Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions
Abstract
:1. Introduction
2. Data
2.1. In Situ Air Temperature and Snow Depth Data
2.2. In Situ Ground Temperature Data
2.3. ASCAT Backscatter Data
2.4. Additional Datasets
3. Methods
3.1. Data Selection and Preparation
3.2. Correlation of In Situ Variables with ASCAT Backscatter
3.3. ANCOVA Analysis of ASCAT Backscatter and In Situ Variables
4. Results
4.1. Correlations of ASCAT Backscatter with Air Temperature, Snow Depth and Ground Temperature
4.2. Analysis of Covariance for ASCAT Backscatter, Air Temperature, Snow Depth and Ground Temperature
4.3. Influence of Landscape and Soil Type on Ground Temperature Dependency
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jones, L.A.; Kimball, J.S.; McDonald, K.C.; Chan, S.T.K.; Njoku, E.G.; Oechel, W.C. Satellite microwave remote sensing of boreal and arctic soil temperatures from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2004–2018. [Google Scholar] [CrossRef]
- McDonald, K.C.; Kimball, J.S.; Njoku, E.; Zhao, M. Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact. 2004, 8. [Google Scholar] [CrossRef]
- Bartsch, A.; Kidd, R.A.; Wagner, W.; Bartalis, Z. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data. Remote Sens. Environ. 2007, 106, 360–374. [Google Scholar] [CrossRef]
- Wang, L.; Derksen, C.; Brown, R. Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005. Remote Sens. Environ. 2008, 112, 3794–3805. [Google Scholar] [CrossRef]
- Bartsch, A.; Wagner, W.; Rupp, K.; Kidd, R. Application of C and Ku-band scatterometer data for catchment hydrology in northern latitudes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3702–3705. [Google Scholar]
- Semmens, K.A.; Ramage, J.; Bartsch, A.; Liston, G.E. Early snowmelt events: Detection, distribution, and significance in a major sub-arctic watershed. Environ. Res. Lett. 2013, 8, 014020. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zhao, T.; Zhang, L.; Jiang, L.; Zhao, S.; Chai, L.; Jin, R. A new soil freeze/thaw discriminant algorithm using AMSR–E passive microwave imagery. Hydrological 2011, 25, 1704–1716. [Google Scholar] [CrossRef]
- Zwieback, S.; Paulik, C.; Wagner, W. Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval. Remote Sens. 2015, 7, 3206–3231. [Google Scholar] [CrossRef]
- Derksen, C.; Walker, A.E.; Goodison, B.E. Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens. Environ. 2005, 96, 315–327. [Google Scholar] [CrossRef]
- Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ. 2006, 101, 257–269. [Google Scholar] [CrossRef]
- Högström, E.; Trofaier, A.M.; Gouttevin, I.; Bartsch, A. Assessing Seasonal Backscatter Variations with Respect to Uncertainties in Soil Moisture Retrieval in Siberian Tundra Regions. Remote Sens. 2014, 6, 8718–8738. [Google Scholar] [CrossRef]
- Naeimi, V.; Paulik, C.; Bartsch, A. ASCAT Surface State Flag (SSF): Extracting information on surface freeze/thaw conditions from backscatter data using an empirical threshold-analysis algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2566–2582. [Google Scholar] [CrossRef]
- Park, S.E. Variations of Microwave Scattering Properties by Seasonal Freeze/Thaw Transition in the Permafrost Active Layer Observed by ALOS PALSAR Polarimetric Data. Remote Sens. 2015, 7, 17135–17148. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; Jakob, V.Z. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, J.; Zhang, Z.; Zhao, K. The estimation of dielectric constant of frozen soil-water mixture at microwave bands. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 4, pp. 2903–2905. [Google Scholar]
- Kimball, J.S.; McDonald, K.C.; Frolking, S.; Running, S.W. Radar remote sensing of the spring thaw transition across a boreal landscape. Remote Sens. Environ. 2004, 89, 163–175. [Google Scholar] [CrossRef]
- Yi, Y.; Kimball, J.S.; Jones, L.A.; Reichle, R.H.; Nemani, R.; Margolis, H.A. Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model. J. Geophys. Res. Biogeosci. 2013, 118, 606–622. [Google Scholar] [CrossRef]
