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Abstract: Wind energy, as a vital renewable energy source, also plays a significant role in reducing
carbon emissions and mitigating climate change. It is therefore of utmost necessity to evaluate
ocean wind energy resources for electricity generation and environmental management. Ocean
wind distribution around the globe can be obtained from satellite observations to compensate for
limited in situ measurements. However, previous studies have largely ignored uncertainties in ocean
wind energy resources assessment with multiple satellite data. It is against this background that the
current study compares mean wind speeds (MWS) and wind power densities (WPD) retrieved from
scatterometers (QuikSCAT, ASCAT) and radiometers (WindSAT) and their different combinations
with National Data Buoy Center (NDBC) buoy measurements at heights of 10 m and 100 m (wind
turbine hub height) above sea level. Our results show an improvement in the accuracy of wind
resources estimation with the use of multiple satellite observations. This has implications for the
acquisition of reliable data on ocean wind energy in support of management policies.

Keywords: wind energy resources; QuikSCAT; WindSAT; ASCAT; global ocean

1. Introduction

Climate change is a global issue that impacts on all human beings: an associated rising of sea level,
extreme hydrologic events (such as floods and droughts) and urban heat island effects are projected to
occur with climate change. Such changes have already affected human health due to extreme heat,
cold, drought, storms and crop failures [1]. Scientists have demonstrated that global warming over
millennial time scales is due to greenhouse gas emissions produced by human activities [2,3]. Energy
use efficiency and renewable energy generation can benefit public health and the global climate system
by displacing emissions from fossil-fuelled electricity generation units [4]. Expanding renewable
energy, especially wind power, is a central strategy for reducing carbon emissions and mitigating
climate change [5,6]. Therefore, the evaluation of wind resources plays a significant role in the selection
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of appropriate sites for the establishment of wind farms, wind energy development, and national
energy policy formulation. In most countries, coastal areas have become heavily urbanized and
industrialized as a consequence of agglomeration. In effect, more energy will be required in these
areas. As environmental sustainability continues to occupy the center stage of the global development
agenda, offshore wind has been regarded as a potential renewable energy source that can be generated
through a network of wind turbines. Currently, more than 91% of all the offshore wind installations
worldwide are in European waters, particularly in the North Sea [7].

Although offshore wind energy has huge potential in powering the global economy, there are
spatial and temporal variabilities in the distribution of wind power, dynamics which are worth
investigating for the development of efficient and sustainable offshore wind energy resources.
Offshore wind energy resources are mainly estimated from in situ wind measurements [8], satellite
data, numerical simulation results [9], and reanalysis data [10–12]. With progress in microwave
remote sensing, a great deal of satellite-derived data have been obtained and applied in the
study of wind energy resources, including sea surface wind distribution data derived from
Synthetic Aperture Radars (SAR) and scatterometers, such as the Earth Resources Satellite ERS-2
SAR (1995–2011) [13,14], Environment Satellite (ENVISAT) Advanced Synthetic Aperture Radar
(ASAR) (2002–2012) [14–19], RADARSAT-1 SAR (1995–2013) [20], SeaWinds onboard QuikSCAT
(1999–2009) [17,19–27], ASCAT onboard METOP-A (2007–present) [17,18,27,28] and OceanSat-2
scatterometer (OSCAT, 2009–present) [28,29]. Wind fields retrieved from SAR imagery have a high
spatial resolution (<100 m). However, from previous research, there are less than 1500 overlapping
SAR samples [14,15,17], and SAR cannot obtain observations of the whole ocean. Scatterometers
and passive microwave radiometers can provide global sea surface wind fields at a relatively coarse
resolution of approximately 12.5–50 km with two observations per day from single satellite data.

A number of studies have been conducted on ocean wind energy assessment at a variety of spatial
scales (from local through regional to global). Early studies evaluated offshore or global ocean wind
power resources mainly derived from single satellite data. It should be emphasized however that,
generally, only a maximum of two observations per day (at descending and ascending passes) are
obtainable from a single satellite. As diurnal ocean wind variations are apparent, statistics derived
from a single satellite are limited both synoptically and spatially and therefore using multiple sources
of satellite data are imperative to gain a more comprehensive recording and analysis of ocean wind
energy in space and time [14,17]. A growing number of studies are now focusing on wind resources
assessment based on multiple satellite data [17–20,27,28], albeit with the reduction of uncertainties
largely ignored.

