Cutting GHG Emissions at Student Housing in Central Mexico through Solid Waste Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Solid Waste Generation and Characterisation Study
2.3. Waste Statistical Analysis
2.4. Strategies for Waste Management
2.5. Vermicomposting Process
2.6. Emission Factors
3. Results and Discussion
3.1. Limitations of the Study
3.2. Solid Waste Generation and Characterisation Study
3.3. Waste Statistical Analysis
3.4. Strategies for Waste Management
3.5. Emission Factors
4. Conclusions
- The implementation of annual solid waste characterisation at student residences.
- The inclusion of waste programs in the operating rules of student residences.
- To encourage the association between solid waste research academics and the student leadership operating at these residences.
- To promote seminars at student residences to promote the waste management program, as student enrolment will naturally end with student graduation periods.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khan, D.; Kumar, A.; Samadder, S.R. Impact of socioeconomic status on municipal solid waste generation rate. Waste Manag. 2016, 49, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pang, J.; Zhang, Z.; Li, H. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis. Sustainability 2014, 6, 9268–9281. [Google Scholar] [CrossRef]
- Gu, B.; Wang, H.; Chen, Z.; Jiang, S.; Zhu, W.; Liu, M.; Chen, Y.; Wu, Y.; He, S.; Cheng, R.; et al. Characterization, quantification and management of household solid waste: A case study in China. Resour. Conserv. Recycl. 2015, 98, 67–75. [Google Scholar] [CrossRef]
- Suthar, S.; Singh, P. Household solid waste generation and composition in different family size and socio-economic groups: A case study. Sustain. Cities Soc. 2015, 14, 56–63. [Google Scholar] [CrossRef]
- Gallardo, A.; Edo-Alcón, N.; Carlos, M.; Renau, M. The determination of waste generation and composition as an essential tool to improve the waste management plan of a university. Waste Manag. 2016, 53, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Virgen, Q.; Taboada-González, P.; Ojeda-Benítez, S. Seasonal analysis of the generation and composition of solid waste: Potential use—A case study. Environ. Monit. Assess. 2013, 185, 4633–4645. [Google Scholar] [CrossRef] [PubMed]
- Bhawal Mukherji, S.; Sekiyama, M.; Mino, T.; Chaturvedi, B. Resident Knowledge and Willingness to Engage in Waste Management in Delhi, India. Sustainability 2016, 8, 1065. [Google Scholar] [CrossRef]
- Barton, J.R.; Issaias, I.; Stentiford, E.I. Carbon—Making the right choice for waste management in developing countries. Waste Manag. 2008, 28, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zhang, K.; Zhang, S.; Wang, R.; Wang, H. The door-to-door recycling scheme of household solid wastes in urban areas: A case study from Nagoya, Japan. J. Clean. Prod. 2016. [Google Scholar] [CrossRef]
- Ruiz Morales, M. Caracterización de residuos sólidos en la Universidad Iberoamericana, Ciudad de México. Rev. Int. Contam. Ambient. 2012, 28, 93–97. [Google Scholar]
- Armijo de Vega, C.; Ojeda Benítez, S.; Ramírez Barreto, M.E. Solid waste characterization and recycling potential for a university campus. Waste Manag. 2008, 28, S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Bresciani, C.; Girelli, E.; Ragazzi, M.; Schiavon, M.; Torretta, V. Analysis and Measures to Improve Waste Management in Schools. Sustainability 2016, 8, 840. [Google Scholar] [CrossRef]
- Strasburg, V.J.; Jahno, V.D. Application of eco-efficiency in the assessment of raw materials consumed by university restaurants in Brazil: A case study. J. Clean. Prod. 2017, 161, 178–187. [Google Scholar] [CrossRef]
- Hernández, A. Mantener las casas del estudiante le cuesta 120 mdp a la UMSNH. MiMorelia, 2017. Available online: http://www.mimorelia.com/mantener-las-casas-del-estudiante-le-cuesta-120-mdp-a-la-umsnh/ (accessed on 12 July 2017). (In Spanish).
- Lukman, R.; Tiwary, A.; Azapagic, A. Towards greening a university campus: The case of the University of Maribor, Slovenia. Resour. Conserv. Recycl. 2009, 53, 639–644. [Google Scholar] [CrossRef]
- Smyth, D.P.; Fredeen, A.L.; Booth, A.L. Reducing solid waste in higher education: The first step towards ‘greening’ a university campus. Resour. Conserv. Recycl. 2010, 54, 1007–1016. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 2011, 166, 514–531. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K.; De Visscher, A.; Dahiya, R.P.; Chandra, A. Municipal solid waste characterization and its assessment for potential methane generation: A case study. Sci. Total Environ. 2006, 371, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A.; Gao, Q.; et al. Intergovernmental Panel on Climate Change (IPCC) Working Group III (Mitigation) Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2008, 26, 11–32. [Google Scholar] [CrossRef]
- Selección y Cuantificación de Subproductos. Available online: http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/NMX-AA-022-1985.pdf (accessed on 12 July 2017). (In Spanish).