- Wang, G.; Hu, H.; Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Qi, J.; Vermeer, P.A.; Cheng, G. A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafr. Periglac. Process. 2006, 17, 245–252. [Google Scholar] [CrossRef]
- Bartsch, A. Ten Years of SeaWinds on QuikSCAT for Snow Applications. Remote Sens. 2010, 2, 1142–1156. [Google Scholar] [CrossRef]
- Kimball, J.; McDonald, K.C.; Keyser, A.; Frolking, S.; Running, S. Application of the NASA Scatterometer (NSCAT) for Determining the Daily Frozen and Nonfrozen Landscape of Alaska. Remote Sens. Environ. 2001, 75, 113–126. [Google Scholar] [CrossRef]
- Frolking, S.; McDonald, K.C.; Kimball, J.; Way, J.; Zimmermann, R.; Running, S. Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons. Remote Sens. Environ. 1999, 104, 27895–27907. [Google Scholar]
- Rignot, E.; Way, J.B. Monitoring freeze–Thaw cycles along North–South Alaskan transects using ERS-1 SAR. Remote Sens. Environ. 1994, 49, 131–137. [Google Scholar] [CrossRef]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Osterkamp, T. Freezing and thawing of soils and permafrost containing unfrozen water or brine. Water Resour. Res. 1987, 23, 2279–2285. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.K. Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Osterkamp, T.E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr. Periglac. Process. 2000, 11, 219–239. [Google Scholar] [CrossRef]
- Konrad, J.M. Physical processes during freeze-thaw cycles in clayey silts. Cold Reg. Sci. Technol. 1989, 16, 291–303. [Google Scholar] [CrossRef]
- Tice, A.; Black, P.; Berg, R. Unfrozen water contents of undisturbed and remolded Alaskan silt. Cold Reg. Sci. Technol. 1989, 17, 103–111. [Google Scholar] [CrossRef]
- Konrad, J.M. Unfrozen Water as a Function of Void Ratio in a Clayey Silt. Cold Reg. Sci. Technol. 1990, 1, 49–55. [Google Scholar] [CrossRef]
- Colbeck, S.C. An overview of seasonal snow metamorphism. Rev. Geophys. 1982, 20, 45–61. [Google Scholar] [CrossRef]
- Dirmhirn, I.; Eaton, F.D. Some Characteristics of the Albedo of Snow. J. Appl. Meteorol. 1975, 14, 375–379. [Google Scholar] [CrossRef]
- Alford, D. Density variations in apline snow. J. Glaciol. 1967, 6, 495–503. [Google Scholar] [CrossRef]
- Pivot, F.C. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada. Remote Sens. 2012, 4, 2133–2155. [Google Scholar] [CrossRef]
- West, R.D. Potential applications of 1–5 GHz radar backscatter measurements of seasonal land snow cover. Radio Sci. 2000, 35, 967–981. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Malnes, E.; Christiansen, H. Freeze/thaw conditions at periglacial landforms in Kapp Linné, Svalbard, investigated using field observations, in situ, and radar satellite monitoring. Geomorphology 2017, 293, 433–447. [Google Scholar] [CrossRef]
- Fraser, A.D.; Nigro, M.A.; Ligtenberg, S.R.M.; Legresy, B.; Inoue, M.; Cassano, J.J.; Kuipers Munneke, P.; Lenaerts, J.T.M.; Young, N.W.; Treverrow, A. Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica. J. Glaciol. 2016, 62, 170–184. [Google Scholar] [CrossRef]
- Evans, S. Dielectric Properties of Ice and Snow–A Review. J. Glaciol. 1965, 5, 773–792. [Google Scholar] [CrossRef]
- Stiles, W.; Ulaby, F.T. Dielectric Properties of Snow; Technical Report; NASA: Greenbelt, MD, USA, 1981. [Google Scholar]
- Hallikainen, M.; Ulaby, F.; Abdelrazik, M. Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans. Antennas Propagat. 1986, 34, 1329–1340. [Google Scholar] [CrossRef]
- Bernier, M.; Fortin, J.P. The potential of times series of C-Band SAR data to monitor dry and shallow snow cover. IEEE Trans. Geosci. Remote Sens. 1998, 36, 226–243. [Google Scholar] [CrossRef]
- Global Terrestrial Network for Permafrost (GTN-P). Global Terrestrial Network for Permafrost Database: Permafrost Temperature Data (TSP Thermal State of Permafrost). 2016. Available online: http://gtnpdatabase.org/ (accessed on 14 December 2016).