The purpose of the current study is to estimate the uncertainty associated with the number of
satellite observations and its impact on the accuracy of ocean wind resources assessment derived from
multiple satellite data. The spatial variability of global ocean wind energy resources is assessed at
heights of 10 m and 100 m to provide relevant data on the selection of wind energy sites.

2. Data

2.1. QuikSCAT, WindSAT and ASCAT Data

In this study, two types of time series satellite data—which can provide sea surface wind fields at a
spatial resolution of 0.25◦ × 0.25◦ and at a height of 10 m above sea level—have been utilized, including
scatterometer (QuikSCAT and ASCAT) and radiometer (WindSAT) wind data. The scatterometer
operates by transmitting microwave pulses to the ocean surface and then measuring the microwave
pulses returned to the satellite sensor. This backscattered signal is physically related to surface
roughness. For water surfaces, the surface roughness is highly correlated with the near-surface wind
speed and direction at a height of 10 m above sea level. The GMF is the Geophysical Model Function
which relates the observed backscatter ratio to surface wind speed and direction at a height of 10 m
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above sea level. However, the passive microwave radiometer wind vector data are retrieved from the
microwave brightness temperatures measurements using Radiative Transfer Model (RTM).

SeaWinds scatterometer is the main instrument on the QuikSCAT satellite and operates at Ku band
(13.4 GHz) which is sensitive to rain. Ku-2011 GMF was used. However, the advanced scatterometer
(ASCAT) onboard Metop-A satellite is working at C band (5.3 GHz), and C band GMF (C-2015) had
been used. The impact of rain on wind retrieval is less severe for ASCAT C-band data than for
QuikSCAT Ku-band data. The wind products contain rain flags and researchers can remove rain effects
from the datasets by discarding these data. This has been done in the current analysis. The WindSAT
fully polarimetric radiometer, as a passive microwave sensor, operates in five discrete channels: 6.8,
10.7, 18.7, 23.8, and 37.0 GHz. All are fully polarimetric except the 6.8 and 23.8 GHz channels that have
only dual polarization.

Wind products used herein are the daily gridded maps from Remote Sensing Systems [30]. Table 1
summarizes the information from multiple satellite data including the maximum numbers of different
satellite data in the two over pass times and per month. There are two observations based on a single
satellite sensor per day. The total number of satellite data is about 9000–12,000 from 20◦S to 18◦N, and
is about 12,000–14,000 among all satellite data at 20–35◦S and 18–35◦N. The total number of satellite
data is about 14,000–16,000 at 35–45◦S and 35–42◦N, and is about 16,000–21,609 among all satellite
data at 45–60◦S and 42–80◦N. However there are 2000–10,000 at latitude 60–90◦S and some areas of the
North Pole (the north of Asia and North America). Furthermore, rain flags may be more prevalent in
the equatorial East Pacific and the eastern part of the Indian Ocean because these regions have fewer
numbers than adjacent areas (9000–10,000).

Table 1. Total numbers of QuikSCAT, WindSAT and ASCAT wind data in descending/ascending
(des./asc.) mode and per month in local solar time.

Satellite Platform QuikSCAT Coriolis MetOp-A

Instrument SeaWinds WindSAT ASCAT

Band of operation Ku (13.4 GHz)
5 discrete channels: 6.8,
10.7, 18.7, 23.8, and 37.0

GHz
C (5.3 GHz)

Total 6944 8372 6379
Ascending 3514 4197 3194
Descending 3430 4175 3185

January 549 665 486
February 512 609 445

March 567 701 549
April 560 683 521
May 562 690 555
June 580 618 537
July 610 696 554

August 656 736 557
September 620 739 532

October 612 751 552
November 539 735 535
December 577 749 556

Time period 1999–2009 2003-current 2007-current
Time of datasets 1999.07–2009.11 2003.02–2015.12 2007.03–2015.12

Descending node time 06:00 06:00 9:30
Ascending node time 18:00 18:00 21:30

Spatial resolution 0.25◦ × 0.25◦ 0.25◦ × 0.25◦ 0.25◦ × 0.25◦

Produce version V4 V7.0.1 V2.1
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2.2. NDBC Buoys Data