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K.E. Probability and Statistics for Engineers and Scientists, 9th ed.; Pearson: Boston, MA, USA, 2012; ISBN 978-0-321-62911-1. [Google Scholar]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011; ISBN 978-0-538-73352-6. [Google Scholar]
- Neugebauer, M.; Sołowiej, P. The use of green waste to overcome the difficulty in small-scale composting of organic household waste. J. Clean. Prod. 2017, 156, 865–875. [Google Scholar] [CrossRef]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Rousta, K.; Bolton, K.; Dahlén, L. A Procedure to Transform Recycling Behavior for Source Separation of Household Waste. Recycling 2016, 1, 147–165. [Google Scholar] [CrossRef]
- Chen, Y.-T. A Cost Analysis of Food Waste Composting in Taiwan. Sustainability 2016, 8, 1210. [Google Scholar] [CrossRef]
- Green, J.A.S. Aluminum Recycling and Processing for Energy Conservation and Sustainability, 1st ed.; ASM International: Geauga, OH, USA, 2007; ISBN 978-1-61503-057-6. [Google Scholar]
- DEFRA (Department for Environment, Food and Rural Affairs) Greenhouse Gas Reporting—Conversion Factors 2016. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2016 (accessed on 29 June 2017).
- IPCC (The Intergovernmental Panel on Climate Change) EFDB—Main Page. Available online: http://www.ipcc-nggip.iges.or.jp/EFDB/main.php (accessed on 7 July 2017).
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kim, S.; Lee, J.; Jeon, Y.; Kim, K.-H.; Jeon, E. A Study on Applying Biomass Fraction for Greenhouse Gases Emission Estimation of a Sewage Sludge Incinerator in Korea: A Case Study. Sustainability 2017, 9, 557. [Google Scholar] [CrossRef]
- Goldberg, K.; Smith, C.; Baxter, C. Characterization of Solid Waste and the Potential to Reduce Solid Waste through Implementation of a Composting Program at the University of Wisconsin-Platteville; University of Wisconsin-Platteville: Platteville, WI, USA, 2009. [Google Scholar]
- Liu, C.; Hotta, Y.; Santo, A.; Hengesbaugh, M.; Watabe, A.; Totoki, Y.; Allen, D.; Bengtsson, M. Food waste in Japan: Trends, current practices and key challenges. J. Clean. Prod. 2016, 133, 557–564. [Google Scholar] [CrossRef]
- Mason, I.G.; Oberender, A.; Brooking, A.K. Source separation and potential re-use of resource residuals at a university campus. Resour. Conserv. Recycl. 2004, 40, 155–172. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef]
- Fagnani, E.; Guimarães, J.R. Waste management plan for higher education institutions in developing countries: The Continuous Improvement Cycle model. J. Clean. Prod. 2017, 147, 108–118. [Google Scholar] [CrossRef]
- Taboada-González, P.; Armijo-de-Vega, C.; Aguilar-Virgen, Q.; Ojeda-Benítez, S. Household Solid Waste Characteristics and Management in Rural Communities. Open Waste Manag. J. 2010, 3, 167–173. [Google Scholar] [CrossRef]
- SENR (Secretariat of Environment and Natural Resources) Residuos Sólidos Urbanos. Available online: http://apps1.semarnat.gob.mx/dgeia/informe_resumen14/07_residuos/7_1_2.html (accessed on 3 July 2017).
- Aguilar-Virgen, Q.; Taboada-González, P.; Ojeda-Benítez, S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. J. Clean. Prod. 2014, 79, 53–60. [Google Scholar] [CrossRef]
Cotton | Non-Ferrous Material |
---|---|
Aluminium | Paper |
Batteries | Disposable nappies |
Cardboard | PET plastic |
Leather | Rigid and film plastics |
Waxed cardboard packaging | Polyurethane |
Hard vegetable fibber (sclerenchyma) | Expanded polystyrene |
Synthetic fibres | Food residuals |
Bone | Yard trimmings |
Rubber | Fine residue |
Tin can | Toilet paper |
Crockery and ceramics | Tetra Pak™ packaging |
Wood | Cloth rags |
Construction material | Coloured glass |
Ferrous material | Transparent glass |
Waste Components | 2014 | 2015 | ||
---|---|---|---|---|
kg | % | kg | % | |
