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Abstract: The Farquhar—von Caemmerer—Berry (FvCB) biochemical model of photosynthesis,
commonly used to estimate CO2 assimilation at various spatial scales from leaf to global, has been
used to assess the impacts of climate change on crop and ecosystem productivities. However,
it is widely known that the parameters in the FvCB model are difficult to accurately estimate.
The objective of this study was to assess the methods of Sharkey et al. and Gu et al., which
are often used to estimate the parameters of the FvCB model. We generated An/Ci datasets
with different data accuracies, numbers of data points, and data point distributions. The results
showed that neither method accurately estimated the parameters; however, Gu et al.’s approach
provided slightly better estimates. Using Gu et al.’s approach and datasets with measurement errors
and the same accuracy as a typical open gas exchange system (i.e., Li-6400), the majority of the
estimated parameters—Vcmax (maximal Rubisco carboxylation rate), Kco (effective Michaelis-Menten
coefficient for CO2), gm (internal (mesophyll) conductance to CO2 transport) and Γ* (chloroplastic
CO2 photocompensation point)—were underestimated, while the majority of Rd (day respiration)
and α (the non-returned fraction of the glycolate carbon recycled in the photorespiratory cycle) were
overestimated. The distributions of Tp (the rate of triose phosphate export from the chloroplast) were
evenly dispersed around the 1:1 line using both approaches. This study revealed that a high accuracy
of leaf gas exchange measurements and sufficient data points are required to correctly estimate the
parameters for the biochemical model. The accurate estimation of these parameters can contribute
to the enhancement of food security under climate change through accurate predictions of crop
and ecosystem productivities. A further study is recommended to address the question of how the
measurement accuracies can be improved.
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1. Introduction

The FvCB leaf photosynthesis model for C3 plants [1,2] is fundamental for the prediction of
leaf responses to environmental variation [3]. This model has been widely used to simulate CO2

assimilation and the response of plants to climate change for different spatiotemporal scales [4–11],
due to its solid theoretical basis and simplicity [12]. It is also frequently used in reverse to quantify the
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underlying biochemical properties (i.e., the model parameters) of leaves under different environmental
conditions [13–17]. These parameters are often considered easier to estimate from gas exchange
measurements rather than making the required in vitro measurements to quantify enzyme activity.
This is because it is difficult to extract functional enzymes from many species [18], and in vitro
conditions seldom represent those experienced in vivo [19]. According to the different versions of
FvCB model [1,20–23], up to 8 parameters (Vcmax, Kco, J, Tp, α, gi, Rd, and Γ*) can be estimated from
an analysis of the response of the net assimilation rate (An) to intercellular CO2 concentration (Ci) if
enough accurate data points are available [2].

There are numerous publications discussing the different parameterization methods associated
with An/Ci curves [2,12,24–29]. Each method relies on different assumptions and has technical
limitations. Most approaches assume that α = 0 and that the Kco and Γ* can be chosen a priori
from estimates in previous studies to determinate Vcmax, Jmax, Tp, Rd and gm [2,12,22,26,27]. Gu et al. [2]
extended the method of Ethier and Livingston [12] to propose an exhaustive dual optimization (EDO)
approach to estimate the parameters from fitting An/Ci curves. All of the curve-fitting methods
minimize an objective function; e.g., the sum of the square of errors (SSE), based on the nonlinear
FvCB model, with a limited number of measurements (typically 8–12, [2,24,26,30]) and the expected
accuracy of a measured An/Ci curve (see [2,25,26] for comprehensive reviews). Depending on the
equations used for fitting the parameters, two major groups of methods can be distinguished: Group I
directly fits parameters with the FvCB model [14,25–27,31] and Group II fits parameters with a
quadratic equation [2,12]. The implementation is sensitive to the methods used. The estimated
parameters can be substantially different when using different An/Ci curve-fitting methods on the
same dataset [2,25,26,29]. It is frequently difficult to determine which method is superior based on the
measures of SSE because of the characteristics of the FvCB model [2], the assumption that the assigned
values of the kinetic properties of Rubisco are the correct ones, and the number of parameters to be
estimated [24].

Some studies compared different fitting methods to determine the parameters of the FvCB model.
Miao et al. [26] made a comparison of six different methods using 160 randomly selected An/Ci
datasets from 4 shrubby indicator species, including highbush blueberry (Vaccinium corymbosum L.),
dangleberry (Gaylusaccia frondosa L.), coastal fetterbush (Eubotrys racemosa L.) and sweet pepperbush
(Clethra alnifolia L.). They concluded that the method developed by Sharkey et al. [27] was among
the ‘best’, based on the lowest minimum of the root mean square error. Gu et al. [2] stated that
their approach could estimate reliable FvCB parameters using error-free synthetic An/Ci curves and
predicted limited states that matched chlorophyll fluorescence patterns from actual datasets.

An erroneous determination of the FvCB model parameters can lead to inaccurate predictions of
ecosystem productivity, because the potential errors can worsen when moving to larger temporal and
spatial scales (e.g., from field measurements over short periods to ecosystem predictions over long
periods) [32,33]. However, to the best of our knowledge, there is little information on a comprehensive
test of these different fitting methods using common generated datasets superimposed by possible
measurement errors. The objective for this study was to assess the two approaches for fitting the FvCB
model: group I (Sharkey et al.’s method) and group II (Gu et al.’s method).

2. Materials and Methods

2.1. The FvCB Model and Characteristics

An/Ci curves are fitted with the FvCB model for C3 leaves [1] that accounts for gm and whereby
An is given as

An = min
{

Wc, Wj, Wp
}(

1− Γ∗

Cc

)
− Rd, for Cc > (1 + 3α)Γ∗ (1)

An = min
{

Wc, Wj, Wp
}(

1− Γ∗

Cc

)
− Rd, for Cc > (1 + 3α)Γ∗, (2)
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An = min
{

Wc, Wj
}(

1− Γ∗

Cc

)
− Rd, for Γ∗ ≤ Cc ≤ (1 + 3α)Γ∗, (3)

An = Wc

(
1− Γ∗

Cc

)
− Rd, for Cc < Γ∗, (4)

Wc = Vcmax
Cc

Cc + Kco
, (5)

Wj = J
Cc

4Cc + 8Γ∗
, (6)

where min{} denotes ‘the minimum of’.
α in Equation (6) is often set to zero, and Equation (6) can be then reduced to

Wp = 3Tp
Cc

Cc − Γ∗
, f or Cc > Γ∗. (7)

In the above equations, Wc, Wj and Wp are the carboxylation rates limited by Rubisco (Ac state),
the Ribulose 1,5-bisphosphate (RuBP) regeneration (Aj state) and triose phosphate utilization (TPU)
(Ap state), respectively; Equation (3) is one of the points where the Aj state is equal to the An state (see
next the section for an explanation); Cc is the chloroplastic CO2 partial pressure and can be estimated by

Cc = Ci −
An

gm
. (8)

A typical condition for assessing An/Ci curves at saturating light levels is to assume that J
approaches Jmax, the maximum rate of electron transport. If light is not saturating at the time of
measurement, Jmax must be calculated from J [24]. In this study, we assume that Jmax = J.

