Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone
Abstract
:1. Introduction
2. Land Cover Change Assessment
2.1. Land Cover Change Trajectory
2.2. Landscape Fragmentation
3. Research Site
4. Materials and Methods
4.1. Remote Sensing Data
4.2. Ground Truthing Data
4.3. Image Pre-Processing and Classification
4.4. Change Detection: Annual and Transitional Changes
- Pij = Percentage area of a given class in T1 that changed away from that class in T2
- Qij = Percentage area of a given class in T1 that changed into another class in T2
- Uij = Areal extent of a land use class at times i and j
- αij = Total percentage of change from any other class in T1 to a given class in T2
- βij = Total percentage of change from one land class in T1 to any other class in T2
- ∑Cij = Column total
- ∑Rij = Row total.
4.5. Trajectory Analysis
4.6. Landscape Fragmentation Analysis
5. Results
5.1. Accuracy Assessment
5.2. Land Cover Change Patterns (1976–2011)
5.3. Land Cover Change Trajectory Analysis
5.4. Fragmentation Metrics
6. Discussion
7. Environmental Implications of Findings
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Gorsevski, V.; Kasischke, E.; Dempewolf, J.; Loboda, T.; Grossmann, F. Analysis of the Impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan—Uganda border using multitemporal Landsat imagery. Remote Sens. Environ. 2012, 118, 10–20. [Google Scholar] [CrossRef]
- Tejaswi, G. Manual on Deforestation, Degradation and Fragmentation Using Remote Sensing and GIS; MAR-SFM Working Paper 5; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Dudley, J.P.; Ginsberg, J.R.; Plumptre, A.J.; Hart, J.A.; Campos, L.C. Effects of war and civil strife on wildlife and wildlife habitats. Conserv. Biol. 2002, 16, 319–329. [Google Scholar] [CrossRef]
- Wilson, C. Spectral analysis of civil conflict-induced forced migration on land-use/land-cover change: The case of a primate and lower-ranked cities in Sierra Leone. Int. J. Remote Sens. 2014, 35, 1094–1125. [Google Scholar] [CrossRef]
- Witmer, F.D.W. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 2008, 29, 3805–3831. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Huang, J.; Kamara, A.A. Mapping deforestation and urban expansion in Freetown, Sierra Leone, from pre- to post-war economic recovery. Environ. Monit. Assess. 2016. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Radeloff, V.C.; Avedian, V.; Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Chang. 2015, 15, 1703–1716. [Google Scholar] [CrossRef]
- Forkuor, G.; Cofie, O. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—A remote sensing approach. Int. J. Remote Sens. 2011, 32, 1017–1037. [Google Scholar] [CrossRef]
- Hoffman, D. The Disappeared: Images of the environment at Freetown’s urban margins. Vis. Stud. 2007, 22, 104–119. [Google Scholar] [CrossRef]
- Stevens, K.; Campbell, L.; Urquhart, G.; Kramer, D.; Qi, J. Examining complexities of forest cover change during armed conflict on Nicaragua’s Atlantic Coast. Biodivers. Conserv. 2011, 20, 2597–2613. [Google Scholar] [CrossRef]
- Ordway, E.M. Political shifts and changing forests: Effects of armed conflict on forest conservation in Rwanda. Glob. Ecol. Conserv. 2015, 3, 448–460. [Google Scholar] [CrossRef]
- Brady, L.M. Life in the DMZ: Turning a diplomatic failure into an environmental success. Dipl. Hist. 2008, 32, 585–611. [Google Scholar] [CrossRef]
- McNeely, J.A. Conserving forest biodiversity in times of violent conflict. Oryx 2003, 37, 142–152. [Google Scholar] [CrossRef]
- McNeely, J.A. Biodiversity, war and tropical forests. J. Sustain. For. 2003, 16, 1–20. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNDP). Sudan Post-Conflict Environmental Assessment; UNDP: Nairobi, Kenya, 2007. [Google Scholar]
- Hagenlocher, M.; Lang, S.; Tiede, D. Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery. Remote Sens. Environ. 2012, 126, 27–38. [Google Scholar] [CrossRef]
- Brown, O.; Hauptfleisch, M.; Jallow, H.; Tarr, P. Environmental assessment as a tool for peacebuilding and development: Initial lessons from capacity building in Sierra Leone. In Assessing and Restoring Natural Resources in Post-Conflict Peacebuilding; Jensen, D., Logergan, S., Eds.; Routledge: London, UK, 2012. [Google Scholar]
