The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households
Abstract
:1. Introduction
2. Methodology
2.1. Methods: The CV Approach
2.2. Method of WTP Elicitation and Bid Amounts
2.3. Payment Vehicle
3. Modeling of WTP Responses
3.1. Basic WTP Model
3.2. Model of Dealing with Zero WTP Responses: Mixture Model
3.3. SB DC Mixture Model
4. Results and Discussion
4.1. Data
4.2. Estimation Results of the SB DC Mixture Model
4.3. Estimation Results of the Model with Covariates
4.4. Discussion of the Results
5. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Questions about Willingness to Pay for District Heating System over Individual Heating System in Korea
- Yes—go to Q2.
- No—go to Q3.
- Yes—Finish this survey
- No—Finish this survey
- Yes—Finish this survey
- No—go to Q4.
- Yes, our household is willing to pay something less than 1,000 Korean won.
- No, our household is not willing to pay anything. In other words, our household’s willingness to pay is zero.
References
- Behnaz, R.; Rosen, M.A. District heating and cooling: Review of technology and potential enhancements. Appl. Energy 2012, 93, 2–10. [Google Scholar]
- Gebremedhin, A. Optimal utilisation of heat demand in district heating system—A case study. Renew. Sustain. Energy Rev. 2014, 30, 230–236. [Google Scholar] [CrossRef]
- Gebremedhin, A. Introducing district heating in a Norwegian town—Potential for reduced local and global emissions. Appl. Energy 2012, 95, 300–304. [Google Scholar] [CrossRef]
- Ilic, D.D.; Trygg, L. Economic and environmental benefits of converting industrial processes to district heating. Energy Convers. Manag. 2014, 87, 305–314. [Google Scholar] [CrossRef]
- Euroheat & Power. District Heating and Cooling Country by Country 2015 Survey; Euroheat & Power: Brussels, Belgium, 2015. [Google Scholar]
- Ziemele, J.; Pakere, I.; Blumberga, D. The future competitiveness of the non-emissions trading scheme district heating systems in the Baltic States. Appl. Energy 2016, 162, 1579–1585. [Google Scholar] [CrossRef]
- Mahapatra, K.; Gustavsson, L. Influencing Swedish homeowners to adopt district heating system. Appl. Energy 2009, 86, 144–154. [Google Scholar] [CrossRef]
- Ministry of Trade, Industry, and Energy. The 4th National Basic Plan for District Heating System; Ministry of Trade, Industry, and Energy: Sejong, Korea, 2014.
- Yoo, S.H.; Shin, C.O.; Kwak, S.J. Inconvenience cost of spam mail: A contingent valuation study. Appl. Econ. Lett. 2006, 13, 933–936. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Lee, J.D.; Lee, J. Using stated-preference data to measure the inconvenience cost of spam among Korean e-mail users. Appl. Econ. Lett. 2006, 13, 795–800. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA panel on contingent valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Salen, M.E.; Mercer, D.E. The economic value of mangroves: A meta-analysis. Sustainability 2012, 4, 359–383. [Google Scholar] [CrossRef]
- Kong, F.; Xiong, K.; Zhang, N. Determinants of farmers’ willingness to pay and its level for ecological compensation of Poyang lake wetland, China: A household-level survey. Sustainability 2014, 6, 6714–6728. [Google Scholar] [CrossRef]
- Huang, C.H.; Wang, C.H. Estimating the total economic value of cultivated flower land in Taiwan. Sustainability 2015, 7, 4764–4782. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, H.Y.; Yoo, S.H. Public willingness to pay for transforming Jogyesa Buddhist Temple in Seoul, Korea into a cultural tourism resource. Sustainability 2016, 8, 900. [Google Scholar] [CrossRef]
- Nomura, N.; Akai, M. Willingness to pay for green electricity in Japan as estimated through contingent valuation method. Appl. Energy 2004, 78, 453–463. [Google Scholar] [CrossRef]
- Liu, W.; Wang, C.; Mol, A.P.J. Rural public acceptance of renewable energy deployment: The case of Shandong in China. Appl. Energy 2013, 102, 1187–1196. [Google Scholar] [CrossRef]
- Hensher, D.A.; Shore, N.; Train, K. Willingness to pay for residential electricity supply quality and reliability. Appl. Energy 2014, 115, 280–292. [Google Scholar] [CrossRef]
- Lim, K.M.; Lim, S.Y.; Yoo, S.H. Estimating the economic value of residential electricity use in Korea using contingent valuation. Energy 2014, 64, 601–606. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Korean public’s perceptions on supply security of fossil fuels: A contingent valuation analysis. Appl. Energy 2015, 137, 301–309. [Google Scholar] [CrossRef]
- Chan, K.Y.; Oerlemans, L.A.G.; Volschenk, J. On the construct validity of measures of willingness to pay for green electricity: Evidence from a South African case. Appl. Energy 2015, 160, 321–328. [Google Scholar] [CrossRef]
- Hidrue, M.K.; Parsons, G.R. Is there a near-term market for vehicle-to-grid electric vehicles? Appl. Energy 2015, 151, 67–76. [Google Scholar] [CrossRef]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resources for the Future: Washington, DC, USA, 1989. [Google Scholar]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Ozdemiroglu, E.; et al. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar: Northampton, MA, USA, 2002. [Google Scholar]