Combining Equations (1)–(8), the relationship between An and Ci in the Ac, Aj and Ap states can
be expressed as three segment hyperbolic curves [2,12], respectively;

Anc
2 − gmCic Anc + pc Anc + qcCic + uc = 0,

Anj
2 − gmCij Anj + pj Anj + qjCij + uj = 0,

Anp
2 − gmCip Anp + pp Anp + qpCip + up = 0,

(9)

where the subscripts c, j and p refer to the Ac, Aj and Ap states, respectively; gm, p, q and u are 4
‘coefficients’ in each segment of an An/Ci curve. The general form of Equation (9) is

An
2 − gmCi An + pAn + qCi + u = 0 (10)

In the Ac state, 
gm = gm,

pc = −[(Vcmax − Rd) + gmKco],
qc = (Vcmax − Rd )gm,

uc = −[VcmaxΓ∗ + KcoRd]gm.

(11)

In the Aj state, 

gm = gm,

pj = −
[(

Jmax
4 − Rd

)
+ 2Γ∗gm

]
,

qj =
(

Jmax
4 − Rd

)
gm,

uj = −
(

Jmax
4 + 2Rd

)
Γ∗gm.

(12)
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In the Ap state, 
gm = gm,

pp = −
[(

3Tp − Rd
)
− (1 + 3α)Γ∗gm

]
,

qp =
(
3Tp − Rd

)
gm,

up = −
[
3Tp − (1 + 3α)Rd

]
Γ∗gm.

(13)

When α = 0, Equation (9) in the Ap state is reduced to

Ap = 3Tp − Rd (14)

Mathematically, there are two positive roots for the quadratic Equation (10),

An =
gmCi − p±

√
(gmCi − p)2 − 4(u− 4qCi)

2
, (15)

but only one root meets the constraints of the FvCB model.

An =
gmCi − p−

√
(gmCi − p)2 − 4u + 4qCi

2
. (16)

The above equation describes An as a function, Ci [12]. Equation (16) consists of up to three
segments (states). The three states share one common coefficient gm, while the other coefficients (p, q
and u) are combinations of the common parameters gm, Γ* and Rd and the state specific parameters
Vcmax and Kco in the Ac state, Jmax in the Aj state, and Tp and α in the Ap state.

2.2. Data Generation

2.2.1. Constraints for the Parameters

To generate datasets in order to test the methods, the following constraints for the parameters are
required. All parameters are greater than zero to keep their biological meanings. The FvCB model is a
monotonic increasing function in both Ac and Aj states and a monotonically decreasing function when
α > 0, or it is a constant in the Ap state when α = 0. The three states follow a fixed order along the Ci
axis [2].

If an An/Cc curve consists of both Ac and Aj states, there could, mathematically, be two conditions:
(1) The two states could be exactly the same if Jmax/4 = Vcmax and Kco = 2Γ*. Since Kco > 2Γ* [2,22],
however, the two states cannot be the same. (2) There are two intersection points where Anc = Anj.
The first point is at Cc = Γ*; Anj < Anc when Cc < Γ*. We define An = Anc when Cc < Γ* to create the
fixed order of Ac and Aj states (Equation (3)). The second point is defined as the transition point Ccc_cj
by combining Equations (4) and (5),

Ccc_cj =
Jmax − 4Vcmax2Γ∗/Kco

4Vcmax − Jmax
. (17)

Since 2Γ*/Kco < 1, the constraints for Vcmax and Jmax can be expressed as:

4Vcmax > Jmax. (18)

When Aj and Ap states coexist, the constraint for Jmax as a function of Tp is [2]:

Jmax > 12Tp. (19)

When Ac and Ap states coexist, the constraint for Vcmax as a function of Tp is
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Vcmax > 3Tp. (20)

When three states coexist, the constrains are given by

Vcmax, Jmax, Tp, Kco, Γ∗, Rd, gm, α > 0,
Kco > 2Γ∗,

Cc ≥ (1 + 3α)Γ∗, in Ap state,
An = Anc when Cc ≤ Γ∗,

4Vcmax > Jmax > 12Tp.

(21)

2.2.2. Criteria for Deriving Parameters

An involved parameter is a parameter that is presented in the given dataset. A non-resolvable
parameter is defined as an involved parameter whose value cannot be correctly derived. It should be
noted that resolvable, non-resolvable, and noninvolved parameters were defined by Gu et al. [2]. More
detailed information on these definitions can be found in Gu et al. [2]. The equality of an estimated
parameter against its “true value” is defined by an equivalency at the accuracy of three decimal places
if the lowest precision of the An/Ci dataset is three or higher, or at the lowest precision of the An/Ci
dataset if the precision of An/Ci is less than three decimal places. Since there are limitations due
to measurement accuracy, the number of data points of the An/Ci dataset, and the fitting methods
used, an estimated parameter might be equal to its “true value” by chance. To stop this result from
biasing our analysis, a correctly estimated parameter is defined here as one that is obtained only if all
resolvable parameters in this dataset are equal to their “true values”. If the numbers of data points in
Ac, Aj and Ap states are x, y and z, respectively, the data point distribution is written as (x, y, z). More
detailed information on the theoretical resolvability of parameters can be found in Gu et al. [2].

In practice, all of the measurements are subject to measurement errors (Appendix A). Therefore,
the measured points lie near to, but not on, the theoretical curve. A number of techniques are
needed to obtain the optimal approximation of the “true value”. The common methods for estimating
the parameters of the FvCB model are based on the minimization of an objective function which
characterizes a goodness-of-fit of a particular curve with respect to the given set of data points.
For example, the parameters are estimated by minimizing the SSE [2,29]:

f =
nc

∑
i=1

(Aci − Acmi)
2 +

nj

∑
j=1

(
Ajj − Ajmj

)2
+

np

∑
k=1

(
Apk − Apmk

)2
, (22)

where Aci, Ajj and Apk are the calculated net assimilation rates at point i in the Ac, Aj, Ap states
respectively; Acmi, Ajmj and Apmk are the measured counterparts, respectively; and subscripts nc, nj and
np are the numbers of counterpart points, respectively. The objective equation used in the methods
of Sharkey et al. and Gu et al. are similar to Equation (22); however, the calculation procedures
are different.

2.2.3. Generation of Datasets

The parameters were randomly chosen from selected parameter ranges with three decimal
places. Vmax varied from 20.000 to 160.000 µmol m−2 s−1, Jmax from 20.000 to 250.000 µmol m−2 s−1, Tp

from 5.000 to 15.500 µmol m−2 s−1, Rd from 0.010 to 5.000 µmol m−2 s−1, gm from 0.100 to
30.000 µmol m−2 s−1 Pa−1, Γ* from 0.100 to 5.000 Pa, Kco from 20.000 to 100.000 Pa, and α from
0.001 to 1.000. As a special case, α = 0, with the requirement of the constraints mentioned in the
previous section (Equation (21)). Ci ranges from 5 to 150 Pa in both cases. We assumed that the datasets
were collected at a leaf temperature of 25 ◦C and an air pressure of 100 Pa. Each set of parameters
(except for α) was used to generate datasets with either α = 0 or α > 0. There were 200 datasets within
each accuracy level, of which 100 used α = 0 and 100 with α > 0.
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There were three accuracy subgroups (high, normal, and varied). Firstly, a high accuracy implies
the accuracy of the generated An and Ci to eight decimal places. Secondly, a normal accuracy dataset
was defined as a dataset which is rounded off from a high accuracy dataset. Normal precision is the
same as a typical open gas exchange system, e.g., Li-6400 (Li-Cor, Inc., Lincoln, NE, USA). In this
case, An is rounded to three decimal places if An < 1.000 µmol m−2s−1, to two decimal places if
1.00 µmol s−1 m−1 < An < 10.00 µmol s−1 m−1, and to one decimal place if An > 10.0 µmol m−2 s−1;
Ci is rounded to one decimal place if Ci < 100 µmol mol−1 and to an integer if Ci > 100 µmol mol−1.
Datasets can commonly have measurement errors. The errors in An and Ci were calculated according
to Equations (A5) and (A6), respectively, in the appendix. The precision of a dataset from the
measurements is the same as a normal accuracy dataset. Varied accuracy datasets were generated
without measurement errors, either with varied accuracy or varied data points. The parameters used to
generate varied accuracy datasets were: Vcmax of 45.572 µmol m−2 s−1, Jmax of 111.315 µmol m−2 s−1,
Tp of 7.871 µmol m−2 s−1, Rd of 1.381 µmol m−2 s−1, gm of 1.897 µmol m−2 s−1 Pa−1, Γ* of 4.396 Pa,
Kco of 43.616 Pa, and α of 0.352. The maximum number of data points in each state was nine. There
were two subgroups in this group:

(i) Datasets with varied data points. The accuracy of this dataset was eight decimal places; and the
numbers of data points were 4, 5, 6, 7, 8, 9, and 12. The varied data point dataset was used to
evaluate the impact of the number of data points on parameterization. It should be noted that
these datasets are included in the high accuracy dataset.

(ii) Datasets with varied accuracy. These datasets were with either eight or 12 data points, and
accuracies were from one to eight decimal places. The varied accuracy dataset was used to
identify the impact of accuracy on parameterization.

2.3. Fitting Methods

2.3.1. Gu et al.’s Method

Gu et al. [2] developed a four-step method to estimate the parameters of the FvCB model.

(1) The enumeration of all possible data point distributions of three states of a given dataset. The three limited
states must follow a certain pattern along the Ci axis in an order dictated by the FvCB model.
The minimum numbers of data points (3 or 0, 2 or 0, 3 or 0) and the number of data points higher
than the number of parameters to be derived are required for resolvable parameters. Under
these conditions, the resolvable parameters are defined as Gu et al.’s resolvable parameters to
differentiate them from resolvable parameters as a general case. Thus, the minimum numbers
of data points (3, 2, 3) and a minimum number of nine observed data points are required for
all eight parameters to be resolvable. We refer to these as Gu et al.’s requirements for all eight
resolvable parameters. If only one or two states are Gu et al.’s resolvable states, the dataset is
Gu et al.’s partially resolvable dataset and the resolvable parameters are Gu et al.’s partially
resolvable parameters. If a state does not meet the minimum data point requirement of Gu et al.,
Gu et al.’s method forces the dataset to meet the requirements by moving data points from
one state to another. If the number of observed data points is zero in the Ap state, α = 0 and
Tp = (asymptote of An + Rd)/three.

(2) Fitting the FvCB model to each limited state distribution separately. In this step, the transition points
are never calculated and the carboxylation rates in different states are never compared. The An is
calculated with the submodel of the limited state to which the data point is assigned.

(3) Detection and correction of inadmissible fits. Gu et al., [2] defined “inadmissible fits” as cases where
the limitation states of the points in the A/Ci curve have not consistently or correctly identified
the derived parameters. This step is only used for a dataset that contains multiple limited states.
If the calculated limited state distribution is the same as the assigned limited state distribution,
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then the fit is admissible; otherwise, the fit is inadmissible. If the fit is inadmissible, the fit will be
corrected via a penalization strategy.

(4) Section of best fit. The best fit for an observed set of data is the method that gives the smallest
value for the minimized objective function. If the values of the minimized objective function are
equal when comparing across different limited state distributions, the one with fewer parameters
is selected.

2.3.2. Sharkey et al.’s Method

Sharkey et al.’s method requires an initial set of estimated parameter values to be assigned and
iteratively improves this set. The algorithm starts with two initial transition values for Ac and Aj states
and Aj and Ap states; it then changes the values until the objective function is minimized. Since the
parameters Kco, α and Γ* are assigned a priori, a maximum of five parameters are estimated. The three
states share common parameters—gm and Rd —with state specific parameters of Vcmax in the Ac state,
Jmax in the Aj state, and Tp in the Ap state. Thus, the minimum data point distribution is (1, 1, 1) and
the minimum number of points is five for all five parameters to be resolvable. If the data points are
only distributed in one state or in two states, the minimum number of data points is three or four,
respectively, for all involved parameters to be resolvable. It should be noted that, for the same dataset,
the number of Gu et al.’s resolvable parameters is different from that of Sharkey et al.’s, and both are
different from the resolvable parameters in the general case.

2.3.3. Parameter Calculations

The parameter estimations were conducted in May 2011 to March 2012. The generated datasets
were uploaded to the website http://Leafweb.ornl.gov to estimate the parameters by Gu et al.’s
method. The detailed procedures can be found on the website. The Excel spreadsheet-software created
by Sharkey et al. [27] (An/Ci curve fitting utility version 1.1) was used to test Sharkey et al.’s method.

3. Results

3.1. High Accuracy Dataset

Using Gu et al.’s method, all eight parameters were correctly retrieved in 23 datasets for high
accuracy datasets with α > 0. In fact, there were a total of 33 datasets with all eight resolvable
parameters, in which ten of the data sets did not meet the requirements set by Gu et al. for the
minimum data point distribution (3, 2, 3) to retrieve all eight parameters. For datasets with α = 0, all
eight parameters were correctly derived in 24 out of a total of 25 datasets that met the requirements
of Gu et al. for all eight resolvable parameters. There was one exception, where a (3, 2, 10) dataset
resulted in poor parameter estimation. These results imply that, when the dataset met Gu et al.’s
requirements for all resolvable parameters in high accuracy datasets, Gu et al.’s method obtained a
full set of parameters for a dataset with α > 0, while the method might not correctly estimate all eight
parameters for a dataset with α = 0.

For datasets with Gu et al.’s partially solvable parameters, the resolvable parameters may or
may not be correctly estimated. For example, two datasets had the same data distribution (9, 0, 6).
One dataset was able to correctly estimate all Gu et al.’s partially resolvable parameters, but another
could not correctly estimate any parameter. Tp and α were non-involved parameters in this dataset,
where the missing Ap state was incorrectly estimated because Tp was calculated by fitting the An/Ci
curve with a sigmoid function and fixed α = 0. For example, one dataset (0, 15, 0) was identified as
(5, 10, 0), and the non-involved parameters Vcmax, Kco, Tp and α were incorrectly derived.

For a dataset with one or two states which did not meet the minimum data point requirements
set by Gu et al. for resolvable parameters, the specific parameters in this state could not be correctly
estimated. For example, the method forced a dataset distribution of (7, 6, 2) to (7, 5, 3), leading to an
incorrect estimation of all eight parameters.

http://Leafweb.ornl.gov
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The numbers of estimated parameters were larger than the resolvable parameters, which in turn
were larger than the correctly estimated parameters. For example, for Vcmax, Jmax and Tp, when α > 0,
the numbers of estimated parameters were 91, 74 and 100; the numbers of resolvable parameters were
71, 72 and 61; and the numbers of correctly estimated parameters were 52, 49, and 42, respectively
(Table 1); when α = 0, the total numbers parameters were 86, 92 and 100 for estimated, 44, 62 and 45 for
resolvable, and 37, 46 and 30 for correctly estimated parameters, respectively (Table 1). Obviously, gm

was a resolvable parameter in any dataset, but could not always be correctly estimated.
Using Gu et al.’s method, more than half of the values of Vcmax, Kco, Jmax, gm, Tp and Γ*

ranged within ±10% of error (Table 1). Some estimated values of gm could be very large; up to
100,000 µmol m−2 s−1 Pa−1 (Figure 1E). The estimated Rd values were more variable in comparison
with other parameters, and many of the values were larger than the upper limit of 5.000 µmol m−2 s−1

used to generate datasets (Figure 1D). Most estimates of α were zero or very close to their “true
values” when α > 0 (Figure 1H). The incorrectly estimated values of Vcmax, Kco, Jmax, Γ* and α showed
a tendency to be underestimated, while Rd tended to be overestimated. About half of the incorrectly
estimated gm values (except for extreme values) were overestimated, while Tp was evenly distributed
around the 1:1 line (y = 1.002x, R2 = 0.941). The uneven distributions of the estimated parameters
Vcmax, Kco, Γ*, Rd and α around the 1:1 line implied that the averages of these parameters may not be
close to their “true values”.