- Biskaborn, B.K.; Lanckman, J.P.; Lantuit, H.; Elger, K.; Streletskiy, D.A.; Cable, W.L.; Romanovsky, V.E. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data 2015, 7, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Leibman, M.; Khomutov, A.; Gubarkov, A.; Mullanurov, D.; Dvornikov, Y. The research station “Vaskiny Dachi”, Central Yamal, West Siberia, Russia–A review of 25 years of permafrost studies. Fennia 2015, 193, 3–30. [Google Scholar]
- Figa-Saldaña, J.; Wilson, J.J.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; Mccreight, J.L. Northern hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. 2007, 27, 47–63. [Google Scholar] [CrossRef]
- Zhang, T.; Frauenfeld, O.W.; McCreight, J.L.; Berry, R. Northern Hemisphere EASE-Grid Annual Freezing and Thawing Indices, 1901–2002, Version 1. 2005. Available online: https://nsidc.org/data/ggd649 (accessed on 26 January 2017).
- Belward, A.S.; Erchov, D.V.; Isaev, A.S.; Bartholom, E.; Gond, V.; Vogt, P.; Achard, F.; Zubkov, A.M.; Mollicone, D.; Savin, I.; et al. The Land Cover Map for Northern Eurasia for the Year 2000. GLC2000 Database, European Commision Joint Research Centre. 2003. Available online: http://www-gem.jrc.it/glc2000 (accessed on 22 August 2017).
- Latifovic, R.; Zhu, Z.; Cihlar, J.; Beaubien, J.; Fraser, R. The Land Cover Map for North America in the Year 2000. GLC2000 Database, European Commision Joint Research Centre. 2003. Available online: http://www-gem.jrc.it/glc2000 (accessed on 22 August 2017).
- Bartholomé, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Norsk Polarinstitutt. Svalbardkartet. Available online: http://svalbardkartet.npolar.no/html5/index.html?viewer=svalbardkartet (accessed on 10 August 2017).