The National Data Buoy Center (NDBC) [31] provides average hourly wind vector measurements
recorded at 39 buoys around North America (shown in Figure 1). These NDBC buoys are commonly
operated and maintained by American government organizations to report on winds, waves and
other ocean conditions at strategic locations for the purposes of ocean navigation, search and rescue
operations, and scientific research. The 39 buoy measurements were selected as validation data and
they provide a longer time series of meteorological observations relative to QuikSCAT, WindSAT and
ASCAT data from 1999 to 2015. These NDBC buoys provided hourly wind vector measurements at
a height of 4 or 5 m above sea level. The wind profile method (in Section 3.1) has been used in this
study to extrapolate wind speed to heights of 10 m and 100 m above sea level in order to compare with
satellite data at the same height. The distances from buoys to coastline are greater than 30 km, and the
water depths of the buoys’ positions range from 16 m to 5230 m. There are 32 buoys at water depths
greater than 50 m so a large amount of the buoys may not be influenced by coastal effects.
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3. Methodology

3.1. Wind Profile Method

In order to compare the wind energy resources derived from buoys with those from satellite data
at the same height, the extrapolated wind speed V at heights of 10 m or 100 m (z) is calculated from
Equation(1) [32]:

V(z) =
u∗
κ

[
ln
(

z
z0

)
− ψm

]
(1)

where V is the wind speed at height z. κ is the von Karman constant (~0.4). The parameter ψm is a
correction for atmospheric stability effects (here ψm is set to zero to estimate neutral winds, following
Badger et al. [32]). In this paper, the effect of atmospheric stability is ignored due to the lack of relevant
data. The long-term stability correction (ψm) is usually positive under stable conditions and negative
under unstable conditions, and this may lead to an underestimation of mean wind speeds when
assuming neutral atmospheric conditions. Knowing the spatial distribution of ψm is beneficial to
improving the accuracy of wind speed extrapolation. The parameter ψm ranges from −2.5 to 0 at a
height of 100 m in the south Baltic Sea based on SAR and WRF model data, and there is a wind speed
difference of 0.5 m/s with and without the long-term atmospheric stability correction at a height of
100 m based on meteorological mast observations (Fino-2) [32]. Takeyama et al. [33] pointed out that
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atmospheric stability can cause an error of about −1 to +1 m/s without stability correction at a height
of 10 m based on SAR images over the Japanese coastal waters. The sea surface roughness length z0

can be estimated from Equation (2):

z0 = αc
u2
∗

g
(2)

where αc is the Charnock’s parameter (here set to 0.0144, following Badger et al. [32]), and g is
the gravitational acceleration of the Earth. The sea surface friction velocity u∗ can be estimated by
combining and solving iteratively from Equations (1) and (2) when the wind speed at a single level
is known.

3.2. Wind Resource Assessment Method

The mean wind speed (MWS) is the wind speed averaged over a given time period and is given as:

V =
1
N

N

∑
i=1

Vi (3)

where V is the mean wind speed (m/s), Vi is the wind speed (m/s) at measurement i at a given height,
N is the total number of measurements.

The wind power density (WPD) may be estimated by statistical method (Equation (4)) [34,35] and
the Weibull probability distribution function of two parameters (Equation (5)) [17,19,21,27,32,34,35].

Estatistic =
1
2

ρV3
i (4)

Eweibull =
1
2

ρC3Γ(1 +
3
k
) (5)

where E is the wind power density (W/m2), and ρ is the standard sea-level air density
(1.225 kg/m3) [11,12,19,27,28]. C is the scale parameter (m/s), and k is the dimensionless shape
parameter. Several methods have been applied to calculate Weibull parameters C and k, such as the
method using mean and standard deviation of wind speed samples. In this study, we have used the
formulae [21,27,34,35] given as follows:

k =
(
σ/V

)−1.086 (6)

C = V/Γ(1 +
1
k
) (7)

where σ is the standard deviation of wind speed. Γ is the gamma function.
In this study, we assume the probability density function of the wind speeds to follow the Weibull

distribution, and based on a comparison of the WPD derived by the statistical method and that by the
Weibull distribution function from 39 buoys (in Section 2.2), the RMSE is 4.8 W/m2 at a height of 10 m
and 9.9 W/m2 at a height of 100 m.