Table 1. Summary of the parameterization of Gu et al.’s and Sharkey et al.’s methods using 15 data
points An/Ci curves. Resolvable: the parameter can be correctly estimated by an appropriate method;
Correctly estimated: the estimated parameter by a specific method with the same value as “true value”;
Total estimated: total estimated parameters including correctly and incorrectly estimated parameters;
Error within ±10%: the ranges of the error of estimated parameters within ±10% of the “true value”.

α Dataset Method Number of Parameters gm Γ* Rd Vcmax Kco Jmax Tp α

α > 0

HDS

Gu et al.

Resolvable a 100 90 90 71 80 72 61 61
Correctly estimated 72 62 62 52 62 49 42 42

Total estimated 100 100 100 91 91 74 100 100
Error within ±10% 89 80 75 71 70 69 89 55

Sharkey et al.

Resolvable a 100 NA 100 88 NA 79 72 NA
Correctly estimated b 0 NA 0 0 NA 0 0 NA

Total estimated d 100 NA 100 100 NA 100 100 NA
Error within ±10% 41 NA 6 22 NA 65 7 NA

NDS Gu et al.
Correctly estimated e 0 0 0 0 0 0 0 0

Total estimated 100 100 100 98 98 76 100 100
Error within ±10% 26 48 16 55 40 65 70 26

Sharkey et al. Error within ±10% 6 NA 6 24 NA 70 57 NA

DSE Gu et al.
Total estimated 100 100 100 98 98 86 100 100

Error within ±10% 7 36 7 30 10 61 64 23
Sharkey et al. Error within ±10% 8 NA 5 24 NA 70 60 NA

α = 0

HDS
Gu et al.

Resolvable a 98 62 62 44 72 62 45 45
Correctly estimated 72 46 46 37 63 46 30 30

Total estimated 100 100 100 86 86 92 100 100
Error within ±10% 82 61 57 64 65 68 74 100

Sharkey et al. Resolvable a 100 NA 100 88 NA 95 79 NA
Error within ±10% 63 NA 5 23 NA 64 8 NA

NDS Gu et al.
Total estimated 100 100 100 93 93 90 100 100

Error within ±10% 20 42 12 43 27 64 67 99

Sharkey et al. Error within ±10% 8 NA 8 22 NA 59 51 NA

DSE Gu et al.
Total estimated 100 100 100 98 98 93 100 100

Error within ±10% 5 23 8 22 7 50 51 78

Sharkey et al. Error within ±10% 4 NA 7 26 NA 61 63 NA
a The number of resolvable parameters is the same for all datasets (HDS: high accuracy dataset, NDS: normal
accuracy dataset and DSE: dataset with measurement errors) when α > 0 (or α = 0) using the method of Gu et al. [2],
and using the method of Sharkey et al. [27], respectively; b The number of correctly estimated parameters is the
same for datasets using the method of Sharkey et al. [27]; c For values of α, the differences within 0.1 were listed;
d The number of estimated parameters were the same for all datasets using the method of Sharkey et al. [27]; e The
number of correctly estimated parameters is the same for all datasets (using the method of Gu et al. [2]).
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Sharkey et al.’s method [27] was unable to correctly estimate any parameter for any dataset with
both α = 0 and α > 0 (Table 1). All five unknown parameters—Vcmax, Jmax, gm, Tp and Rd—could be
estimated for any dataset, and even for some noninvolved parameters in some datasets (Table 1), since
Sharkey et al.’s method incorrectly forced data points into a missing state to minimize the objective
function. Within ±10% of error ranges, the numbers for Vcmax, Jmax, gm, Tp and Rd were 22, 65, 41,
7 and 6, respectively, when α > 0, and were 23, 64, 63, 8, and 5 when α = 0, respectively. Vcmax and
Jmax had extreme values in some datasets. Many values of gm reached their upper limit value of
30 µmol m−2 s−1 Pa−1. Overall, Vcmax, and gm were overestimated, about 40% of the Rd values were
zero, Jmax was about evenly distributed around the 1:1 line (y = 1.016x, R2 = 0.462) with a few extreme
large values, and Tp was about evenly distributed around the 1:1 line (y = 0.987x, R2 = 0.866) (Figure 1).
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Figure 1. Comparison of the estimated parameters by Gu et al.’s method (black circle for α > 0 and 
black triangle for α = 0) and Sharkey et al.’s method (open circle for α > 0 and open triangle for α = 0) 
vs true parameter values for synthetic An/Ci curves, 100 datasets with α > 0 and 100 with α = 0. The 
datasets consisted of 15 data points with high accuracy (eight decimal points). The points in each 
figure may have less than 100 values because some datasets do not contain all three states. 
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1). The number of estimated parameters was more than those utilizing high accuracy datasets, since 
more non-involved parameters were incorrectly estimated. Compared to the high accuracy datasets, 
more datasets with a missing state were incorrectly identified as datasets with all three states 
available by changing a missing state to an available one. For example, a dataset (3, 0, 12) was 
assigned to (4, 2, 9). The total number of values within ±10% of their “true values” for Vcmax, Kco, Jmax, 
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Figure 1. Comparison of the estimated parameters by Gu et al.’s method (black circle for α > 0 and black
triangle for α = 0) and Sharkey et al.’s method (open circle for α > 0 and open triangle for α = 0) vs. true
parameter values for synthetic An/Ci curves, 100 datasets with α > 0 and 100 with α = 0. The datasets
consisted of 15 data points with high accuracy (eight decimal points). The points in each figure may
have less than 100 values because some datasets do not contain all three states.

3.2. Normal Accuracy Datasets

For normal accuracy datasets with both α > 0 and α = 0, no parameters were correctly estimated
using Gu et al.’s method. In comparison with the high accuracy dataset results, this suggests that the
accuracy of An/Ci data was important for correctly determining the parameters. The total number
of estimated parameters was more than the total number of resolvable parameters (except for gm)
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(Table 1). The number of estimated parameters was more than those utilizing high accuracy datasets,
since more non-involved parameters were incorrectly estimated. Compared to the high accuracy
datasets, more datasets with a missing state were incorrectly identified as datasets with all three states
available by changing a missing state to an available one. For example, a dataset (3, 0, 12) was assigned
to (4, 2, 9). The total number of values within ±10% of their “true values” for Vcmax, Kco, Jmax, Tp, gm,
Rd, Γ* and α were 55, 40, 65, 70, 26, 16, 48 and 26 for α > 0; and were 43, 27, 64, 67, 20, 12, 42 and 99
for α = 0, respectively (Table 1). These numbers were fewer than the corresponding parameters in the
high accuracy dataset. Overall, Vcmax, Kco, was underestimated, Rd was overestimated and gm was
generally underestimated. In some cases, gm was overestimated when the estimated value was higher
than 20 µmol m−2 s−1 Pa−1. Most of the estimated parameters Γ*, Jmax and Tp were evenly distributed
around the 1:1 line (y = 0.952x and R2 = 0.531 for Jmax, y = 1.001x and R2 = 0.958 for Tp) (Figure 2).
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or Jmax was estimated whenever its state was identified (Table 1). The number of estimated parameters 
was higher than that in normal accuracy datasets, indicating that more parameters would be 

Figure 2. The same as in Figure 1; here applied to normal accuracy datasets.

