different
regions of China, as well as the possible spillover of environmental regulation policies’ impact and the
diffusion of environmental pollution. In view of this, in the formulation of environmental governance
policies, regional coordinated development policies and differentiated measures should be formulated
on a case-by-case basis for spatial differences among regions. More importantly, such coordination
should be taken into account more for geographically close cities or urban agglomerations. On this
basis, it is possible to realize a win–win situation of economic growth and environmental protection
by considering the conflict between the development policies of each administrative region and
promoting the formation of a good environment cooperation mechanism across regions to gain a
sustainable future.

6. Research Conclusions

This study used satellite telemetry data, the non-linear time-varying factor model, and the global
and local Moran indices to test the spatial-time convergence of PM 2.5 in China. The results showed
that there is an absolute convergence of PM 2.5 emissions in China in time trend, and there is a
difference in the convergence rates of the eastern, central and western regions of China. This difference
is manifested in the central and western regions, especially in the central region. The convergence rate
in the central region of PM 2.5 is significantly higher than that of eastern region.

Furthermore, the results of the general panel model and the spatial analysis model reveal that
the relationship between economic development and air pollution is still different in all regions of the
country. First, there is a positive N-type EKC curve between economic growth and PM 2.5 emissions
in selected sample cities. Secondly, considering spatial lag effect and spatial error effect, the regression
model of the Environmental Kuznets Curve shows that there is also a significant positive N-type
EKC curve relation between economic growth and PM 2.5 emissions in the east, middle and west
sub-regions of China.
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