4. Results

4.1. Evaluation of MWS and WPD Derived from Multiple Satellite Data Compared with Buoy
Measurement Data

The mean wind speeds (MWS) and wind power densities (WPD) calculated from 39 NDBC
buoys during 1999–2015 have been compared with those derived from QuikSCAT, WindSAT and
ASCAT, and their different combinations at heights of 10 m and 100 m above sea level as presented
in Tables 2–5. In this section, the RMSE, Bias, correlation coefficient (Corr.), R2 and Slope are used
to compare satellite-derived MWS/WPD with 39 buoy-derived MWS/WPD at heights of 10 m and
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100 m. Tables 2–5 reveal that MWS/WPD derived from ASCAT have better accuracies than those
from WindSAT and QuikSCAT in terms of RMSE. QuikSCAT and ASCAT overestimated the MWS
and WPD derived from buoys (positive biases and slopes greater than 1.00), while WindSAT shows
a tendency to underestimate the MWS and WPD in terms of negative biases and slopes. From the
Remote Sensing Systems, QuikSCAT shows similar wind speeds to those from ASCAT, and wind
speeds from QuikSCAT/ASCAT are slightly higher than those from WindSAT (the differences between
wind speeds are within 0.1 m/s), wind speeds from QuikSCAT have lower errors than those from
WindSAT in terms of bias compared with aircraft measurements. This may be due to the different
sensor configurations and wind retrieval algorithms.

QuikSCAT + WindSAT-derived MWS/WPD at heights of 10 m and 100 m show lower errors in
terms of RMSE and higher correlations than QuikSCAT-derived MWS/WPD and WindSAT-derived
MWS/WPD. WindSAT + ASCAT-derived MWS at heights of 10 m and 100 m show lower errors
(lower RMSE, biases and slopes are equal to 0.00 and 1.00 respectively) and higher correlations than
WindSAT-derived MWS and ASCAT-derived MWS. WindSAT + ASCAT-derived WPD at heights of
10 m and 100 m show lower errors in terms of RMSE and higher correlations than WindSAT-derived
WPD and ASCAT-derived WPD. QuikSCAT + WindSAT + ASCAT-derived WPD at heights of 10 m and
100 m show the lowest errors in terms of RMSE and highest correlations. The result of this comparison
shows that a better accuracy of MWS/WPD may be derived from multiple satellite data than from
single satellite data.

Table 2. Statistics of the comparison between buoy-derived mean wind speeds (MWS) and
satellite-derived MWS (m/s) at a height of 10 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 0.39 0.23 0.91 0.78 1.03 4134–7063
WindSAT 0.36 −0.07 0.90 0.81 0.99 3474–7643
ASCAT 0.33 0.09 0.90 0.77 1.01 2717–4017

QuikSCAT + WindSAT 0.27 0.10 0.94 0.87 1.01 8307–14,586
QuikSCAT + ASCAT 0.35 0.18 0.91 0.78 1.02 7209–11,080
WindSAT + ASCAT 0.28 0.00 0.93 0.86 1.00 6272–11,086

QuikSCAT + WindSAT + ASCAT 0.27 0.10 0.94 0.86 1.01 11,229–18,029

Here, the intercept of linear regression is set to zero, and the number of satellite observations at different buoy
positions is indicated by N (min-max).

Table 3. Statistics of the comparison between buoy-derived wind power densities (WPD) and
satellite-derived WPD (W/m2) at a height of 10 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 55.4 34.6 0.91 0.82 1.09 4134–7063
WindSAT 53.5 −19.7 0.88 0.78 0.95 3474–7643
ASCAT 42.2 4.7 0.91 0.81 1.01 2717–4017

QuikSCAT + WindSAT 37.0 9.9 0.93 0.87 1.02 8307–14,586
QuikSCAT + ASCAT 47.5 23.3 0.91 0.83 1.06 7209–11,080
WindSAT + ASCAT 40.5 −9.2 0.92 0.84 0.97 6272–11,086

QuikSCAT + WindSAT + ASCAT 36.9 8.7 0.93 0.87 1.02 11,229–18,029

Table 4. Statistics of the comparison between buoy-derived MWS and satellite-derived MWS (m/s) at
a height of 100 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 0.48 0.29 0.91 0.78 1.03 4134–7063
WindSAT 0.45 −0.09 0.90 0.81 0.99 3474–7643
ASCAT 0.40 0.11 0.90 0.77 1.01 2717–4017

QuikSCAT + WindSAT 0.33 0.12 0.94 0.87 1.01 8307–14,586
QuikSCAT + ASCAT 0.43 0.22 0.91 0.79 1.03 7209–11,080
WindSAT + ASCAT 0.34 0.00 0.93 0.86 1.00 6272–11,086