Using Sharkey et al.’s method [27], there were no correct parameters for both α = 0 and
α > 0 (Table 1). All five unknown parameters—Vcmax, Jmax, gm, Tp and Rd—were estimated for
any dataset (Table 1) within ±10% of error. The values of Vcmax, Jmax, gm, Tp and Rd were 24, 70,
6, 57 and 6, respectively, when α > 0; and 22, 59, 8, 51, and 8, respectively, when α = 0. Vcmax

and Jmax had extreme values in some datasets. Many values of gm reached their upper constrained
value of 30 µmol m−2 s−1 Pa−1 for both α = 0 and α > 0. Overall, the parameters Vcmax and gm were
underestimated, Jmax and Tp were evenly distributed around the 1:1 line (y = 0.991x and R2 = 0.572
for Jmax, y = 0.976x and R2 = 0.800 for Tp), and many values of Rd were over their upper limit of
5.000 µmol m−2 s−1 when generated (Figure 2).
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3.3. Datasets with Measurement Errors

Datasets with measurement errors are representative of observed data. Using Gu et al.’s method,
the number of correctly estimated parameters was zero. The common parameters gm, Rd and Γ*, and
the specific parameters Tp and α were estimated for all 100 datasets. The specific parameter Vcmax, Kco,
or Jmax was estimated whenever its state was identified (Table 1). The number of estimated parameters
was higher than that in normal accuracy datasets, indicating that more parameters would be estimated
when using a less accurate dataset. The total numbers of values within ±10% of their “true values” for
Vcmax, Kco, Jmax, Tp, gm, Rd, Γ* and α were 30, 10, 61, 64, 7, 7, 36 and 23 when α > 0; and 22, 7, 50, 51, 5, 8,
23 and 78 when α = 0, respectively (Table 1). The distributions of estimated parameters (except for Tp)
were more scattered than that of normal accuracy datasets. Most of the values for Vcmax, Kco, gm and Γ*
were underestimated (Figure 3A,G,E,F), while most of Rd and α were overestimated (Figure 3D,H).
About half of the values of Tp and Jmax were overestimated.
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Using Sharkey et al.’s method, there were no correctly estimated parameters for both α > 0 and
α = 0 (Table 1). The numbers of parameters gm, Rd, Vcmax, Jmax, Tp, within ±10% errors were 8, 5, 24, 70
and 60 when α > 0, and 4, 7, 26, 61 and 63 when α = 0, respectively. There were similar numbers of
estimated parameters within ±10% errors between datasets with measurement errors having α > 0
and α = 0 and for normal accuracy and measurement error datasets. This observation suggests that
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the impacts of the value of α and measurement errors on the estimated parameters were insignificant
in datasets with large errors when using Sharkey et al.’s method. Overall, the distributions of the
estimated parameters were similar to those of a normal accuracy dataset (Figure 3).

3.4. Datasets with Varied Data Points

Table 2 summarizes the results of the two methods using high accuracy datasets with a varied
number of data points. Gu et al.’s method was unable to guarantee the correct estimation of any
parameter values when the number of data points was eight or less. For datasets with nine and
12 points, all eight parameters could be correctly estimated if a dataset met the requirements set by
Gu et al. for all eight resolvable parameters. However, the actual number of datasets with all eight
resolvable parameters was much higher than the number of datasets that met the requirements of
Gu et al. for all eight resolvable parameters. Gu et al.’s method could estimate the parameters gm, Rd,
Γ*, Tp and α in any dataset (Table 2), though many of them were non-resolvable. Generally, the ratio
of correctly estimated parameters to estimated parameters increased (except for Kco and Γ*) with an
increasing number of observed data points for the An/Ci curve.

Table 2. Effects of the number of data points of An/Ci curves on the quality of the parameter
estimates obtained from Gu et al.’s and Sharkey et al.’s methods. The “true values” of the
parameters are Vcmax = 45.572 µmol m−2 s−1, Jmax = 111.32 µmol m−2 s−1, Rd = 1.381 µmol m−2 s−1,
gm = 1.897 µmol m−2 s−1 Pa−1, Tp = 7.871 µmol m−2 s−1, Γ* = 4.396 Pa, Kco = 43.616 Pa and α = 0.352.
The descriptions of the terms are the same as in Table 1.

Number of
Data Points

Number of
Datasets Methods Number of Values gm Γ* Rd Vcmax Kco Jmax Tp α

4 15

Gu et al.
Resolvable 3 1 1 0 1 0 0 0

Correctly estimated 1 0 0 0 1 0 0 0
Total estimated 15 15 15 2 2 12 15 15

Sharkey et al.
Resolvable 7 NA 7 5 NA 5 2 NA

Correctly estimated a 0 0 0 NA 0 0 NA NA
Total estimated 15 NA 15 11 NA 13 10 NA

5 21
Gu et al.

Resolvable 9 3 3 0 3 3 0 0
Correctly estimated 3 1 1 0 0 1 0 0

Total estimated 21 21 21 10 10 19 21 21

Sharkey et al. Resolvable 13 NA 13 10 NA 10 5 NA
Total estimated 21 NA 21 21 21 NA 19 NA

6 28
Gu et al.

Resolvable 20 10 10 3 8 10 3 3
Correctly estimated 4 3 3 2 3 3 0 0

Total estimated 28 28 28 16 16 25 28 28

Sharkey et al. Resolvable 21 NA 21 17 NA 17 14 NA
Total estimated 28 NA 28 27 NA 27 27 NA

7 36
Gu et al.

Resolvable 32 20 20 9 15 19 8 8
Correctly estimated 7 5 5 3 4 5 1 1

Total estimated 36 36 36 23 23 31 36 36

Sharkey et al. Resolvable 28 NA 28 23 NA 23 20 NA
Total estimated 28 NA 28 28 NA 28 27 NA

8 45
Gu et al.

Resolvable 45 33 33 20 26 26 20 20
Correctly estimated 7 6 6 4 4 5 3 3

Total estimated 45 45 45 31 31 40 45 45

Sharkey et al. Resolvable 37 NA 37 31 NA 31 28 NA
Total estimated 45 NA 44 45 NA 45 45 NA

9 55
Gu et al.

Resolvable 55 43 43 28 34 39 28 28
Correctly estimated 15 13 13 10 11 11 8 8

Total estimated 55 55 55 37 37 49 55 55

Sharkey et al. Resolvable 47 NA 47 40 NA 40 37 NA
Total estimated 55 NA 55 53 NA 55 55 NA

12 73
Gu et al.

