Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Analysis
2.2. Soil Sampling and Analysis
2.3. Sampling Procedure for Determination of Aggregate Size Fractions
2.4. Determination of Root Biomass in Different Land-Use Systems
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of the Soil in the Different Land-Use Systems
3.2. The DSA and WSA Distribution of Soil Aggregate Compositions (%)
3.3. MWD and GMD in Different Land-Uses
3.4. Differences in SOC between Different Land-Use Systems
3.5. Effects of Root Biomass in the Different Land-Use Systems
3.6. Relationship between Soil Aggregates (DSA and WSA) and Soil Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, M.; Zhang, L.; Xu, X.; Feger, K.H.; Wang, Y.; Liu, W.; Schwärzel, K. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. J. Plant Nutr. Soil Sci. 2015, 178, 486–498. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Zhou, H.; Zhang, Y.Z.; Sun, H. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil Tillage Res. 2015, 146, 89–98. [Google Scholar] [CrossRef]
- Onweremadu, E.U.; Onyia, V.N.; Anikwe, M.A.N. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil Tillage Res. 2007, 97, 195–206. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Durigan, M.R.; Cherubin, M.R.; de Camargo, P.B.; Ferreira, J.N.; Berenguer, E.; Gardner, T.A.; Barlow, J.; Dias, C.T.S.; Signor, D.; Junior, R.C.O.; et al. Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability 2017, 9, 379. [Google Scholar] [CrossRef]
- An, S.S.; Mentler, A.; Mayer, H.; Blum, W.E.H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Somasundaram, J.; Reeves, S.; Wang, W.; Heenan, M.; Dalal, R. Impact of 47 years of No. tillage and stubble retention on soil aggregation and Carbon distribution in a Vertisol. Land Degrad. Dev. 2016, 28, 1589–1602. [Google Scholar] [CrossRef]
- Curtin, J.S.; Mullen, G.J. Physical properties of some intensively cultivated soils of Ireland amended with spent mushroom compost. Land Degrad. Dev. 2010, 18, 355–368. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P.; Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Structural and dynamic properties of soil organic-matter as reflected by 13C natural-abundance, pyrolysis mass-spectrometry and solid-state 13C NMR-spectroscopy in density fractions of an oxisol under forest and pasture. Aust. J. Soil Res. 1995, 33, 59–76. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, J.; Wang, Z.; Cao, B.; Wei, Y.; Hu, S. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau. Int. J. Environ. Res. Public Health. 2016, 13, 456. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis Part 1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- De Leenheer, L.; De Boodt, M. Determination of aggregate stability by the change in mean weight diameter. Mededelingen van de Land Bouwhoge School Gent 1959, 24, 290–300. [Google Scholar]
- John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 2005, 128, 63–79. [Google Scholar] [CrossRef]
- Oades, J.M.; Waters, A.G. Aggregate hierarchy in soils. Aust. J. Soil Res. 1991, 29, 815–828. [Google Scholar] [CrossRef]