- Gorsevski, V.; Geores, M.; Kasischke, E. Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan. Appl. Geogr. 2013, 38, 64–75. [Google Scholar] [CrossRef]
- Nackoney, J.; Molinario, G.; Potapov, P.; Turubanova, S.; Hansen, M.C.; Furuichi, T. Impacts of civil conflict on primary forest habitat in northern Democratic Republic of the Congo, 1990–2010. Biol. Conserv. 2014, 170, 321–328. [Google Scholar] [CrossRef]
- Unruh, J.D. Land tenure and legal pluralism in the peace process. Peace Chang. 2003, 28, 352–377. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Forest fragments modulate the provision of multiple ecosystem services. J. Appl. Ecol. 2014, 51, 909–918. [Google Scholar] [CrossRef]
- Unruh, J.D. Toward Sustainable Livelihoods after War: Reconstituting Rural Land Tenure Systems. Nat. Res. Forum 2008, 32, 103–115. [Google Scholar] [CrossRef]
- Gbanie, S.P.; Thornton, A.; Griffin, A.L. The Diamond of Western Area Is Land’: Narratives of Land Use and Land Cover Change in Post-Conflict Sierra Leone. Australas. Rev. Afr. Stud. 2015, 32, 51–73. [Google Scholar]
- Gbanie, S.P. Understanding Land Use and Land Cover Change in Post-War Sierra Leone: A Socio-Geospatial Approach. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2015. [Google Scholar]
- Lynch, K.; Maconachie, R.; Binns, T.; Tengbe, P.; Bangura, K. Meeting the urban challenge? Urban agriculture and food security in post-conflict Freetown, Sierra Leone. Appl. Geogr. 2013, 36, 31–39. [Google Scholar] [CrossRef]
- Biodiversity Analysis and Technical Support Team. 118/119 Biodiversity and Tropical Forest Assessment for Sierra Leone, EPIQ IQC: EPP-I-00-03-00014-00, Task Order 02, Prepared by the Biodiversity Analysis and Technical Support Team for Review by the United States Agency for International Development; USAID: Washington, DC, USA, 2007.
- Glew, L.; Hudson, M. Gorillas in the midst: The impact of armed conflict on the conservation of protected areas in sub-Saharan Africa. Oryx 2007, 41, 140–150. [Google Scholar] [CrossRef]
- Kanyamibwa, S. Impact of war on conservation: Rwandan environment and wildlife in agony. Biodivers. Conserv. 1998, 7, 1399–1406. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E.F. Review Article: Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, B.; Kurban, A. Spatial pattern analysis of land cover change trajectories in Tarim Basin, northwest China. Int. J. Remote Sens. 2008, 29, 5495–5509. [Google Scholar] [CrossRef]
- Liu, D.; Cai, S. A spatial-temporal modeling approach to reconstructing land-cover change trajectories from multi-temporal satellite imagery. Ann. Assoc. Am. Geogr. 2012, 102, 1329–1347. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, B. Spatial pattern of farmland change trajectories in arid zone of China. Proc. SPIE 2008, 7285. [Google Scholar] [CrossRef]
- Davis, C.R.; Hansen, A.J. Trajectories in land use change around US National Parks and challenges and opportunities for management. Ecol. Appl. 2011, 21, 3299–3316. [Google Scholar] [CrossRef]
- Ruslan, R. Application of GIS and landscape metrics in monitoring urban land use change. In Urban Ecosystem Studies in Malaysia: A Study of Change; Hashim, N.M., Rainis, R., Eds.; Universal Publisher: Boca Raton, FL, USA, 2003; pp. 267–278. [Google Scholar]
- Mertens, B.; Lambin, E.F. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 2000, 90, 467–494. [Google Scholar] [CrossRef]
- Li, M.; Mao, L.; Zhou, C.; Vogelmann, J.E.; Zhu, Z. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2. 2. J. Environ. Manag. 2010, 91, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- López-Barrera, F.; Manson, R.H.; Landgrave, R. Identifying deforestation attractors and patterns of fragmentation for seasonally dry tropical forest in central Veracruz, Mexico. Land Use Policy 2014, 41, 274–283. [Google Scholar] [CrossRef]
- Carvalho, F.M.; De Marco, P.; Ferreira, L.G. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv. 2009, 142, 1392–1403. [Google Scholar] [CrossRef]