Resolvable 73 71 71 56 57 64 56 56
Correctly estimated 30 30 30 25 25 26 24 24

Total estimated 73 73 73 61 61 67 73 73

Sharkey et al. Resolvable 72 NA 72 64 NA 65 65 NA
Total estimated 73 NA 73 73 NA 73 73 NA

a The same values for all parameters using the method of Sharkey et al.
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All parameters from the datasets were not correctly estimated by Sharkey et al.’s method (Table 2).
The percentage of the number of estimated parameters with a ±10% error relative to the number of
estimated parameters for Jmax and Tp ranged from about 33% when the number of data points was four.
When the number of data points was 12 for gm, Rd and Γ*, this ranged from 0 to 20%. The estimated
parameters were unevenly distributed around their “true values”.

3.5. Datasets with Varied Accuracy

Gu et al.’s method was unable to correctly estimate any parameter when the accuracy of datasets
was four or fewer decimal places. For the datasets with decimal places 5, 6, 7 and 8, the numbers of
datasets with correctly estimated parameters were 1, 4, 4, and 9 for datasets with eight data points,
and 1, 9, 24 and 30 for datasets with 12 data points, respectively. If the number of data points was
eight or fewer, there was no correct estimate for all eight parameters and no guarantee to correctly
estimate any parameter. The numbers of datasets with a correctly estimated parameter increased with
an increasing number of decimal places. For a dataset with 12 data points, it was possible to obtain all
eight correct parameters when the accuracy was five or higher decimal places; however, to guarantee
all eight parameters to be correctly estimated, a dataset must meet the requirements of Gu et al. for all
eight resolvable parameters, and the accuracy must be seven or higher decimal places. In addition,
in Gu et al.’s method, Vcmax was underestimated with an error of about 13–17% for datasets with eight
data points and 11–15% for datasets with 12 data points. Jmax was slightly overestimated, with an error
of about 0–7% for datasets with eight data points and 1–4% for datasets with 12 data points. Tp was
overestimated, with an error of about 8–16% for for datasets with eight data points and 7–11% for for
datasets with 12 data points. The estimated parameters gm, Kco Rd, α and Γ* had relatively large errors;
for example, the errors of the mean values of Rd were from 80 to 243%.

Sharkey et al.’s method was unable to correctly estimate any parameter for datasets with varied
accuracy. The estimated parameters did not change from their initial values when the accuracies of the
datasets were five or more decimal places. Compared to the results using Gu et al.’s method, all the
estimated parameters had less variation, as indicated by their smaller standard deviations (data not
shown). The mean values of Vcmax were overestimated, with errors of 18% for datasets with eight data
points, and 12–16% for datasets with 12 points. The mean values of Jmax were close to the “true value”,
with errors of 5% for the datasets with eight data points, and 5–7% for datasets with 12 points. The
means of Tp were overestimated with errors of 12–13% for datasets with eight data points, and 0–2%
for datasets with with 12 points. Parameters gm and Rd had relatively large errors. The ranges of the
relative changes of the mean gm and Rd were from 164 to 694%, and from −43 to 159%, respectively.

4. Discussion

Using high accuracy datasets, Gu et al.’s method was unable to correctly estimate the resolvable
parameters that did not meet the requirements set by Gu et al. for resolvable parameters. This is
because Gu et al.’s method forced these datasets to have the minimum number of data points as (0 or
3, 0 or 2, 0 or 3), which was an altered distribution. Gu et al.’s method could only correctly derive the
resolvable parameters if the dataset satisfied the requirements of Gu et al. for resolvable parameters.
However, since any observed dataset distribution is unknown and there are many fitted parameters,
one cannot identify which set of parameters are correct.

Using normal accuracy datasets with measurement errors, Gu et al.’s and Sharkey et al.’s methods
were unable to correctly estimate any parameter. As shown in Figures 1–3, each set of estimated
parameters from a high accuracy dataset, a normal accuracy dataset or a dataset with measurement
errors were different. One of the main reasons for these differences was the accuracy of the datasets.
Both methods were based on the standard nonlinear regression, which assumes that the error of
An is a random variable whose population mean is zero and variance is constant, and that Ci is an
independent variable without any error. Since only a few data points are available in each limited state,
the sample error will vary considerably, simply by chance. A point with a larger error would tend to



Sustainability 2017, 9, 1288 14 of 20

have a larger deviation from the curve and so would have a larger impact on the SSE. In contrast, a
point with a smaller error would have a smaller influence. Minimizing the SSE would be inappropriate
for datasets with a few data points with relative large errors.

The conditions for correctly estimating all eight parameters using Gu et al.’s method is a dataset
with (1) a minimum of three data points for the limited state of Gu et al. for all resolvable parameters;
(2) a minimum of nine data points for the An/Ci curve; (3) an accuracy of at least seven decimal places;
and (4) α > 0. These requirements were necessary and sufficient conditions for Gu et al.’s method. If a
dataset does not meet these conditions, Gu et al.’s method will be unable to guarantee a fit for any
parameter. For example, in the dataset (2, 4, 2) with high accuracy, all the parameters were resolvable;
however, Gu et al.’s method incorrectly identified it as (3, 5, 0), leading to all the parameters being
incorrect (data not shown).

Sharkey et al.’s method (and other extant methods, see [26]) fits Vcmax, Jmax, Tp, Rd and gm

simultaneously, using all the data points of an An/Ci curve, by fitting Equations (1)–(5) and (14), with
fixed Kco and Γ*, and assuming α = 0. This approach simplifies the fitting method, but may introduce
more errors to the estimated parameters if the wrong fixed values are used. Sharkey et al.’s method
was unable to correctly estimate any parameters using all examined datasets. One of the major reasons
for this could be the use of an incorrect value for the fixed parameters Kco, Γ*, and α. There are different
Kco and Γ* values to choose from in the literature [12,27]. In addition, Kco changes across diverse
species and environmental conditions. One can see from Equations (9)–(13) that a change in one or
more parameters may lead to changes in all the other parameters; for example, if a dataset is only
in the Ac state, by combining Equations (1), (4) and (8) and assuming independent of all involved
parameters, one can have

Vcmax =
(Ci + Kco)gm − Ac

(Ci − Γ∗)gm − Ac
(Ac + Rd). (23)

Thus, the direct impacts of Γ* and Kco on Vcmax are

∂Vcmax

∂Γ∗
=

(Ci + Kco)gm − Ac

[(Ci − Γ∗)gm − Ac]
2 (Ac + Rd)gm, (24)

and
∂Vcmax

∂Kco
=

(Ac + Rd)gm

(Ci − Γ∗)gm − Ac
. (25)

From the above equations, one can see that the direct effects of errors in Vcmax depend on the
errors in Kco and Γ* and the values of Ac, Ci, gm and Rd. Thus, incorrect values for Kco and/or Γ* will
inevitably lead to incorrect parameter estimates. This result is in agreement with that of Ethier and
Livingston [12].

In Sharkey et al.’s methods, the CO2 partial pressure inside the chloroplast Ccs was estimated by
(a similar estimation is also in the methods of Dubois et al. [24] and Miao et al. [26]):

Ccs = Ci −
Anm

gm
, (26)

where Anm is the measured net assimilation rate. Equation (26) is not identical to Equation (8); An

in Equation (8) is the calculated value in the algorithm. Thus, a minimization of SSE based on
Equation (26) or Equation (8) is different. The parameterization of a four-point curve in the Aj state
(Table 3) illustrates this problem. The dataset with eight decimal places was generated using the same
value of Γ* as in Sharkey et al.’s method to eliminate the effects of different values of Γ*. The two sets of
estimated parameters were different from their “true values” and modeled Ajjs were slightly different
from the ‘measured’ values. One can see that Sharkey et al.’s method was unable to correctly derive
the parameters, even using a dataset with a high accuracy and the same fixed value as in the method.
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Because the distribution of data points is unknown, it is possible for Sharkey et al.’s method to
assign data points to the wrong states to minimize SSE, especially if a state is missing. Table 4 shows
an example in which there was one dataset with 12 data points only in the Ac and Aj states. If the
data points were assigned to the same states as when it was generated (I), the SSE was larger than
if the last three data points were assigned to the Ap state, which was larger than if the transitional
point between Ac and Aj was also adjusted. The estimated parameters were different among the three
conditions (except for Rd and gm) and were different from their “true values.” It is worth noting that
this is an intrinsic problem in Sharkey et al.’s method, because of the limited accuracy and number of
data points of an An/Ci curve. It is very easy to miss a state, especially the Ap state [24]. This result can
be explained by considering that the incorrect identification of the distribution of data points led to
incorrect parameter estimation.