QuikSCAT + WindSAT + ASCAT 0.34 0.12 0.94 0.86 1.01 11,229–18,029
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Table 5. Statistics of the comparison between buoy-derived WPD and satellite-derived WPD (W/m2)
at a height of 100 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 105.0 65.6 0.91 0.82 1.09 4134–7063
WindSAT 101.1 −37.0 0.88 0.77 0.95 3474–7643
ASCAT 79.2 8.3 0.91 0.81 1.01 2717–4017

QuikSCAT + WindSAT 70.2 18.8 0.93 0.87 1.03 8307–14,586
QuikSCAT + ASCAT 89.6 44.0 0.91 0.83 1.06 7209–11,080
WindSAT + ASCAT 76.8 −17.5 0.92 0.84 0.97 6272–11,086

QuikSCAT + WindSAT + ASCAT 69.8 16.4 0.93 0.87 1.02 11,229–18,029

In order to verify the impact of data sampling density (random sampling numbers of satellite
observations) on the accuracy of satellite-derived MWS and WPD at 10 m and 100 m above sea level, we
acquired 100 MWS/WPD random samples (500, 1000, 1500, . . . , 11,000) from all satellite observations
(QuikSCAT + WindSAT + ASCAT) by sampling 100 times repeatedly. The 100 satellite-derived MWS/WPD
samples were compared with the buoy-derived MWS/WPD at each buoy position (39 NDBC buoy in total)
and at different sampling densities using RMSE. Figures 2 and 3 illustrate the variation of mean RMSE as
a function of sampling density at 10 m and 100 m above sea level. The result shows that more satellite
observations may reduce the uncertainty in MWS and WPD estimation at 10 m and 100 m above sea level.
This result is consistent with the research results of Barthelmie, Pryor and Hasager [17,36].
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Figure 2. The mean RMSE of MWS and WPD from random sampling of all satellite observations
(QuikSCAT + WindSAT + ASCAT) with different numbers of samples compared to the buoy-derived
MWS and WPD at a height of 10 m above sea level. (a) MWS, and (b) WPD.
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Figure 3. The mean RMSE of MWS and WPD from random sampling of all satellite observations
(QuikSCAT + WindSAT + ASCAT) with different numbers of samples compared to the buoy-derived
MWS and WPD at a height of 100 m above sea level. (a) MWS, and (b) WPD.

4.2. Spatial Variability of Global Ocean Wind Energy Resources Using Multiple Satellite Data

The geographic distribution of global MWS and WPD at 10 m above sea level using multiple
satellite data (QuikSCAT + WindSAT + ASCAT) is shown in Figure 4. It can be observed that the
distribution of wind energy exhibits significant regional differences across the global ocean. The MWS
at most global ocean regions are higher than 3 m/s, with the areas of highest MWS being primarily
distributed around the Southern Hemisphere westerlies (8–13 m/s). The Northern Hemisphere
westerlies are also areas of relatively high MWS (8–11 m/s), whereas MWS in the low latitudes are in
the range of 3–10 m/s. The MWS at the Northern European Seas is 6.5–10 m/s, a result similar to that
of Hasager et al. [17] who used ASAR, ASCAT and QuikSCAT and Badger et al. [37] based on ASAR.
High wind areas in the middle of the Indian Ocean (7–10 m/s) and the East China Sea (7–10 m/s)
may mainly be influenced by the winter monsoon, and the strong wind in the Arabian Sea (6–9 m/s)
and the South China Sea (6.5–9 m/s) may mainly be caused by the summer monsoon as discussed by
Liu et al. [21] based on QuikSCAT. The highest wind speeds in China are found in the southeastern
region, especially along the coastline of Fujian Province and the Strait of Taiwan. This finding is also
consistent with Jiang et al. [26] who used QuikSCAT. The MWS of Southeastern Brazil at a height of
10 m above sea level is 6–9 m/s which is similar to the result of Pimenta et al. [22] based on QuikSCAT.
The global oceanic MWS values at a height of 10 m above sea level reported by our study are slightly
higher than those by Atlas et al. [38], which were based on SSM/I (Special Sensor Microwave Imager)
data acquired from 1987 to 1994.
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The WPD at most global ocean regions are higher than 200 W/m2. The areas of higher WPD
at 10 m above sea level are mainly distributed around the Southern (400–1600 W/m2) and Northern
(400–1300 W/m2) Hemisphere westerlies. This observed phenomenon may be influenced by the
westerly winds. However, WPD in the low latitudes are about 50–600 W/m2. The coast of Somalia and
Southeast China show relatively higher WPD (>400 W/m2) which is largely attributable to tropical
monsoon weather conditions typical in these areas. On the other hand, WPD in the equatorial regions
are generally less than 200 W/m2. Equatorial regions are generally characterized by low atmospheric
pressure conditions with a muted seasonal cycle. The high WPD at the North Atlantic Ocean may be
due to the ocean–atmosphere interaction around the warm current of the Mexico Gulf and the cold
eddy of the Labrador Sea in winter [21]. The distribution of global oceanic WPD at 10 m above sea
level presented in this paper is largely consistent with the results of Zheng and Pan [11].

