Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remotely Sensed Vegetation Index Dataset
2.2.2. In Situ Meteorological Data and Soil Temperature Observations
2.2.3. Yearly Livestock Statistical Data
2.3. Data Processing
2.3.1. Remotely Sensed Vegetation Index Data Processing
2.3.2. In Situ Data Processing
2.4. Analyses of Vegetation Change
2.4.1. Trend Analysis
2.4.2. Significance of Vegetation Change
2.4.3. Abrupt Change Test
2.5. The Driving Force Analysis of Vegetation Change
2.5.1. Correlation Analysis at Different Spatial Scales
2.5.2. Double Mass Analysis
3. Results
3.1. Vegetation Changes during the Past 17 Years
3.2. Correlations between Vegetation Growth (GSIEVI Change) and Two Climate Factors
3.3. Effects of Human Activities
3.3.1. Renovation and Construction of the Qinghai-Tibet Highway and Railway
3.3.2. Animal Husbandry
3.3.3. Quantization of Impacts
4. Discussion
4.1. Relationships among Climate Change, Permafrost Degradation, Vegetation Growth and Animal Husbandry
4.2. Scale Effect
4.3. Growing Season Integrated Enhanced Vegetation Index and Cumulative GSIEVI within Particular Areas
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Piao, S.L.; Fang, J.Y.; He, J.S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Chang. 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Hu, C.J.; Fu, B.J.; Liu, G.H.; Jin, T.T.; Guo, L. Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau, China. J. Soils Sediment. 2010, 10, 1082–1091. [Google Scholar] [CrossRef]
- Fu, B.J.; Li, S.G.; Yu, X.B.; Yang, P.; Yu, G.R.; Feng, R.G.; Zhuang, X.L. Chinese ecosystem research network: Progress and perspectives. Ecol. Complex. 2010, 7, 225–233. [Google Scholar] [CrossRef]
- Kelly, M.; Tuxen, K.A.; Stralberg, D. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecol. Indic. 2011, 11, 263–273. [Google Scholar] [CrossRef]
- King, L.; Herza, T.; Hartmann, H.; Hof, R.; Jiang, T.; Ke, C.; Wei, Z.; Liu, J.; Yi, C. The PACE monitoring strategy: A concept for permafrost research in Qinghai-Tibet. Quat. Int. 2006, 154–155, 149–157. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Che, T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens. Environ. 2009, 113, 2651–2660. [Google Scholar] [CrossRef]
- Cheng, G.D.; Wu, T.H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. 2007, 112, F02S03. [Google Scholar] [CrossRef]
- Zhuang, Q.L.; Romanovsky, V.E.; McGuire, A.D. Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics. J. Geophys. Res. 2001, 106, 33649–33670. [Google Scholar] [CrossRef]
- Zhuang, Q.; He, J.; Lu, Y.; Ji, L.; Xiao, J.; Luo, T. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An analysis with a process-based biogeochemical model. Glob. Ecol. Biogeogr. 2010, 19, 649–662. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.H.; Liu, Y.H.; Wu, J.S.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Wang, G.X.; Li, Y.S.; Chen, L. Impacts of permafrost changes on alpine ecosystem in Qinghai–Tibet Plateau. Sci. China Ser. D-Earth Sci. 2006, 49, 1156–1169. [Google Scholar] [CrossRef]
- Wu, Q.B.; Hou, Y.D.; Yun, H.B.; Liu, Y.Z. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet). Glob. Planet. Chang. 2015, 124, 149–155. [Google Scholar] [CrossRef]
- Yin, G.A.; Niu, F.J.; Li, Z.J.; Luo, J.; Liu, M.H. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. Sci. Total Environ. 2017, 581–582, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zhang, T.J.; Li, X.; Yang, X.G.; Ran, Y.H. Mapping Surface Soil Freeze-Thaw Cycles in China based on SMMR and SSM/I Brightness Temperatures from 1978–2008. Arct. Antarct. Alp. Res. 2015, 47, 213–229. [Google Scholar] [CrossRef]
- Wang, G.X.; Li, Y.S.; Wang, Y.B.; Wu, Q.B. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai–Tibet Plateau, China. Geoderma 2008, 143, 143–152. [Google Scholar]
- Xue, X.; Guo, J.; Han, B.S.; Sun, Q.W.; Liu, L.C. The effect of climate warming and permafrost thaw on desertification in the Qing–Tibetan Plateau. Geomorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Hou, X.Y.; Sun, S.Z.; Zhang, J.W. Map of Vegetation Type in People’s Republic of China (1:4,000,000); Sinomap Press: Beijing, China, 1979. [Google Scholar]