Table 3. Parameters estimated from three datasets fitted by Sharkey et al.’s method. The dataset was
generated with the fixed value of Sharkey et al.’s method (Γ* = 3.743 Pa−1) at a leaf temperature of
25 ◦C and an air pressure of 100 Pa. AjjI and AjjII and estimated parameters I and II are values estimated
using two different sets of the initial values of the parameters. Ajmj and Ajj were measured (generated)
values using Equation (8) and modeled values using Equation (26), respectively.

Ci
(µmol mol−1)

Ajmj

(µmol m−2 s−1)
AjjI

(µmol m−2 s−1)
AjjII

(µmol m−2 s−1)
Parameter/SSE True

Parameter
Estimated

Parameter I
Estimated

Parameter II

373.56422385 20.52707868 20.53126975 20.52533184 Jmax (µmol m−2 s−1) 120.494 126.278 117.536
559.64521334 22.90931588 22.90327060 22.91250945 Rd (µmol m−2 s−1) 1.674 3.014 1.039
672.56218564 23.76820169 23.76423592 23.7701254 gm (µmol m−2 s−1Pa−1) 9.564 30.000 7.170
909.96541253 24.92146362 24.92728744 24.91809557 SSE (µmol m−2 s−1)2 - 0.000 0.000

Table 4. Comparison of fitting results from a 12-point An/Ci using Sharkey et al.’s method by assigning
a different transition point between the Ac, Aj and Ap states, as indicated by I, II, III or IV. The dataset
was generated as containing only Ac and Aj states, and the transitional point of Ci is between 201 and
284 µmol mol−1.

An Ci Parameter/SSE True Value I a II b III c

2.17 38.9 Vcmax (µmol m−2 s−1) 99.4 108.9 108.9 112.0
4.47 58.1 Jmax (µmol m−2 s−1) 136.2 143.1 146.1 145.5
9.60 99.4 Tp (µmol m−2 s−1) - 10.1 10.1
15.3 150 Rd (µmol m−2 s−1) 1.1 0.0 0.0 0.0
20.6 201 gm (µmol m−2 s−1 Pa−1) 3.7 30.0 30.0 30.0
25.3 284 Kco (Pa) 42.9 - - -
27.0 371 Γ* (Pa) 1.9 - - -
28.2 415 SSE - 9.939 7.315 7.266
29.4 552 - - - - -
30.1 673 - - - - -
30.1 730 - - - - -
30.6 908 - - - - -

a The transition point was the same as the corresponding error-free data set generated by true parameters; b is
the same as a, except for the fact that the last 3 points were assigned to Ap state; c minimum of SSE where the
transition point of Ci between Ac and Aj is 150 and 201 µmol mol−1

, and between Aj and Ap it is between 552 to
673 µmol mol−1.

Both the methods of Sharkey et al. and Gu et al. have assigned constraints for some parameters
based on prior knowledge; for example, gm ≤ 30 µmol m−2 s−1 Pa−1 in Sharkey et al.’s method, and
Rd ≤ 10 µmol m−2 s−1, gm ≤ 1,000,000 µmol m−2 s−1 Pa−1, and Γ* ≥ 0 Pa in Gu et al.’s method.
There were also different constraints found in other methods in the literature, such as the constraint
of −3 < Rd < 50 µmol m−2 s−1 in Dubois et al. [24]. Firstly, if a parameter is estimated within the
range of its constraint, the local minimum must be achieved in the range of the constraint. Secondly,
the constraints are subjective choices which are probably not realistic; for example, we obtained Rd



Sustainability 2017, 9, 1288 16 of 20

as zero by Sharkey et al.’s method (data not shown), and Γ* as zero (data not shown) by Gu et al.’s
method. Thirdly, if a parameter is equal to its constraint, which is likely to be incorrect, this incorrect
parameter may substantially affect the estimates of other parameters. The problems of finding a local
minimum and non-uniqueness of the parameters is intrinsic to nonlinear regression; for example, in
Sharkey et al.’s method, the estimates of the parameters were sensitive to the initial values (Table 3).
There are similar problems in the method of Dubois et al. [24] and Miao et al. [26], as stated by
Gu et al. [2].

However, the best fit but unreliable parameter set may be used to predict An from Ci if the SSE
is small, as argued by Ethier and Livingston [12]. The four An/Ci curves modeled by the three sets
of parameters with 15 data points (7, 6, 2) were compared. The three sets of parameters were high
accuracy, including measurement errors, and derived from curves generated using the parameters
fitted to the dataset with measurement errors by methods of Gu et al. and Sharkey et al., respectively.
All curves are superposed.

The distributions of the estimated parameters (except for Tp) by both methods using a normal
accuracy dataset and a dataset with measurement errors were very scattered. The majority of the
estimated parameters were either overestimated or underestimated (Table 1, Figures 2 and 3), implying
that the mean values of these estimated parameters could not represent the “true values”. This can be
explained by low data accuracies and by the intrinsic problems in both methods. The estimated Tp

was evenly distributed around the 1:1 line, indicating that the mean Tp was close to its “true value”;
this was because Tp is almost equal to An

3 (Equations (1), (6), and (7)) since An >> Rd in the Ap state.

5. Conclusions

In this study, we tested Sharkey et al.’s [21] commonly-used An/Ci curve fitting method, and the
method developed recently by Gu et al. [2], using datasets with a number of An/Ci curve points from
four to 15 and accuracies from one to eight decimal places. The generated datasets were conservative.
In the literature, the typical number of data points of an An/Ci curve is eight to 12, which is considered
enough for estimation [2,24,26,30]. The accuracy of the measured data in a typical open gas exchange
system is one decimal place; e.g., Li-6400. The error level of the generated datasets was lower than
normally seen in practice, because only one source of measurement error, e.g., the random noise of CO2

±0.2 µmol mol−1, was imposed as an error to the datasets; other error sources were not included [34].
To correctly estimate the parameters of an An/Ci curve, we have to consider data accuracy and

the number and distribution of data points as well as error distribution. Based on the results using
different generated datasets, we concluded that Sharkey et al.’s method failed to correctly estimate
the parameters, while Gu et al.’s method was unable to correctly estimate the parameters using a
dataset with a number of data points fewer than five or with an accuracy of four or fewer decimal
places. At least eight data points were required for Gu et al.’s method to correctly estimate all eight
parameters. For the datasets with measurement errors and the same accuracy of a typical open gas
exchange system—i.e., Li-6400—using Gu et al.’s approach, the parameters Vcmax, Kco, gm and Γ*
were underestimated, while Rd and α were often overestimated. The distributions of Tp were evenly
dispersed around the 1:1 line using both approaches. Using Sharkey et al.’s approach, the parameters
Jmax was overestimated, Vcmax and gm were underestimated, and many values of Rd were over their
upper limit of 5.000 µmol m−2 s−1. The mean values of all estimated parameters, except for Tp, were
not close to their “true values”.