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- Koskinen, J.; Pulliainen, J.; Hallikainen, M. Effect of snow wetness to C-band backscatter-a modeling approach. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 4, pp. 1754–1756. [Google Scholar]
- Williams, L.D.; Gallagher, J.G.; Sugden, D.E.; Birnie, R.V. Surface snow properties effect on millimeter-wave backscatter. IEEE Trans. Geosci. Remote Sens. 1988, 26, 300–306. [Google Scholar] [CrossRef]
- Owe, M.; Van de Griend, A.A. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res. 1998, 34, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Matgen, P.; Heitz, S.; Hasenauer, S.; Hissler, C.; Brocca, L.; Hoffmann, L.; Wagner, W.; Savenije, H.H.G. On the potential of MetOp ASCAT-derived soil wetness indices as a new aperture for hydrological monitoring and prediction: A field evaluation over Luxembourg. Hydrol. Process. 2012, 26, 2346–2359. [Google Scholar] [CrossRef]
- Wegmüller, U. The effect of freezing and thawing on the microwave signatures of bare soil. Remote Sens. Environ. 1990, 33, 123–135. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Zhang, T.; Hao, Z.; Chai, L.; Zhang, Z. An empirical model to estimate the microwave penetration depth of frozen soil. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4493–4496. [Google Scholar]
- Rautiainen, K.; Lemmetyinen, J.; Schwank, M.; Kontu, A.; Ménard, C.B.; Mätzler, C.; Drusch, M.; Wiesmann, A.; Ikonen, J.; Pulliainen, J. Detection of soil freezing from L-band passive microwave observations. Remote Sens. Environ. 2014, 147, 206–218. [Google Scholar] [CrossRef]
- Rautiainen, K.; Lemmetyinen, J.; Pulliainen, J.; Vehvilainen, J.; Drusch, M.; Kontu, A.; Kainulainen, J.; Seppänen, J. L-band radiometer observations of soil processes in boreal and subarctic environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1483–1497. [Google Scholar] [CrossRef]
- Bruckler, L.; Witono, H.; Stengel, P. Near surface soil moisture estimation from microwave measurements. Remote Sens. Environ. 1988, 26, 101–121. [Google Scholar] [CrossRef]
- Engman, E.T.; Chauhan, N. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ. 1995, 51, 189–198. [Google Scholar] [CrossRef]
- Gross, J.; Ligges, U. Nortest: Tests for Normality. R Package Version 1.0-4; R Explorations. 2015. Available online: https://cran.r-project.org/web/packages/nortest/nortest.pdf (accessed on 30 July 2017).
- Smith, M.W.; Riseborough, D.W. Climate and the limits of permafrost: A zonal analysis. Permafr. Periglac. Process. 2002, 13, 1–15. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Kane, D.; Hinzman, L. Climate Data from the North Slope Hydrology Research Project. University of Alaska Fairbanks, Water and Environmental Research Center. 2017. Available online: http://ine.uaf.edu/werc/projects/NorthSlope/Fairbanks,Alaska,variouslypaged (accessed on 30 July 2017).
- Ulaby, F.T.; Dubois, P.C.; van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Fraser, A.D.; Young, N.W.; Adams, N. Comparison of Microwave Backscatter Anisotropy Parameterizations of the Antarctic Ice Sheet Using ASCAT. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1583–1595. [Google Scholar] [CrossRef]