- Singh, M.J.; Khera, K.L. Physical Indicators of Soil Quality in Relation to Soil Erodibility under Different Land Uses. Arid Land Res. Manag. 2009, 23, 152–167. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230–231, 41–49. [Google Scholar] [CrossRef]
- Li, X.G.; Zhang, P.L.; Yin, P.; Li, Y.K.; Ma, Q.F.; Long, R.J.; Li, F.M. Soil organic carbon and nitrogen fractions and water-stable aggregation as affected by cropping and grassland reclamation in an arid sub-alpine soil. Land Degrad. Dev. 2009, 20, 176–186. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40. Z. Pflanzenernaehr. Dueng. Bodenk. J. Plant Nutr. Soil Sci. 1958, 85, 251–252. [Google Scholar]
- Goossens, D.; Buck, B. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA. J. Environ. Manag. 2009, 90, 3458–3469. [Google Scholar] [CrossRef] [PubMed]
- Stanley, K.E.; Schaetzl, R.J. Characteristics and paleoenvironmental significance of a thin, dual-sourced loess sheet, north-central Wisconsin. Aeolian Res. 2011, 2, 241–251. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and A Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mazurak, A.P. Effect of gaseous phase on water-stable synthetic aggregates. Soil Sci. 1950, 69, 135–148. [Google Scholar] [CrossRef]
- Chepil, W.S. Properties of soil which influence wind erosion; III. Effect of apparent density on erodibility. Soil Sci. 1951, 71, 141–153. [Google Scholar] [CrossRef]
- Van Bavel, C.H.M. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soli Sci. Soc. Am. J. 1949, 14, 20–21. [Google Scholar] [CrossRef]
- Brzeziska, M.; Sokolowska, Z.; Alekseeva, T.; Alekseev, A.; Hajnos, M.; Szarlip, P. Some characteristics of organic soils irrigated with municipal wastewater. Land Degrad. Dev. 2011, 22, 586–595. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Tillage effects on quality of organic and mineral soils under on-farm conditions in Ohio. Environ. Earth Sci. 2015, 74, 1815–1822. [Google Scholar] [CrossRef]
- Sokołowska, Z.; Szajdak, L.; Boguta, P. Effect of phosphates on dissolved organic matter release from peat-muck soils. Int. Agrophys. 2011, 25, 173–180. [Google Scholar]
- Tebrügge, F.; Düring, R.A. Reducing tillage intensity—A review of results from a long-term study in Germany. Soil Tillage Res. 1999, 53, 15–28. [Google Scholar] [CrossRef]
- Walczak, R.; Rovdan, E.; Witkowskawalczak, B. Water retention characteristics of peat and sand mixtures. Int. Agrophys. 2002, 16, 161–166. [Google Scholar]
- Abid, M.; Lal, R. Tillage and drainage impact on soil qualityI. Aggregate stability, carbon and nitrogen pools. Soil Tillage Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Huang, C.; Aliev, F.A.; Levy, G.J. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application. Land Degrad. Dev. 2016, 28, 543–552. [Google Scholar] [CrossRef]
- Saygn, S.D.; Gunay, E.; Mustafa, B. Comparison of aggregate stability measurement methods for clay rich soils in asartepe catchment of turkey. Land Degrad. Dev. 2017, 28, 199–206. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Tisdal, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Beare, M.H.; Cabrera, M.L.; Hendrix, P.F.; Coleman, D.C. Aggregate-Protected and Unprotected Organic-Matter Pools in Conventional-Tillage and No-Tillage Soils. Soil Sci. Soc. Am. J. 1994, 58, 787–795. [Google Scholar] [CrossRef]