This failure of parameterization was due to two types of problems. One was the limited
number of data points and the limited accuracy of datasets in both methods that did not meet the
assumptions for nonlinear regression (measurement errors in both An and Ci). The other problem was
the failure to identify correct parameter estimates using Gu et al.’s method, due to the unknown data
point distribution.

This study revealed that high accuracy An/Ci and enzyme kinetic measurements are required
to correctly estimate these parameters, even when sufficient data points are provided. An accurate



Sustainability 2017, 9, 1288 17 of 20

estimation of the parameters can contribute to the enhancement of food security under climate change
by reducing potential errors when the biological and biophysical processes of CO2 assimilation are
correctly spatially and temporally scaled-up for ecosystem studies. This study does not address the
question of how these measurement accuracies can be improved. It is recommended that this question
be addressed in a further study.
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Nomenclature

Ac Net assimilation rate assuming Rubisco-limited state, µmol m−2 s−1

Acmi Measured net assimilation rates in the Ac state point i, µmol m−2 s−1

Ajj Calculated net assimilation rates in the Aj state point j, µmol m−2 s−1

An Net assimilation rate, µmol m−2 s−1

Anj Net assimilation rate at Aj state, µmol m−2 s−1

Ap Net assimilation rate assuming triose phosphate utilization (TPU) limited state, µmol m−2 s−1

Apk Calculated net assimilation rates in the Ap state point k, µmol m−2 s−1

Cc Chloroplastic CO2 partial pressure, Pa
Ci Intercellular CO2 partial pressure, Pa
gm Internal (mesophyll) conductance to CO2 transport, µmol m−2 s−1 Pa−1

Jmax Maximum rate of electron transport, µmol m−2 s−1

Ko Michaelis–Menten constant for Rubisco for O2, Pa
Rd Day respiration, µmol m−2 s−1

Tp Rate of triose phosphate export from the chloroplast, µmol m−2 s−1

Wc Maximal Rubisco carboxylation rate, µmol m−2 s−1

Wp TPU-limited carboxylation rate, µmol m−2 s−1

Aci Calculated net assimilation rates in the Ac state point i, µmol m−2 s−1

Aj Net assimilation rate assuming RuBP regeneration limited state, µmol m−2 s−1

Ajmj Measured net assimilation rates in the Aj state point j, µmol m−2 s−1

Anc Net assimilation rate at Ac state, µmol m−2 s−1

Anm Measured net assimilation rate, µmol m−2 s−1

Γ* Chloroplastic CO2 photocompensation point, Pa
Apmk Measured net assimilation rates in the Ap state point k, µmol m−2 s−1

Ccc_cj Chloroplastic CO2 partial pressure at transition point between Ac and Aj state, Pa
Cs Intercellular CO2 partial pressure, Pa
J Potential electron transport rate at the measurement light level, µmol m−2 s−1

Kc Michaelis-Menten constant for Rubisco for CO2, Pa
Kco Effective Michaelis–Menten coefficient for CO2, Kco = Kc(1 + O/Ko), Pa
O Oxygen partial pressure, Pa
Vcmax Maximal Rubisco carboxylation rate, µmol m−2 s−1

Wj RuBP regeneration-limited carboxylation rate, µmol m−2 s−1

α Non-returned fraction of the glycolate carbon recycled in the photorespiratory cycle (dimensionless)

Appendix A. Errors Superimposed to an Ideal Dataset

Both An and Ci are subject to measurement errors. The NORMINV function in Microsoft Excel
2007 (Microsoft, Seattle, WA, USA) was used to generate these errors. There are three arguments
for the functions (Probability, Mean, and Standard Deviation). For this study, the RAND function
was used for probability and the Mean and Standard Deviation values were 0 and 0.2, respectively.
The values of An and Ci are not directly measured in an open gas exchange system (e.g., Li-6400). They
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are calculated from the measured environmental conditions of a leaf enclosed in the leaf chamber,
assuming the leaf is homogeneous, implying that the photosynthesis of every portion of the measured
leaf is in the same limited state in the same time. The environmental conditions are provided by some
signal processing algorithm; for example, CO2 concentration was calculated from the signal of the
infrared gas analyzer (IRGA). Under such conditions, the An/Ci curve can be described by the FvCB
model if the measurements are without error. However, in practice, all physical measurements are
subject to measurement errors. The accuracy of the measurements could be affected by many factors,
including, but not limited to, random noise in the CO2 and water vapor sensors, leaf biological and
environmental heterogeneity, leaf temperature variation, gas leaks, dark transpiration and respiration
from the leaf under the gaskets, signal processing algorithms, and the calibration of the instrument. For
simplicity, we only focus on the errors from CO2 sensors. Following von Caemmerer and Farquhar [23]
and ignoring the dilution effects of water vapor, the gas exchange rate An and Ci in an open system
can be simply expressed as:

An =
F
S
(Cr − Cs) (A1)

Ci = Cs −
An

gtc
(A2)

where gtc is the total conductance to CO2; F is the incoming air flow rate; Cr and Cs are reference
IRGA and sample IRGA CO2 concentrations, respectively; and S is the leaf chamber area. From
Equations (A1) and (A2), one can see that Ci is not independent of An. The uncertainties of An will
transfer to Ci.

It is reasonable to assume that errors in gtc, F, S, Cr and Cs are independent and randomly
distributed, because the data were recorded at steady state. According to the principle of the
propagation of errors, the uncertainties of An and Ci are given, respectively, by

εAn =
1
S

√
(F)2

[
(εCr)

2 + (εCs)
2
]
+ (Cr − Cs)

2
[
(εF)2 +

F2

S2 (εS)
2
]

(A3)

εCi =

√[
1−

(
F

Sgtc

)]2
(εCs)

2 +
(

F
Sgtc

)2
(εCr)

2 +
(

Cr−Cs
gtcS

)2
[
(εF)2 +

(
F
S

)2
(εS)2 + F2

(gtc)
2 (εgtc)

2
]

(A4)

The bigger the area of the leaf chamber and/or the less flow rate and/or the closer the CO2

difference between the reference and the sample, the smaller measurement errors of An (Equation (A3))
and Ci (Equation (A4)). Each gas analysis system has its own specific errors for F, Cr and Cs; for example,
the Li-6400 we used had errors of Cr ± 0.36 µmol mol−1 and errors of CS ± 0.12 µmol mol−1 at
370 µmol mol−1 [34].

For simplicity, we assume that the errors in S, F and gtc are ignorable, and εCr = εCs = εC
Equations (A3) and (A4) become to

εAn =

√
2F
S
εC (A5)

εCi = εC

√√√√[1− 2
(

F
Sgtc

)
+ 2
(

F
Sgtc

)2
]

(A6)

For the typical area of the leaf chamber, S is 600 mm2, the flow rate is 400 µmol s−1 and
the δC = ±0.2 µmol mol−1 [32], the error of An is approximately±0.2 µmol m−2 s−1. The uncertainties
of Ci also depend on gtc, which is mainly derived from stomatal conductance. For generating
the An/Ci points, we assume that gs is linear with CO2 concentration and the range of gs is from
0.2 mol CO2 m−2 s−1 at Ci of 0 µmol mol−1 to 0.1 mol CO2 m−2 s−1 at Cs of 2000 µmol mol−1.
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