- Bingham, A.W.; Drinkwater, M.R. Recent changes in the microwave scattering properties of the Antarctic ice sheet. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1810–1820. [Google Scholar] [CrossRef]
- Giddings, J.C.; LaChapelle, E. The formation rate of depth hoar. J. Geophys. Res. 1962, 67, 2377–2383. [Google Scholar] [CrossRef]
- Rignot, E.; Way, J.B.; McDonald, K.; Viereck, L.; Williams, C.; Adams, P.; Payne, C.; Wood, W.; Shi, J. Monitoring of environmental conditions in Taiga forests using ERS-1 SAR. Remote Sens. Environ. 1994, 49, 145–154. [Google Scholar] [CrossRef]
- Stieglitz, M.; Déry, S.J.; Romanovsky, V.E.; Osterkamp, T.E. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 2003, 30, 1721. [Google Scholar] [CrossRef]
- Ling, F.; Zhang, T. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafr. Periglac. Process. 2003, 14, 141–150. [Google Scholar] [CrossRef]
- Bartsch, A.; Kumpula, T.; Forbes, B.C.; Stammler, F. Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: Implications for reindeer herding. Ecol. Appl. 2010, 20, 2346–2358. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Marc, M.; Zetterberg, P.; Verdonen, M.; Skarin, A.; Kim, K.; Boisvert, L.N.; et al. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biol. Lett. 2016, 12. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Aanes, R.; Herfindal, I.; Kohler, J.; Sæther, B.E. Climate, icing, and wild arctic reindeer: Past relationships and future prospects. Ecology 2011, 92, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Sullivan, L.M.; D’Agostino, R.B. Robustness and Power of Analysis of Covariance Applied to Data Distorted from Normality by Floor Effects: Non-Homogeneous Regression Slopes. J. Stat. Comput. Simul. 2002, 72, 141–165. [Google Scholar] [CrossRef]
- Olejnik, S.F.; Algina, J. An analysis of statistical power for parametric ancova and rank transform ancova. Commun. Stat. Theory Methods 1987, 16, 1923–1949. [Google Scholar] [CrossRef]
- Sullivan, L.M.; D’Agostino, R.B. Robustness and power of analysis of covariance applied to data distorted from normality by floor effects: Homogeneous regression slopes. Stat. Med. 1996, 15, 477–496. [Google Scholar] [CrossRef]
Station | Lat | Lon | O | LC | PT | FI | C. Snow | c (dB/cm) | C. Air | b (dB/°C) |
---|---|---|---|---|---|---|---|---|---|---|
Sagwon (S) | 69.42 | −148.69 | A | low veg. | cont | 4246 | 0.247 | 0.02 *** | 0.005 | 0.009 *** |
Fairbanks (S) | 64.85 | −147.8 | A | low veg. | dis | 2886 | 0.286 | 0.018 *** | −0.188 | −0.016 *** |
Fort Yukon (S) | 66.57 | −145.25 | A | Forest | dis | 3360 | 0.197 | 0.019 *** | −0.339 | −0.028 *** |
American Creek (S) | 64.79 | −141.23 | A | Forest | dis | 3476 | −0.026 | −0.001 | −0.275 | −0.016 *** |
Abisko | 68.36 | 18.82 | A | Bogs | dis | 2025 | 0.442 | 0.005 *** | −0.26 | −0.013 *** |
Agata | 66.91 | 93.38 | A | Lake rich | cont | 4885 | 0.2 | 0.014 *** | 0.213 | 0.015 *** |
Dzalinda 1 | 70.13 | 113.97 | A | Forest | cont | 5897 | −0.036 | 0.018 *** | −0.402 | −0.028 *** |
Saskylah | 71.97 | 114.08 | A | med. veg. | cont | 6279 | −0.376 | −0.004 | 0.088 | 0.01 |