- Beare, M.H.; Hus, S.; Coleman, D.C.; Hendrix, P.F. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl. Soil Ecol. 1997, 5, 211–219. [Google Scholar] [CrossRef]
- Presley, D.A.R.; Sindelar, A.J.; Buckley, M.E.; Mengel, D.B. Long-Term Nitrogen and Tillage Effects on Soil Physical Properties under Continuous Grain Sorghum. Agron. J. 2012, 104, 749. [Google Scholar] [CrossRef]
- Emadi, M.; Baghernejad, M.; Memarian, H.R. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy 2009, 26, 452–457. [Google Scholar] [CrossRef]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Pulido Moncada, M.; Gabriels, D.; Cornelis, W.; Lobo, D. Comparing Aggregate Stability Tests for Soil Physical Quality Indicators. Land Degrad. Dev. 2013, 26, 843–852. [Google Scholar] [CrossRef]
- Chirinda, N.; Olesen, J.E.; Porter, J.R.; Schjønning, P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric. Ecosyst. Environ. 2010, 139, 584–594. [Google Scholar] [CrossRef]
- Le, G.C.; Angers, D.A.; Maron, P.A.; Leterme, P.; Menasseriaubry, S. Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biol. Biochem. 2012, 50, 126–133. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Sari, S.; Angin, I. Effects of Vermicompost Application on Soil Aggregation and Certain Physical Properties. Land Degrad. Dev. 2016, 27, 983–995. [Google Scholar] [CrossRef]
- Saroa, G.S.; Lal, R. Soil restorative effects of mulching on aggregation and carbon sequestration in a Miamian soil in central Ohio. Land Degrad. Dev. 2003, 14, 481–493. [Google Scholar] [CrossRef]
- Chen, H.; Shao, M.; Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Organic Carbon and Nitrogen Associated with Soil Aggregates and Particle Sizes Under Different Land Uses in Tigray, Northern Ethiopia. Land Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Liu, M.Y.; Chang, Q.R.; Qi, Y.B.; Liu, J.; Chen, T. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. CATENA 2014, 115, 19–28. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A. Persistence of soil organic matter as an ecosystem property. Nature. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Varvel, G.E.; Wilhelm, W.W. Long-Term Soil Organic Carbon as Affected by Tillage and Cropping Systems. Soil Sci. Soc. Am. J. 2010, 74, 915–921. [Google Scholar] [CrossRef]
- Wen, D.; He, N.; Zhang, J. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands. PLoS ONE 2016, 11, e0146757. [Google Scholar] [CrossRef] [PubMed]
- Havlin, J.L.; Kissel, D.E.; Maddux, L.D.; Claassen, M.M.; Long, J.H. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 1990, 54, 448–452. [Google Scholar] [CrossRef]
- Hussain, I.; Olson, K.R.; Ebelhar, S.A. Long-Term Tillage Effects on Soil Chemical Properties and Organic Matter Fractions. Soil Sci. Soc. Am. J. 1999, 63, 1335–1341. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef]