- Champ, P.A.; Boyle, K.J.; Brown, T.C. A Primer on Nonmarket Valuation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Res. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Hanemann, W.M.; Loomis, J.; Kanninen, B.J. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- McFadden, D. Contingent valuation and social choice. Am. J. Agric. Econ. 1994, 76, 689–708. [Google Scholar] [CrossRef]
- Bateman, I.J.; Langford, L.H.; Jones, P.; Kerr, G.N. Bound and path effects in double and triple bounded dichotomous choice contingent valuation. Res. Energy Econ. 2001, 23, 191–213. [Google Scholar] [CrossRef]
- Carson, R.T.; Groves, T. Incentive and informational properties of preference questions. Environ. Res. Econ. 2007, 37, 181–210. [Google Scholar] [CrossRef]
- Egan, K.J.; Corrigan, J.R.; Dwyer, D.F. Three reasons to use annual payments in contingent valuation surveys: Convergent validity, discount rates, and mental accounting. J. Environ. Econ. Manag. 2015, 72, 123–136. [Google Scholar] [CrossRef]
- Kim, H.J.; Lim, S.Y.; Yoo, S.H. Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power. Energy Policy 2017, 102, 125–131. [Google Scholar] [CrossRef]
- Hanemann, W.M. Welfare evaluations in contingent valuation experiments with discrete responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Cameron, T.A.; James, M.D. Efficient estimation methods for ‘closed-ended’ contingent valuation surveys. Rev. Econ. Stat. 1987, 69, 269–276. [Google Scholar] [CrossRef]
- McConnell, K.E. Models for referendum data: The structure of discrete choice models for contingent valuation. J. Environ. Econ. Manag. 1990, 18, 19–34. [Google Scholar] [CrossRef]
- Werner, M. Allowing for zero in dichotomous choice contingent valuation models. J. Bus. Econ. Stat. 1999, 17, 479–486. [Google Scholar] [CrossRef]
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef]
- Mahapatra, K.; Gustavsson, L. Adoption of innovative heating systems—Needs and attitudes of Swedish homeowners. Energy Effic. 2010, 3, 1–18. [Google Scholar] [CrossRef]
- Yoon, T.; Ma, Y.; Rhodes, C. Individual heating systems vs. district heating systems: What will consumers pay for convenience? Energy Policy 2015, 86, 73–81. [Google Scholar] [CrossRef]
- United Nations Environment Programme. District Energy in Cites: Unlocking the Potential of Energy Efficiency and Renewable Energy; United Nations Environment Programme: Nairobi, Kenya, 2015. [Google Scholar]
- United States Environmental Protection Agency. Fuel and Carbon Dioxide Emissions Savings Calculation Methodology for Combined Heat and Power Systems; United States Environmental Protection Agency: Washington, DC, USA, 2015.
Bid Amount in Korean Won a | Number of Responses (%) b | Sample Size b | ||
---|---|---|---|---|
“Yes” | “No-Yes” | “No-No” | ||
2000 | 62 (43.3) | 29 (20.3) | 52 (36.4) | 143 (100.0) |
5000 | 42 (29.6) | 42 (29.6) | 58 (40.8) | 142 (100.0) |
8000 | 20 (14.0) | 58 (40.6) | 65 (45.5) | 143 (100.0) |
15,000 | 13 (9.1) | 73 (51.0) | 57 (39.9) | 143 (100.0) |
25,000 | 12 (8.4) | 67 (46.8) | 64 (44.8) | 143 (100.0) |
40,000 | 3 (2.1) | 73 (51.1) | 67 (46.8) | 143 (100.0) |
60,000 | 3 (2.1) | 68 (47.6) | 72 (50.3) | 143 (100.0) |
Totals | 155 (15.5) | 410 (41.0) | 435 (43.5) | 1000 (100.0) |
Parameters | Coefficient Estimates d |
---|---|
0.6307 (10.94) # | |
0.2872 (6.29) # | |
0.4350 (27.75) # | |
Mean additional WTP a | KRW 5775 (USD 5.4) |
t-value | 8.93 # |
95% confidence interval b | KRW 4811 to 7743 (USD 4.5 to 7.3) |
99% confidence interval b | KRW 4529 to 8648 (USD 4.2 to 8.1) |
Number of observations | 1000 |
Log-likelihood | −943.65 |
Wald statistic (p-value) c | 2093.20 (0.000) # |
Variables | Definitions | Mean | Standard Deviation |
---|---|---|---|
Area | Dummy for the respondent living in a metropolitan area (0 = no; 1 = yes) | 0.49 | 0.50 |
Income | Monthly household income before tax deduction (unit: KRW 1 million = USD 936.8) | 4.15 | 1.87 |
Parameters a | Model A b | Model B b | Model C b |
---|---|---|---|
0.6307 (10.94) # | 0.6970 (10.91) # | 0.6970 (10.91) # | |
0.2872 (6.29) # | |||
Constant | 0.4043 (5.68) # | 0.4043 (5.68) # | |
Area | −0.2199 (−4.84) # | −0.2199(−4.84) # | |
Income | −0.0040 (−0.66) | −0.0040 (−0.66) | |
0.4350 (27.74) # | |||
Constant | −0.0530 (−0.33) | −0.0530 (−0.33) | |
Area | 0.4372 (3.35) # | 0.4372 (3.35) # | |
Income | −0.1074 (−3.18) # | −0.1074 (−3.18) # | |
Sample size | 1000 | 1000 | 1000 |
Log-likelihood | −934.01 | −920.35 | −910.71 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Lim, S.-Y.; Yoo, S.-H. The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households. Sustainability 2017, 9, 1348. https://doi.org/10.3390/su9081348
Kim H-J, Lim S-Y, Yoo S-H. The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households. Sustainability. 2017; 9(8):1348. https://doi.org/10.3390/su9081348
Chicago/Turabian StyleKim, Hyo-Jin, Seul-Ye Lim, and Seung-Hoon Yoo. 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households" Sustainability 9, no. 8: 1348. https://doi.org/10.3390/su9081348
APA StyleKim, H. -J., Lim, S. -Y., & Yoo, S. -H. (2017). The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households. Sustainability, 9(8), 1348. https://doi.org/10.3390/su9081348