Food residuals | 312.4 | 38.6 | 443 | 69.7 |
Wood | 111.7 | 13.8 | 10.1 | 1.6 |
Tin can | 89.7 | 11.1 | 34.2 | 5.4 |
Paper (notebook sheets, magazines, newspaper) | 61.6 | 7.6 | 24.6 | 3.9 |
Cardboard | 58.0 | 7.2 | 28.6 | 4.5 |
Cloth rags | 38.6 | 4.8 | 6.6 | 1.0 |
Toilet paper | 25.7 | 3.2 | 18.2 | 2.9 |
Rigid plastics | 20.4 | 2.5 | 12.8 | 2.0 |
Crockery and ceramics | 14.1 | 1.7 | 0.0 | 0.0 |
Construction material | 11.5 | 1.4 | 7.7 | 1.2 |
Film plastics | 10.3 | 1.3 | 7.0 | 1.1 |
Transparent glass | 9.8 | 1.2 | 4.3 | 0.7 |
Others * | 45.8 | 5.7 | 38.4 | 6.0 |
Total-week | 809.6 | 100 | 635.5 | 100 |
Generation rate (kg/person-day) | 1.4 | 1.1 ** |
Waste Components | Ha: p1 ≠ p2 | Ha: p1 > p2 | ||
---|---|---|---|---|
p-Value | CI | p-Value | Z0 | |
Food residuals | 0.000 | (−0.360, −0.262) | 1.000 | −12.46 |
Wood | 0.000 | (0.096, 0.148) | 0.000 | 9.36 |
Tin can | 0.000 | (0.029, 0.085) | 0.000 | 4.06 |
Paper (notebook sheets, magazines, newspaper) | 0.002 | (0.013, 0.060) | 0.001 | 3.07 |
Cardboard | 0.034 | (0.001, 0.050) | 0.017 | 2.12 |
Cloth rags | 0.000 | (0.020, 0.053) | 0.000 | 4.33 |
Toilet paper | 0.674 | (−0.013, 0.021) | ----- | ----- |
Rigid plastics | 0.587 | (−0.011, 0.019) | ----- | ----- |
Construction material | 0.715 | (−0.009, 0.014) | ----- | ----- |
Film plastics | 0.813 | (−0.009, 0.012) | ----- | ----- |
Transparent glass | 0.225 | (−0.003, 0.015) | ----- | ----- |
Waste Component | Destination | kg/Week | % |
---|---|---|---|
Tin cans, cardboard, ferrous material, glass, no ferrous material (cooper, aluminium), rigid plastics, PET, paper (notebook sheets, magazines, newspaper). | Recycling centre | 104.5 | 16.4 |
Food residuals, wood, yard trimming | Vermicomposting | 18.0 | 2.83 |
Food residuals | Pig food | 435.1 | 68.5 |
Toilet paper, crockery and ceramics, construction material, film plastic and others | Landfill | 77.9 | 12.3 |
Total | 635.5 | 100 |
Component | Generation Rate ton year−1 | * Emission Factor kg CO2eq ton−1 | Contribution kg CO2eq year−1 | |||
---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |
Food residuals | 16.24 | 0.94 | c 332.00 | b 4.30 | 5393.27 | 4.04 |
Wood | 5.81 | 0.53 | c 627.00 | b 21.00 | 3641.87 | 11.03 |
Tin can | 4.66 | 1.78 | c 21.31 | a 21.00 | 99.38 | 37.35 |
Paper and Cardboard | 6.22 | 2.77 | c 314.00 | a 21.00 | 1952.83 | 58.09 |
Cloth rags | 2.01 | 0.34 | c 373.00 | c 373.00 | 748.69 | 128.01 |
Toilet paper | 1.34 | 0.95 | c 314.00 | c 314.00 | 419.63 | 297.17 |
Rigid plastics | 1.06 | 0.67 | c 34.08 | b 21.00 | 36.15 | 13.98 |
Film plastics | 0.54 | 0.36 | c 34.08 | c 34.08 | 18.25 | 12.41 |
Transparent glass | 0.51 | 0.22 | c 25.78 | a 21.00 | 13.14 | 4.70 |
Others | 3.71 | 2.40 | c 81.00 | c 81.00 | 300.74 | 194.40 |
Total kg CO2eq | 12,623.9 | 761.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Virgen, Q.; Taboada-González, P.; Baltierra-Trejo, E.; Marquez-Benavides, L. Cutting GHG Emissions at Student Housing in Central Mexico through Solid Waste Management. Sustainability 2017, 9, 1415. https://doi.org/10.3390/su9081415
Aguilar-Virgen Q, Taboada-González P, Baltierra-Trejo E, Marquez-Benavides L. Cutting GHG Emissions at Student Housing in Central Mexico through Solid Waste Management. Sustainability. 2017; 9(8):1415. https://doi.org/10.3390/su9081415
Chicago/Turabian StyleAguilar-Virgen, Quetzalli, Paul Taboada-González, Eduardo Baltierra-Trejo, and Liliana Marquez-Benavides. 2017. "Cutting GHG Emissions at Student Housing in Central Mexico through Solid Waste Management" Sustainability 9, no. 8: 1415. https://doi.org/10.3390/su9081415
APA StyleAguilar-Virgen, Q., Taboada-González, P., Baltierra-Trejo, E., & Marquez-Benavides, L. (2017). Cutting GHG Emissions at Student Housing in Central Mexico through Solid Waste Management. Sustainability, 9(8), 1415. https://doi.org/10.3390/su9081415