- Muriuki, G.; Seabrook, L.; McAlpine, C.; Jacobson, C.; Price, B.; Baxter, G. Land cover change under unplanned human settlements: A study of the Chyulu Hills squatters, Kenya. Landsc. Urban Plan. 2011, 99, 154–165. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 487–515. [Google Scholar] [CrossRef]
- Jaeger, J.A. Landscape division, splitting index and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Kabba, V.T.S.; Li, J. Analysis of land use and land cover changes and their ecological implications in Wuhan, China. J. Geogr. Geol. 2011, 3, 104–118. [Google Scholar] [CrossRef]
- Xiaofeng, D.; Lichen, L.; Jianhua, W.; Jin, S.; Jinghu, P. Analysis of the landscape change at River Basin scale based on SPOT and TM fusion remote sensing images: A case study of the Weigou River Basin on the Chinese Loess Plateau. Int. J. Earth Sci. 2009, 98, 651–664. [Google Scholar] [CrossRef]
- Fava, F.; Pulighe, G.; Monteiro, A. Mapping changes in land cover composition and pattern for comparing mediterranean rangeland restoration alternatives. Land Degrad. Dev. 2016, 27, 671–681. [Google Scholar] [CrossRef]
- Tarawali, P. Diagnostic Analysis of Climate Change and Disaster Management in Relation to the PRSP III in Sierra Leone; United Nations Development Programme-Sierra Leone: Freetown, Sierra Leone, 2012. [Google Scholar]
- Statistics Sierra Leone. 2015 Population and Housing Census: Summary of Final Results. Planning a Better Future; Statistics Sierra Leone: Freetown, Sierra Leone, 2016. [Google Scholar]
- Maconachie, R.; Binns, T.; Tengbe, P. Urban farming associations, youth and food security in post-war Freetown, Sierra Leone. Cities 2012, 29, 192–200. [Google Scholar] [CrossRef]
- Thornton, A.; Momoh, J.; Tengbe, P. Institutional capacity building for urban agriculture research using participatory GIS in post-conflict context: A case study of Sierra Leone. Aust. Rev. Afr. Stud. 2012, 33, 165–176. [Google Scholar]
- United States Geological Survey. USGS Global Visualization Viewer. 2001. Available online: https://glovis.usgs.gov (accessed on 19 January 2018).
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. Int. J. Remote Sens. 2002, 23, 2651–2671. [Google Scholar] [CrossRef]
- Chander, G. Processsing need for sensor calibration. In Remote Sensing of Land Use and Land Cover: Principles and Application; Giri, C.P., Ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012; pp. 113–126. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- United Nations Educational, Scientific, and Cultural Organization (UNESCO). Western Area Peninsula National Park. 2012. Available online: http://whc.unesco.org/en/tentativelists/5741/ (accessed on 19 January 2018).
- DiGirolamo, P.A. A Comparison of Change Detection Methods in an Urban Environment Using LANDSAT TM and ETM+ Satellite Imagery: A Multi-Temporal, Multi-Spectral Analysis of Gwinnett County, GA 1991–2000; Georgia State University: Atlanta, GA, USA, 2006. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Puyravaud, J.-P. Standardizing the calculation of annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTAT v4 Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 9 January 2018).
- Riitters, K.H.; O’neill, R.; Hunsaker, C.; Wickham, J.D.; Yankee, D.; Timmins, S.; Jones, K.; Jackson, B. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2012, 32, 522–531. [Google Scholar] [CrossRef]
- Reddy, S.C.; Sreelekshmi, S.; Jha, C.S.; Dadhwal, V.K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 2013, 60, 453–464. [Google Scholar] [CrossRef]
- Braimoh, A.K. Agricultural land-use change during economic reforms in Ghana. Land Use Policy 2009, 26, 763–771. [Google Scholar] [CrossRef]
- Griscom, H.R.; Miller, S.N.; Gyedu-Ababio, T.; Sivanpillai, R. Mapping land cover change of the Luvuvhu catchment, South Africa for environmental modelling. GeoJournal 2009, 75, 163–173. [Google Scholar] [CrossRef]
- Temudo, M.P.; Silva, J.M.N. Agriculture and forest cover changes in post-war Mozambique. J. Land Use Sci. 2011, 7, 1–18. [Google Scholar] [CrossRef]
- United Nations Institute for Training and Research Preliminary Landslide Inventory of Freetown, Sierra Leone 18 August 2017. Available online: http://www.unitar.org/unosat/node/44/2646?utm_source=unosat-unitar&utm_medium=rss&utm_campaign=maps (accessed on 7 September 2017).