- Banger, K.; Kukal, S.S.; Toor, G.; Sudhir, K.; Hanumanthraju, T.H. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics. Plant Soil. 2009, 318, 27–35. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van, W.B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Saha, D.; Kukal, S.S. Soil Structural Stability and Water Retention Characteristics under Different Land uses of Degraded Lower Himalayas of North-West India. Land Degrad. Dev. 2015, 26, 263–271. [Google Scholar] [CrossRef]
- Nippert, J.B.; Knapp, A.K. Linking water uptake with rooting patterns in grassland species. Oecologia 2007, 153, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Miao, S.; Li, N.; Xu, Y.; Han, X.; Zhang, B. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a Mollisol as estimated from natural 13 C abundance. Plant Soil 2015, 392, 163–174. [Google Scholar] [CrossRef]
- Wang, J.G.; Yang, W.; Yu, B.; Li, Z.X.; Cai, C.F.; Ma, R.M. Estimating the influence of related soil properties on macro- and micro-aggregate stability in ultisols of south-central China. CATENA 2016, 137, 545–553. [Google Scholar] [CrossRef]
- Zhang, J.; Bo, G.; Zhang, Z.; Kong, F.; Wang, Y.; Shen, G. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability 2016, 8, 710. [Google Scholar] [CrossRef]
Types of Land Use | Abbreviation | Utilization History |
---|---|---|
Grassland | GL | The land was used as apple orchard and its conversion to grassland started in 2000 and all the woody material of apple trees was removed from the field at the same time. |
Common apple orchard | CAO | Before 2006, the land was used for the cultivation of field for crops like wheat, maize, and millet and has been used as an apple orchard since 2006. |
Abandoned apple orchard | AAO | The utilization as apple orchard was abandoned some 16 years ago. Some apple trees are still in the field and grow naturally. |
Cropland maize | Clm | The land has been under regular maize cultivation for the last 20 years. |
Cropland wheat | Clw | The land is cultivated for wheat currently but was an apple orchard 4–5 years ago. |
Shrub-grassland | SGL | This land has not been not under cultivation for the last 10 years. |
Soil Layers (cm) | Land-Use System | Bulk Density (Mg/m3) | Electrical Conductivity (dS m−1) | Soil Particle Size Distributions | ||
---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | ||||
0–20 | GL | 1.01 (0.35) a | 0.238 (0.008) ab | 8.69 (2.07) c | 70.11 (0.94) a | 21.20 (1.14) a |
CAO | 0.82 (0.19) a | 0.258 (0.020) a | 15.45 (4.13) a | 64.91 (2.24) b | 19.64 (2.02) a | |
AAO | 0.97 (0.12) a | 0.225 (0.012) b | 13.21 (3.54) a | 66.61 (1.62) ab | 20.18 (2.03) a | |
Clm | 1.11 (0.03) a | 0.181 (0.010) c | 11.00 (3.06) ab | 70.46 (0.96) a | 18.53 (2.54) a | |
Clw | 0.99 (0.02) a | 0.192 (0.003) c | 10.79 (0.70) b | 69.15 (0.97) a | 20.06 (1.29) a | |
SGL | 0.99 (0.14) a | 0.209 (0.005) bc | 9.46 (0.65) c | 70.95 (0.34) a | 19.59 (0.94) a | |
20–40 | GL | 1.10 (0.05) b | 0.179 (0.005) b | 9.20 (1.30) a | 71.73 (0.48) c | 19.07 (1.03) ab |
CAO | 1.09 (0.06) b | 0.212 (0.106) a | 7.84 (3.54) a | 70.10 (0.63) bc | 22.06 (3.18) a | |