Lensk | 60.75 | 114.84 | A | Forest | spor | 4258 | −0.214 | −0.011 ** | −0.33 | −0.002 |
Suhana | 68.62 | 118.33 | A | Forest | cont | 5793 | −0.079 | 0.006 ** | 0.163 | 0.0003 |
Oleminsk | 60.41 | 120.45 | A | Forest | iso | 4235 | 0.039 | −0.002 | −0.035 | −0.018 *** |
Igarka | 68.73 | 124 | A | Lake rich | cont | 6005 | −0.403 | −0.003 | 0.016 | −0.014 *** |
Isit | 60.8 | 125.37 | A | med. veg. | iso | 4729 | 0.138 | 0.01 *** | −0.008 | 0.007 |
Tiksi | 71.58 | 128.92 | A | med. veg. | cont | 7072 | −0.099 | −0.003 | 0.075 | −0.001 |
Batamaj | 63.517 | 129.483 | A | Forest | cont | 5671 | 0.514 | 0.031 *** | −0.349 | −0.026 *** |
Abramovskij Majak | 60.9 | 131.983 | A | Forest | cont | 5422 | 0.235 | 0.008 *** | 0.009 | 0.012 *** |
Bajkit | 67.567 | 133.4 | A | Forest | cont | 6952 | 0.229 | 0.03 *** | −0.383 | −0.026 *** |
Jubilejnaja | 70.77 | 136.22 | A | Lake rich | cont | 7197 | −0.109 | −0.009 *** | −0.208 | −0.035 *** |
Ust Charky | 66.8 | 136.68 | A | Forest | cont | 7391 | −0.1 | −0.004 | 0.057 | −0.009 *** |
Deputatskij | 69.33 | 139.67 | A | Forest | cont | 7478 | −0.168 | 0.002 | −0.213 | 0.021 *** |
Chokurdah | 70.617 | 147.883 | A | med. veg. | cont | 5954 | −0.304 | −0.008 | 0.208 | −0.0001 |
Sredhekolymsk | 67.45 | 153.72 | A | Lake rich | cont | 5609 | −0.459 | 0.019 *** | −0.131 | 0.007 |
Svalbard Airport | 78.25 | 15.4667 | A | low veg. | cont | 3428 | 0.132 | 0.005 *** | −0.184 | −0.005 ** |
Borehole | Lat | Lon | O | LC | PT | ST | FI | Corr | d (dB/°C) |
---|---|---|---|---|---|---|---|---|---|
Banks_Island | 73.22 | −119.56 | B | low veg. | cont | Regosol | 5729 | −0.521 | −0.004 ** |
Beaver-Dataset | 66.36 | −147.39 | A | low veg. | dis | Gleysol | 3311 | −0.655 | −0.073 *** |
Bonanza_Creek | 64.71 | −148.29 | A | med. veg. | dis | Gleysol | 2774 | 0.002 | −0.014 |
College_Peat | 64.87 | −147.75 | A | med. veg. | dis | Gleysol | 2863 | −0.103 | −0.017 |
Endalen_PYRN | 78.19 | 15.78 | A | low veg. | cont | - | 3428 | −0.218 | −0.063 *** |
Fox | 64.95 | −147.62 | A | med. veg. | dis | Gleysol | 3083 | −0.138 | −0.034 |
Gakona1 | 62.39 | −145.15 | A | Forest | cont | Gleysol | 2702 | 0.070 | 0.014 |
Gakona2 | 62.39 | −145.15 | A | Forest | cont | Gleysol | 2702 | −0.054 | −0.034 |
Galbraith_Lake | 68.48 | −149.50 | A | low veg. | cont | Leptosol | 4467 | -0.503 | −0.028 ** |
Isachsen | 78.78 | −103.55 | A | low veg. | cont | Regosol | 6963 | −0.396 | −0.013 |
Kapp_Linne_1 | 78.06 | 13.64 | A | low veg. | cont | - | 2908 | −0.187 | −0.065 *** |
Kapp_Linne_2 | 78.05 | 13.64 | A | low veg. | cont | - | 2908 | −0.252 | −0.076 *** |
Last_Bridge | 65.39 | −164.66 | A | low veg. | cont | Gleysol | 2553 | −0.627 | −0.129 *** |
Marys_Igloo_East | 65.11 | −164.70 | A | low veg. | dis | Gleysol | 2527 | −0.337 | −0.031 |
Mould_Bay | 76.23 | −119.30 | B | low veg. | cont | Regosol | 6550 | −0.613 | −0.028 *** |
Nadym_1_71 | 65.31 | 72.82 | A | Forest | dis | Fluvisol | 3101 | −0.398 | −0.081 *** |
Nadym_10-12 | 65.30 | 72.88 | A | Bogs | dis | Fluvisol | 3101 | 0.041 | −0.038 *** |
Nadym_11_75 | 65.30 | 72.86 | A | Bogs | dis | Fluvisol | 3101 | 0.102 | 0.031 |