- The World Bank. Sierra Leone Rapid Damage and Loss Assessment of August 14th, 2017—Landslides and Floods in the Western Area; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
Date | Satellite & Sensor | No of Bands | Spatial Resolution (m) | Periods |
---|---|---|---|---|
02-03-76 | Landsat 2 (MSS) | 4 | 60 | Before the war |
19-01-86 | Landsat 5 (TM) | 7 α | 30 (60 **) | |
03-02-00 | Landsat 7 (ETM+) | 8 β | 30 (15 * & 60 *) | During the war |
27-02-03 | Landsat 7 (ETM) | 8 β | 30 (15 * & 60 **) | After the war |
10-03-06 | SPOT 5 | *** | 10 | |
09-02-11 | Landsat 5 (TM) | 7 β | 30 (60 **) |
Class | Description |
---|---|
Built-up | Residential, industrial, and commercial structures and motorways |
Bare land | Unvegetated land, exposed rocks, and burnt out areas |
Other forest | Areas with woody vegetation that are neither protected forest nor mangroves |
Mangrove | Shrubs found on the coastal tidal flats |
Protected forest | Reserved and protected forest |
Urban & peri-urban agriculture | Vegetable gardens and other cropland areas |
Waterbody | Streams, rivers, ponds, and reservoirs |
Year | Overall Accuracy | Kappa Coefficient | Type of Accuracy | Built-Up | Protected Forest | Other Forest | Bare Land | Waterbody | Mangrove | UPA |
---|---|---|---|---|---|---|---|---|---|---|
1976 | 91.0% | 0.88 | PA | 91.6 | 98.1 | 92.1 | 89.3 | 100.0 | 82.5 | - |
UA | 99.5 | 89.55 | 90.74 | 75.3 | 72.2 | 96.6 | - | |||
1986 | 90.3% | 0.88 | PA | 95.8 | 80.40 | 93.27 | 96.0 | 100.0 | 96.53 | 52.8 |
UA | 96.3 | 98.95 | 81.51 | 87.1 | 100.0 | 89.86 | 66.7 | |||
2000 | 91.8% | 0.90 | PA | 97.7 | 100.0 | 81.29 | 100.0 | 91.56 | 95.33 | 78.1 |
UA | 100.0 | 73.33 | 93.56 | 80.7 | 100.0 | 99.3 | 98.2 | |||
2003 | 93.1% | 0.91 | PA | 99.7 | 99.6 | 98.6 | 85.9 | 100.0 | 81.6 | 78.6 |
UA | 100.0 | 96.1 | 68.79 | 84.3 | 82.1 | 96.9 | 94.7 | |||
2006 | 87.8% | 0.85 | PA | 89.82 | 83.81 | 91.67 | 98.7 | 100.0 | 96.5 | 55.6 |
UA | 97.45 | 98.33 | 79.89 | 82.8 | 100.0 | 90.3 | 57.1 | |||
2011 | 96.5% | 0.96 | PA | 98.96 | 100.0 | 96.24 | 97.88 | 100.0 | 82.33 | 98.31 |
UA | 99.53 | 93.23 | 94.34 | 99.38 | 100.0 | 98.73 | 92.06 |
Percentage of Pixels in T2 Classified as a Another Class in T1 | Percentage of Pixels in T1 That Became Another Class in T2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Built-up | Bare land | Woody vegetation | Water | UPA | Built-up | Bare land | Woody vegetation | Water | UPA |
1976–1986 | 49.1 | 46.3 | 6.6 | 37.4 | -- | 30.4 | 67.3 | 9.0 | 57.0 | -- |
1986–2000 | 42.2 | 46.3 | 5.3 | 63.1 | 68.2 | 28.9 | 60.3 | 10.6 | 9.0 | 49.5 |
2000–2003 | 35.3 | 64.9 | 7.8 | 12.9 | 62.2 | 13.8 | 57.9 | 11.5 | 43.2 | 64.0 |
2003–2006 | 26.0 | 60.9 | 6.7 | 47.8 | 54.3 | 9.9 | 60 | 12.1 | 16.1 | 50.8 |
2006–2011 | 30.7 | 58.9 | 8.1 | 15.8 | 62.1 | 12.9 | 51.2 | 12.7 | 43.6 | 65.6 |
1976–2011 | 74.6 | 51.0 | 5.0 | 51.5 | -- | 12.8 | 67.8 | 34.3 | 41.7 | -- |