AAO | 0.99 (0.21) ab | 0.210 (0.031) a | 15.43 (2.48) a | 69.27 (0.71) c | 15.29 (1.96) ab | |
Clm | 1.19 (0.01) a | 0.176 (0.003) b | 14.97 (3.58) a | 68.39 (0.99) c | 16.64 (2.81) b | |
Clw | 1.07 (0.01) b | 0.182 (0.002) a | 7.55 (0.40) a | 72.34 (0.43) ab | 20.11 (0.27) a | |
SGL | 0.89 (0.10) c | 0.184 (0.007) b | 8.35 (2.54) a | 69.41 (0.20) a | 22.24 (2.39) a | |
40–60 | GL | 1.13 (0.02) a | 0.182 (0.005) b | 22.21 (8.85) a | 64.04 (3.67) b | 13.75 (5.18) b |
CAO | 1.13 (0.05) a | 0.445 (0.146) a | 7.60 (4.40) b | 69.22 (1.18) ab | 23.18 (3.29) a | |
AAO | 1.20 (0.07) a | 0.166 (0.006) b | 11.99 (3.33) ab | 69.66 (1.35) a | 18.35 (1.98) ab | |
Clm | 1.20 (0.04) a | 0.167 (0.003) b | 9.87 (0.53) ab | 70.72 (0.26) a | 19.41 (0.68) ab | |
Clw | 1.17 (0.06) a | 0.186 (0.003) b | 8.31 (0.22) ab | 72.90 (0.28) a | 18.79 (0.24) ab | |
SGL | 1.09 (0.17) a | 0.165 (0.005) b | 7.07 (0.57) b | 73.61 (0.11) a | 19.32 (0.51) ab |
Period of Land Use (Years) | Area (ha m−2) | Maize Crop Lands | Wheat Crop Lands | Apple Orchard Lands | |||||
---|---|---|---|---|---|---|---|---|---|
Crop Cultivated Areas | Orchard lands Areas | Grass Land Areas | N kg ha−1 | P kg ha−1 | N kg ha−1 | P kg ha−1 | N kg ha−1 | P kg ha−1 | |
1986–1990 | 267.76 | 36.4 | 55.8 | 103.5 | 39 | 173 | 39 | 346 | 78 |
1990–2000 | 238.61 | 96.83 | 23.14 | 138 | 39 | 173 | 39 | 346 | 78 |
2000–2008 | 133.09 | 191.99 | 62.5 | 138 | 59 | 138 | 39 | 346 | 78 |
2008–2012 | After this; conversion of land use systems was not made. |
Soil Layers (cm) | Land-Use System | Dry Stable Aggregate and Size Class Distributions (Mass %) | MWD | GMD | DSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
>5 | 5–2 | 2–1 | 1–0.5 | 0.5–0.25 | <0.25 | |||||
0–20 | GL | 52.12 (4.34) ab | 16.51 (1.99) d | 13.72 (1.94) a | 9.61 (0.98) a | 3.93 (0.05) c | 4.11 (0.52) b | 4.78 (0.11) b | 3.19 (0.05) c | 69 (2.3) b |
CAO | 65.10 (3.90) a | 11.89 (0.33) d | 10.94 (1.26) ab | 7.12 (1.29) b | 2.63 (0.45) d | 2.33 (0.57) c | 5.53 (0.13) a | 4.10 (0.04) a | 77 (3.6) a | |
AAO | 41.78 (6.43) b | 32.00 (1.34) a | 11.47 (0.40) ab | 8.40 (2.43) a | 3.65 (1.24) bc | 2.70 (1.02) c | 4.51 (0.24) bc | 3.23 (0.10) c | 74 (5.1) a | |
Clm | 45.54 (7.11) b | 18.07 (2.26) c | 11.86 (2.31) ab | 10.58 (2.84) a | 4.86 (0.85) b | 9.08 (3.37) a | 4.34 (0.12) c | 2.52 (0.03) d | 64 (9.4) b | |
Clw | 50.91 (0.97) ab | 26.96 (1.27) ab | 9.49 (0.19) b | 5.81 (0.53) c | 2.96 (0.13) b | 3.87 (0.17) b | 4.36 (0.02) c | 3.58 (0.01) b | 78 (0.3) a | |
SGL | 37.85 (5.52) b | 24.36(2.97) b | 14.95 (1.27) a | 9.38 (0.48) a | 5.44 (0.57) a | 8.01 (1.19) a | 4.42 (0.41) b | 2.41 (1.19) cd | 62 (2.5) c | |
20–40 | GL | 70.77 (1.64) a | 10.19 (0.32) d | 8.03 (0.80) b | 5.81 (0.13) b | 2.47 (0.18) c | 2.73(0.21) b | 5.84 (0.13) a | 4.43 (0.12) a | 74 (1.3) ab |
CAO | 68.22 (2.20) a | 13.35 (0.74) c | 8.44 (1.55) b | 5.66 (1.06) b | 2.19 (0.24) c | 2.13 (0.09) b | 5.76 (1.01) a | 4.45 (0.09) a | 76 (2.9) ab | |
AAO | 56.11 (8.15) ab | 20.24 (3.57) a | 9.79 (0.83) ab | 7.42 (1.73) b | 3.28 (1.03) b | 3.15 (0.99) b | 5.14 (1.11) ab | 3.69(0.19) ab | 79(4.6) ab | |