- Li, S.; Cheng, G.D. Map of Permafrost Distribution on the Qinghai-Tibet Plateau (1:3,000,000); Gansu Culture Press: Lanzhou, China, 1996. [Google Scholar]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Perersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the Seasonally Integrated Normalized Difference Vegetation Index Across the North Slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Ma, M.G.; Veroustraete, F. Interannual variability of vegetation cover in the Chinese Heihe River Basin and its relation to meteorological parameters. Int. J. Remote Sens. 2006, 27, 3473–3486. [Google Scholar] [CrossRef]
- Sicard, P.; Mangin, A.; Hebel, P.; Mallea, P. Detection and estimation trends linked to air quality and mortality on French Riviera over the 1990–2005 period. Sci. Total Environ. 2010, 408, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.J.; Zheng, C.M.; Wang, S.; Yao, Y.Y. Analysis of streamflow variations in the Heihe River Basin, northwest China: Trends, abrupt changes, driving factors and ecological influences. J. Hydrol. 2015, 3, 106–124. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, A.N. A non-parametric approach to the change point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Piao, S.L.; Lv, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Yang, H.B.; Kang, W.L.; Yu, Y.; Yin, X.; Wang, P.X.; Zhang, X.F. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering. Powder Technol. 2017, 315, 477–485. [Google Scholar] [CrossRef]
- Brucec, F.; Marcmacias, F.; Pentti, Z. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar]
- Peng, H.; Ma, W.; Mu, Y.H.; Jin, L.; Yuan, K. Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai-Tibet Highway. Nat. Hazards 2015, 75, 2589–2605. [Google Scholar] [CrossRef]
- Xu, X.M.; Zhang, Z.Q.; Wu, Q.B. Simulation of permafrost changes on the Qinghai-Tibet Plateau, China, over the past three decades. Int. J. Digit. Earth 2017, 10, 522–538. [Google Scholar] [CrossRef]
- Cheng, G.D.; Jin, H.J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Wu, Q.B.; Yu, W.B.; Jin, H.J. No protection of permafrost due to desertification on the Qinghai-Tibet Plateau. Sci. Rep. 2017, 7, 1544. [Google Scholar] [CrossRef] [PubMed]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Xu, Y.; Ding, Y.H.; Li, D.L. Climate Change over Qinghai and Xizang in 21st Century. Plateau Meteorol. 2003, 22, 451–457. [Google Scholar]
- Lu, Q.; Zhao, D.S.; Wu, S.H. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci. Rep. 2017, 7, 3845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, H.D.; Ji, L.; Lei, L.P.; Wang, C.Z.; Yan, D.M.; Li, B.; Li, J. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. J. Appl. Remote Sens. 2013, 7, 1–17. [Google Scholar] [CrossRef]
Vegetation Type | Percentage of Each Type in the Total Area (%) | Percentage in Each Vegetation Type (%) | |||
---|---|---|---|---|---|
Significant Increase | Significant Decrease | Bump Points 2006–2009 | Bump Points since 2010 | ||
Alpine sparse vegetation | 6.21 | 18.20 | 19.97 | 12.81 | 26.61 |
Alpine cushion vegetation | 7.56 | 27.44 | 10.63 | 8.13 | 14.81 |
Alpine steppes | 27.95 | 35.38 | 9.95 | 7.16 | 14.47 |
Alpine meadows | 52.90 | 19.11 | 25.46 | 12.98 | 30.51 |
Subalpine broadleaf deciduous scrubs | 0.81 | 6.77 | 38.31 | 18.69 | 37.97 |
Station Name | Amdo | Suoxian | Wudaoliang | Tuotuo River | |
---|---|---|---|---|---|
Station ID | 55294 | 56106 | 52908 | 56004 | |
mm | −8.27 | −0.06 | 4.08 | 0.59 | |
°C | 0.81 | 0.84 | 0.80 | 0.77 | |
°C | 133.37 | 125.24 | 30.92 | 46.29 |
Spatial Scale | TTH_R | QSH | ||
---|---|---|---|---|
Road Repair | After Repair | Road Repair | After Repair | |
Negative Impact (%) | Positive Impact (%) | Negative Impact (%) | Positive Impact (%) | |
500 m | −10.47 | 13.63 | −56.70 | 60.27 |
1 km | −6.84 | 11.83 | −12.68 | 22.89 |
2 km | −5.12 | 9.28 | −3.91 | 17.23 |
3 km | −3.28 | 8.79 | −2.32 | 17.16 |
4 km | <1 | 9.38 | <1 | 16.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Jin, L.; Wang, H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. https://doi.org/10.3390/rs10010095
Song Y, Jin L, Wang H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sensing. 2018; 10(1):95. https://doi.org/10.3390/rs10010095
Chicago/Turabian StyleSong, Yi, Long Jin, and Haibo Wang. 2018. "Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities" Remote Sensing 10, no. 1: 95. https://doi.org/10.3390/rs10010095
APA StyleSong, Y., Jin, L., & Wang, H. (2018). Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sensing, 10(1), 95. https://doi.org/10.3390/rs10010095