Process | Description | Trajectories | 1976–2000 Area (ha) | 2003–2011 Area (ha) |
---|---|---|---|---|
No change | Land class that remained unchanged (stability of a given land class). | B→B→B Br→Br→Br V→V→V W→W→W A→A→A | 1912 (2.8%) 1572 (2.3%) 43,214 (63.6%) 303 (0.4%) - | 5795 (8.5%) 1874 (2.7%) 36,346 (54.2%) 577 (0.8%) 1714 (2.5%) |
Urbanisation | Increase in built-up from other land classes | Br→B→B, Br→Br→B, Br→V→B, Br→W→B, Br→A→B, V→B→B, V→Br→B, V→V→B, V→W→B, V→A→B, W→B→B, W→Br→B, W→V→B, W→W→B, W→A→B, A→B→B, A→Br→B, A→V→B, A→W→B, A→A→B | 3234 (4.8%) | 4713 (6.9%) |
Afforestation | Re-establishment or densification of woody vegetation | Br→Br→V, Br→V→V, Br→W→V, Br→A→V, W→B→V, W→Br→V, W→V→V, W→W→V, W→A→V, A→B→V, A→Br→V, A→V→V, A→W→V, A→A→V | 2238 (3.3%) | 2217 (3.2%) |
Degradation | De-densification of woody vegetation | V→Br→V, V→W→V, V→A→V | 1669 (2.5%) | 2429 (3.6%) |
Deforestation | Woody vegetation removal | W→V→Br, V→V→Br, V→Br→Br, Br→V→Br, A→V→Br | 2010 (3.0%) | 2261 (3.3%) |
Recession | Waterlogged areas that become dry land | V→W→Br, Br→W→Br, W→W→Br, W→Br→Br | 131 (0.2%) | 131 (0.2%) |
Abandonment | Previously cultivated land area or occupied by other land class in the previous years but became bare land in later years | Br→A→Br, V→B→Br, V→A→Br, W→B→Br, W→A→Br, A→B→Br, A→Br→Br, A→A→Br | 1440 (2.1%) | 3028 (4.4%) |
Cultivation | Area previously occupied by other land classes but later used for UPA | Br→Br→A, Br→V→A, Br→W→A, Br→A→A, V→B→A, V→Br→A, V→V→A, V→W→A, V→A→A, W→B→A, W→Br→A, W→V→A, W→W→A, W→A→A, A→B→A, A→Br→A, A→V→A, A→W→A | 7806 (11.5%) | 5540 (8.1%) |
Tidal waters | Occupancy of land with water due to tidal rise | Br→Br→W, Br→V→W, Br→A→W, V→B→W, V→Br→W, V→V→W, V→A→W, B→W→W, Br→W→W, V→W→W, W→B→W, W→Br→W, W→V→W, W→A→W, A→B→W, A→Br→W, A→V→W, A→W→W, A→A→W | 316 (0.5%) | 73 (0.1%) |
Impossible transitions | Trajectories that are not typically possible | B→B→W, B→Br→B, B→V→B, B→W→B, B→A→B, B→B→V, B→Br→V, B→V→V, B→W→V, B→A→V, Br→B→V, V→B→V, B→V→Br, B→W→Br, B→B→Br, B→Br→Br, B→A→Br, Br→B→Br, B→B→A, V→B→A, V→B→W, B→Br→A, B→V→A, B→W→A, B→A→A, Br→B→A, B→Br→W, B→V→W, B→A→W, Br→B→W, W→B→W, A→B→A | 2070 (3.0%) | 1678 (2.5%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbanie, S.P.; Griffin, A.L.; Thornton, A. Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone. Remote Sens. 2018, 10, 129. https://doi.org/10.3390/rs10010129
Gbanie SP, Griffin AL, Thornton A. Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone. Remote Sensing. 2018; 10(1):129. https://doi.org/10.3390/rs10010129
Chicago/Turabian StyleGbanie, Solomon Peter, Amy L. Griffin, and Alec Thornton. 2018. "Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone" Remote Sensing 10, no. 1: 129. https://doi.org/10.3390/rs10010129
APA StyleGbanie, S. P., Griffin, A. L., & Thornton, A. (2018). Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone. Remote Sensing, 10(1), 129. https://doi.org/10.3390/rs10010129