Clm | 61.51 (7.94) a | 14.37 (1.64) ab | 8.13 (1.64) b | 6.42 (2.35) b | 3.84 (1.76) ab | 5.72 (3.83) a | 5.31 (1.35) ab | 3.59 (0.03) ab | 64 (9.6) b | |
Clw | 56.96 (4.46) ab | 16.42 (6.34) ab | 8.03 (0.83) b | 7.08 (0.01) b | 4.07 (0.50) ab | 7.44 (2.22) a | 5.04 (0.01) ab | 3.23 (0.21) ab | 76 (1.9) b | |
SGL | 40.22 (2.88) b | 21.92 (7.57) a | 13.58 (1.15) a | 9.20 (1.48) a | 5.78 (0.79) a | 9.30 (3.57) a | 4.09 (1.41) b | 2.37 (0.03) b | 83 (4.7) a | |
40–60 | GL | 55.50 (9.10) b | 14.54 (2.87) a | 14.63 (5.81) a | 7.35 (0.09) b | 3.60 (0.05) a | 4.37 (0.46) b | 4.96 (0.09) b | 3.36 (0.14) b | 78 (6.2) ab |
CAO | 64.17 (8.75) ab | 11.44 (1.11) ab | 9.88 (2.04) a | 7.72 (2.16) a | 3.30 (1.50) a | 3.49 (1.93) b | 5.44 (1.16) ab | 3.85 (0.19) ab | 73 (7.6) ab | |
AAO | 60.99 (1.84) ab | 17.91 (6.53) a | 8.73 (2.05) a | 6.87 (3.03) b | 2.89 (1.49) a | 2.62 (1.80) ab | 5.40 (0.13) ab | 4.00 (0.11) ab | 83 (8.4) a | |
Clm | 72.23 (1.38) a | 11.09 (0.20) b | 8.96 (3.02) a | 3.32 (0.40) c | 1.72 (0.34) b | 2.68 (1.10) bc | 5.97 (0.40) a | 4.70 (1.10) a | 64 (1.2) b | |
Clw | 74.01 (2.48) a | 8.90 (0.57) c | 4.95 (0.61) b | 3.76 (0.78) c | 2.39 (0.81) a | 5.98 (0.86) a | 5.98 (0.71) a | 4.32 (0.18) ab | 63 (3.1) b | |
SGL | 70.11 (6.85) ab | 13.51 (4.33) a | 6.69 (0.98) a | 4.46 (0.61) c | 2.01 (0.31) a | 3.23 (0.62) b | 5.88 (0.61) a | 4.52 (0.31) a | 84 (2.5) a |
Soil Layers (cm) | Land-Use System | Water Stable Aggregate and Size Class Distributions (Mass %) | MWD | GMD | WSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
>5 | 5–2 | 2–1 | 1–0.5 | 0.5–0.25 | <0.25 | |||||
0–20 | GL | 51.8 (1.4) b | 9.1 (1.6) b | 10.3 (0.0) a | 9.5 (0.8) b | 11.5 (0.6) b | 7.8 (0.0) d | 4.5 (0.02) a | 2.5 (0.02) a | 61 (0.2) b |
CAO | 38.9 (2.6) b | 11.5 (0.2) b | 5.6 (0.2) d | 7.9 (2.1) bc | 3.5 (1.3) c | 6.5 (0.3) e | 3.5 (0.09) c | 2.1 (0.09) c | 50 (2.4) c | |
AAO | 48.2 (5.8) b | 3.8 (0.3) c | 10.2 (1.5) a | 12.2 (1.6) a | 10.7 (2.4) b | 14.9 (0.5) b | 4.1 (0.15) b | 1.8 (0.15) d | 52 (6.0) c | |
Clm | 27.8 (2.0) b | 18.6 (0.2) a | 2.0 (0.0) e | 5.7 (1.4) c | 23.1 (2.0) a | 22.8 (2.4) a | 2.9 (0.11) d | 1.1 (0.13) f | 46 (1.8) cd | |
Clw | 35.5 (4.1) a | 14.3 (3.2) b | 7.4 (1.3) b | 9.6 (3.3) b | 5.7 (1.5) c | 27.6 (3.8) a | 3.4 (0.01) c | 1.3 (0.02) e | 50 (7.3) c | |
SGL | 52.0 (0.5) b | 12.8 (1.2) b | 5.9 (0.9) c | 7.7 (0.2) bc | 11.6 (2.5) b | 9.9 (0.3) c | 4.6 (0.31) a | 2.4 (0.01) b | 65 (1.7) a | |
20–40 | GL | 54.2 (4.0) a | 9.5 (1.1) a | 5.6 (1.7) c | 11.2 (1.7) ab | 11.5 (2.5) a | 8.1 (2.5) a | 4.6 (0.02) b | 2.5 (0.01) b | 64 (5.1) a |
CAO | 56.9 (2.2) a | 6.8 (3.8) ab | 8.0 (3.4) bc | 11.5 (0.7) ab | 8.0 (2.2) b | 8.9 (0.1) a | 4.8 (0.8) ab | 2.6 (0.06) b | 64 (2.1) a | |
AAO | 62.2 (6.4) a | 6.6 (2.5) ab | 12.3 (1.3) b | 7.4 (4.4) a | 6.0 (2.2) b | 5.5 (4.1) a | 5.2 (0.19) a | 3.3 (0.11) a | 69 (1.7) a | |
Clm | 42.0 (1.8) b | 9.7 (0.4) a | 16.1 (1.5) a | 13.6 (2.5) b | 11.6 (0.1) a | 7.0 (1.1) a | 5.2 (0.11) a | 3.1 (0.17) a | 51 (3.9) b | |