The geographic distribution of global MWS and WPD at 100 m above sea level using multiple satellite
data (QuikSCAT + WindSAT + ASCAT) is shown in Figure 5. The MWS at most global ocean regions
are higher than 4 m/s, with the areas of highest MWS being primarily distributed around the Southern
Hemisphere westerlies (9–16 m/s). The areas of Northern Hemisphere westerlies also have relatively
high MWS (9–14 m/s), whereas MWS in the low latitudes are in the range of 4–12 m/s. The MWS at
the North Sea and South China Sea are 8–12 m/s and 6.5–10 m/s respectively, a result similar to that of
Hasager et al. [39] who used SSM/I data from 1988 to 2013 at a height of 100 m above sea level.

The areas of higher WPD at 100 m above sea level are mainly distributed around the Southern
(800–3200 W/m2) and Northern (800–2800 W/m2) Hemisphere westerlies. This observed phenomenon
may be influenced by the westerly winds. However, WPD in the low latitudes are about 150–1200 W/m2.
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5. Discussion

Despite the results provided by this study, we do acknowledge that the uncertainties in ocean
wind resources estimation can also be generated from other factors, such as the accuracy of wind
vector retrieval algorithms, sensor configurations and the impact of diurnal variability on satellite
wind observations. Removal of hard targets at sea (including ships, wind turbines, oil platforms etc.)
is also significant for increasing the accuracy of wind retrieval from satellite images [17].

In this study, the number of satellite observations is still limited based on QuikSCAT, WindSAT
and ASCAT. In future operational scenarios, there could be more satellite datasets with much improved
resolution and thus a higher precision of wind vector retrievals. Based on our results, we hereby
recommend the use of more satellite observations (including those from OSCAT, RapidSCAT etc.)
which may be evaluated by further analysis.

The distribution of global ocean wind resources at heights of 10 m and 100 m (wind turbine
hub height) above sea level has been mapped in this study. However, wind farm wake effects were
ignored. A quantification and prediction of the wake effect losses is challenging because of the
complex aerodynamic nature of the interdependencies of turbines [40] and therefore deserves greater
attention in future studies. Atmospheric stability also plays a significant role in the accuracy of wind
speed extrapolation. Therefore, in future research or operational scenarios, the use of information on
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atmospheric stability is highly recommended to ensure more accurate wind resources assessment at
regional and global scales.

6. Conclusions

To develop an understanding of the spatial variability of global ocean wind resources using
multiple satellite data, the spatial distribution of mean wind speeds (MWS) and wind power densities
(WPD) at 10 m and 100 m above sea level have been mapped in this study using QuikSCAT + WindSAT
+ ASCAT data.

In this study, MWS and WPD calculated from 39 NDBC buoys during 1999–2015 are first compared
with those derived from QuikSCAT, WindSAT and ASCAT, and their different combinations at
heights of 10 m and 100 m (wind turbine hub height) above sea level. The results show that for
single satellite data, MWS and WPD derived from ASCAT have the lowest RMSE. QuikSCAT and
ASCAT overestimated the MWS and WPD derived from buoys, while WindSAT shows a tendency to
underestimate MWS and WPD given their respective biases and slopes. This phenomenon may be
due to the different sensor configurations and wind retrieval algorithms. Meanwhile, QuikSCAT +
WindSAT + ASCAT-derived WPD at heights of 10 m and 100 m show the lowest RMSE and highest
correlations, and hence a better accuracy of MWS/WPD may be derived from multiple satellite data
than from single satellite data.

Furthermore, we quantified the impacts of data sampling density (number of satellite
observations) on the accuracy of satellite-derived MWS and WPD at 10 m and 100 m above sea level.
The results show an increase in the accuracy of MWS/WPD estimation with satellite observations, at
10 m and 100 m above sea level.
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