Nadym_4_09 | 65.32 | 72.88 | A | med. veg. | dis | Fluvisol | 3101 | - | - |
Nadym_8_10 | 65.67 | 72.87 | A | Lake rich | dis | Histosol | 3107 | - | - |
Nadym_ND3 | 65.31 | 72.86 | A | med. veg. | dis | Fluvisol | 3101 | −0.388 | −0.022 *** |
Nadym_Peatland | 65.30 | 72.89 | A | Bogs | dis | Fluvisol | 3101 | - | - |
Nadym_Pingo | 65.30 | 72.90 | A | med. veg. | dis | Histosol | 3101 | −0.082 | −0.01 |
Nadym_THA | 65.32 | 72.86 | A | med. veg. | dis | Fluvisol | 3101 | - | - |
Old_Auroral_Station_PYRN | 78.20 | 15.83 | A | low veg. | cont | - | 3428 | −0.298 | −0.05 *** |
Sagwon_MNT | 69.43 | −148.67 | A | low veg. | cont | Gleysol | 4248 | −0.487 | −0.09 ** |
Samoylov | 72.37 | 126.48 | A | low veg. | cont | Fluvisol | 6967 | −0.313 | −0.049 *** |
Smith_Lake_2 | 64.87 | −147.86 | A | Forest | dis | Gleysol | 2863 | 0.106 | −0.02 |
Smith_Lake_3 | 64.87 | −147.86 | A | Forest | dis | Gleysol | 2863 | −0.259 | −0.237 *** |
Smith_Lake_4 | 64.87 | −147.86 | A | Forest | dis | Gleysol | 2863 | −0.063 | 0.015 |
Storflaket_2 | 68.35 | 18.97 | A | Bogs | dis | - | 2025 | - | - |
Storflaket_3 | 68.35 | 18.97 | A | Bogs | dis | - | 2025 | 0.033 | 0.005 |
VD-1 | 70.28 | 68.89 | A | med. veg. | cont | Gleysol | 3567 | 0.092 | 0.189 |
VD-2 | 70.30 | 68.88 | A | med. veg. | cont | Gleysol | 3567 | - | - |
VD-3 | 70.30 | 68.84 | A | med. veg. | cont | Gleysol | 3567 | - | - |
VDCALM | 70.28 | 68.91 | A | med. veg. | cont | Gleysol | 3567 | −0.077 | 0.185 |
Depth in m | <0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1 |
---|---|---|---|---|---|---|---|---|---|---|
>4000 degree–days | 88% | 68% | 84% | 60% | 52% | 32% | 28% | 48% | 16% | 28% |
<4000 degree–days | 71% | 26% | 24% | 11% | 15% | 8% | 4% | 8% | 0% | 22% |
Variable | (%) |
---|---|
Air temp. and snow depth | 75.67 |
Ground temp. <0.05 | 72.72 |
Ground temp. 0.05–0.1 | 50 |
Ground temp. 0.1–0.2 | 61.66 |
Ground temp. 0.2–0.3 | 56.75 |
Ground temp. 0.3–0.4 | 40.74 |
Ground temp. 0.4–0.5 | 61.36 |
Ground temp. 0.5–0.6 | 50 |
Ground temp. 0.6–0.7 | 40.90 |
Ground temp. 0.7–0.8 | 44.11 |
Ground temp. 0.8–0.9 | 28.57 |
Ground temp. 0.9–1 | 60 |
Soil Textures | Low Vegetation | Medium Vegetation | Forest | Bogs |
---|---|---|---|---|
Loam | 20.2% | 86.6% | 97.7% | 0% |
Sandy loam | 16.25% | 6.6% | 2.8% | 100% |
Silt loam | 63.5% | 6.6% | 0% | 0% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergstedt, H.; Zwieback, S.; Bartsch, A.; Leibman, M. Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions. Remote Sens. 2018, 10, 142. https://doi.org/10.3390/rs10010142
Bergstedt H, Zwieback S, Bartsch A, Leibman M. Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions. Remote Sensing. 2018; 10(1):142. https://doi.org/10.3390/rs10010142
Chicago/Turabian StyleBergstedt, Helena, Simon Zwieback, Annett Bartsch, and Marina Leibman. 2018. "Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions" Remote Sensing 10, no. 1: 142. https://doi.org/10.3390/rs10010142
APA StyleBergstedt, H., Zwieback, S., Bartsch, A., & Leibman, M. (2018). Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions. Remote Sensing, 10(1), 142. https://doi.org/10.3390/rs10010142