Clw | 36.7 (3.2) c | 11.7 (3.4) a | 8.1 (0.2) b | 9.3 (3.3) b | 10.0 (1.9) a | 24.2 (7.7) b | 3.4 (0.07) c | 1.3 (0.01) c | 48 (6.6) b | |
SGL | 59.1 (3.4) a | 4.8 (2.5) b | 8.2 (0.3) b | 6.1 (1.2) ab | 8.6 (0.2) b | 13.4 (0.8) b | 4.8 (0.11) ab | 2.5 (0.03) ab | 64 (0.9) a | |
40–60 | GL | 57.4 (0.2) b | 6.0 (4.0) b | 8.1 (1.3) b | 7.2 (3.9) a | 12.0 (0.3) a | 9.3 (1.7) a | 4.7 (0.11) b | 2.5 (0.04) c | 64 (3.8) b |
CAO | 52.0 (7.8) b | 8.4 (0.2) b | 14.3 (2.1) a | 5.7 (1.2) a | 10.2 (1.6) b | 9.4 (2.7) ab | 5.1 (0.13) a | 2.9 (0.06) b | 60 (0.1) c | |
AAO | 63.7 (1.8) a | 9.8 (1.9) a | 2.6 (1.6) c | 1.0 (0.5) a | 9.7 (2.7) b | 13.3 (0.7) a | 5.2 (0.08) a | 2.8 (0.11) b | 50 (2.3) d | |
Clm | 36.8 (5.0) c | 12.9 (1.1) a | 9.6 (1.0) b | 11.2 (2.7) a | 5.2 (3.1) c | 24.3 (3.0) a | 3.5 (0.05) c | 1.4 (0.05) d | 50 (7.6) d | |
Clw | 60.0 (1.4) a | 6.5 (1.0) b | 9.8 (1.7) b | 7.4 (0.3) a | 10.7 (0.4) b | 9.2 (0.7) b | 5.0 (0.05) a | 2.8 (0.04) b | 66.5 (3.9) b | |
SGL | 60.5 (0.1) a | 11.9 (2.6) a | 8.3 (1.2) b | 7.8 (1.0) a | 3.3 (0.6) c | 8.2 (2.9) ab | 5.2 (0.12) a | 3.2 (0.05) a | 72 (2.5) a |
>5 | 5–2 | 2–1 | 1–0.5 | 0.5–0.25 | <0.25 | MWD | GMD | DSA | WSA | RB | SOC | BD | EC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
>5 | 1.00 | |||||||||||||
5–2 | −0.35 | 1.00 | ||||||||||||
2–1 | −0.43 | 0.64 ** | 1.00 | |||||||||||
1–0.5 | −0.66 ** | −0.34 | −0.08 | 1.00 | ||||||||||
0.5–0.25 | −0.67 ** | 0.05 | −0.09 | 0.44 | 1.00 | |||||||||
<0.25 | −0.82 ** | −0.10 | 0.12 | 0.75 ** | 0.48 | 1.00 | ||||||||
MWD | 0.59 ** | −0.39 | −0.12 | −0.39 | −0.39 | −0.41 | 1.00 | |||||||
GMD | 0.55 ** | −0.32 | −0.04 | −0.43 | −0.32 | −0.42 | 0.95 ** | 1.00 | ||||||
DSA | 0.87 ** | −0.48 | −0.84 ** | −0.91 ** | −0.95 ** | −0.74 ** | 0.94 ** | 0.97 ** | 1.00 | |||||
WSA | 0.15 | 0.57 ** | −0.28 | 0.16 | 0.01 | 0.13 | 0.05 | 0.92 ** | 1.00 | 1.00 | ||||
RB | 0.58 ** | 0.60 ** | 0.54 ** | 0.51* | 0.32 | 0.03 | 0.54 ** | −0.44 | −0.43 | −0.28 | 1.00 | |||
SOC | −0.33 | 0.27 | 0.41 | 0.55 ** | 0.19 | −0.15 | −0.32 | −0.33 | −0.32 | −0.36 | 0.53 ** | 1.00 | ||
BD | 0.54 ** | −0.48 | −0.46 | −0.44 | −0.39 | −0.21 | 0.52 * | 0.46 | 0.44 | 0.36 | −0.80 ** | −0.34 | 1.00 | |
EC | 0.03 | −0.11 | 0.13 | 0.23 | 0.01 | −0.21 | 0.01 | 0.01 | −0.06 | 0.20 | −0.07 | 0.32 | 0.28 | 1.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalhoro, S.A.; Xu, X.; Chen, W.; Hua, R.; Raza, S.; Ding, K. Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China). Sustainability 2017, 9, 1349. https://doi.org/10.3390/su9081349
Kalhoro SA, Xu X, Chen W, Hua R, Raza S, Ding K. Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China). Sustainability. 2017; 9(8):1349. https://doi.org/10.3390/su9081349
Chicago/Turabian StyleKalhoro, Shahmir Ali, Xuexuan Xu, Wenyuan Chen, Rui Hua, Sajjad Raza, and Kang Ding. 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)" Sustainability 9, no. 8: 1349. https://doi.org/10.3390/su9081349
APA StyleKalhoro, S. A., Xu, X., Chen, W., Hua, R., Raza, S., & Ding, K. (2017). Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China). Sustainability, 9(8), 1349. https://doi.org/10.3390/su9081349