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Abstract: Deep learning has become a standard processing procedure in land cover mapping for
remote sensing images. Instead of relying on hand-crafted features, deep learning algorithms, such as
Convolutional Neural Networks (CNN) can automatically generate effective feature representations,
in order to recognize objects with complex image patterns. However, the rich spatial information still
remains unexploited, since most of the deep learning algorithms only focus on small image patches
that overlook the contextual information at larger scales. To utilize these contextual information and
improve the classification performance for high-resolution imagery, we propose a graph-based model
in order to capture the contextual information over semantic segments of the image. First, we explore
semantic segments which build on the top of deep features and obtain the initial classification
result. Then, we further improve the initial classification results with a higher-order co-occurrence
model by extending the existing conditional random field (HCO-CRF) algorithm. Compared to the
pixel- and object-based CNN methods, the proposed model achieved better performance in terms of
classification accuracy.

Keywords: deep learning; high-resolution image; co-occurrence model; graph-based image interpretation

1. Introduction

Remote sensing images can provide inexpensive, fine-scale information with multi-temporal
coverage which has proven to be useful in terms of urban planning, land-cover mapping,
and environmental monitoring. To enable high-resolution satellite image interpretation, it is important to
label image pixels with their semantic classes. Intensive studies have been conducted in high-resolution
image classification and labeling [1-3]. Pixel-based image classification methods were initially developed
to label each pixel for the entire image, with methods such as the maximum likelihood classifiers
(MLC) or support vector machine (SVM). In order to obtain more accurate classification results, it is
common to apply representative feature extraction techniques (such as gray-level co-occurrence matrix
(GLCM) [4] or morphological attribute profiles (MAPs) [5,6]) as standard preprocessing steps. However,
due to the variability in high-resolution images, it is difficult to find robust and representative feature
representations for efficient image classification [7,8]. In addition, the pixel-based classification methods
suffer from the salt-and-pepper phenomenon, since they overlook the rich spatial information of
the high-resolution images.

In order to utilize the rich spatial information and improve classification performance, object-based
image classification methods [9,10] have been intensively investigated. Instead of directly classifying
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the whole image in a pixel-wise fashion, the object-based methods effectively interpret the complex
high-resolution images in terms of image segments. More specifically, the object-based methods
first split an image into several homogeneous objects and then infer the semantic label of each
segment by applying a majority voting strategy. Thus, it overcomes the salt-and-pepper defect
characteristic of pixel-based methods. However, it is difficult to accurately segment complex
scenes into meaningful parts, due to the complexity of high-resolution remote sensing images.
For example, building roofs are frequently segmented into shadowed areas, small objects (such
as chimneys, windows) etc., Alternatively, graph-based random field methods have been used to
interpret high-spatial resolution images by considering spatial interactions between neighboring pixels.
As a representative, the Markov random fields (MRF) was first introduced as the graph-based image
analysis method and has been successfully applied in remote sensing image classification [11,12].
But, the MRF is a generative model that only considers joint distributions in the label domain.
To improve the performance of MREF, a technique known as conditional random fields (CRF) was
proposed to directly model the posterior distribution by considering the joint distribution of both
the label and observed data domain at the same time [13]. In other words, the potential functions in
CRF-based algorithms are designed to measure the trade-off between spectral and spatial contextual
cues. For instance, the support vector conditional random field classifier [14,15] was widely used to
incorporate spatial information at the pixel-level which effectively overcomes the salt-and-pepper
classification noise. Moreover, in order to improve the processing efficiency of high-resolution image
classification, the object-based CRF model [16,17] was proposed and has successfully been used to
classify images.

Although object- and graph-based image interpretation strategies have already been successfully
applied in many applications, the challenges of accurate high-resolution image classification yet to
be treated. There are two factors that heavily impact the traditional image classification accuracies:
(1) The representations of complex geographical objects, (2) Contextual information utilization. For the
first one, low-level feature descriptors often fail to represent complex geographical objects, due to
the spectral variabilities of high-resolution images. For instance, building roofs in an urban area
often contain antennas, chimneys, and shadows. Moreover, the traditional feature descriptors which
only consider the spectral distribution, shape or texture of neighboring pixels and suffer from the
variable nature of high-resolution imagery. Besides, the object- or graph-based models that built on
heterogeneously low-level features are often too fragmented to depict accurate contours of complex
geographical objects, let alone capture high-level contextual information. Therefore, we integrated
the CNN-based deep features with low-level image segments, thus produce meaningful semantic
segments which accurately capture geographical objects. In addition, we propose a graph-based class
co-occurrence model in order to capture the rich contextual information in high-resolution images.
More specifically, we investigated a convolutional neural network (CNN) with five layers to explore
robust deep features which later have been used to generate semantic segments. Since geographical
objects already can be accurately described by semantic segments, we further construct a semantic
graph in order to get a better grasp of the contextual information in high-resolution images. Last but
not least, we further proposed a higher-order co-occurrence CRF model (HCO-CRF) in addition to
semantic segments in order to improve image classification accuracy.

The rest of paper is organized as follows: The related work such as CNN framework and the
traditional CRF model is briefly introduced in Section 2. Then, the HCO-CRF model with considering
class dependencies and label HCO-occurrences is presented in Section 3. In Section 4, the experimental
setting, results, and analysis are illustrated. Finally, the conclusion is presented in Section 5.

2. Related Work

Previous studies have focused on the topic of semantic labeling of high-resolution remote sensing
images. Specifically, on the exploration of deep learning algorithms, where some works refined the
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results based on contextual models in order to predict accurate labels. Here, we first review some of
the previous studies that are related to our work.

2.1. Deep Convolutional Neural Networks

Recently, deep learning has made significant breakthroughs in terms of object recognition, image
classification and semantic understanding of natural images. Also, due to the increasing availability of
high-resolution remote sensing images, convolutional neural networks (CNNs) have been successfully
applied to accurately classify remote sensing images. Unlike natural scene images, remotely acquired
images are much more complicated, in terms of spectral or spatial patterns that represent geographical
objects. In order to represent complex image patterns in a remote sensing image, CNNs build features
from scratch in the first layer and then generate more representative features by merging, activating
and regrouping former the original features. Some researches have focused on the exploration of
CNNs with pixel-wise strategies, such as [18]. In these studies, CNNs performed as a classifier by
using window sliding technique to figure out the class label of each pixel. For each pixel, a neighboring
region with certain sizes can be directly fed into a CNN framework to produce deep features and
predict labels. To boost the classification performance, several investigations extended the traditional
CNNs by integrating prior knowledge, such as a hybrid framework and multi-scale strategy.

Following a different strategy, the fully convolutional neural networks (FCNNs) have been
proposed to densely predict semantic labels in images. Compared to the traditional CNNs, the FCNNs
overcome the effect of down-sampling during deep feature generation. It directly integrates abstract
semantic information from deep, coarse layers with detailed shape contours from shallow layers in
order to generate accurate semantic predictions. For the purpose of generating full-resolution feature
maps, decode or deconvolutional layers can directly stretch low-resolution feature maps into the
original input sizes [19,20]. Moreover, a well-trained CNN framework contains rich low-level contour
information and high-level semantic features. To exploit the rich information, skip architectures have
often been applied to combine coarse layer features with finer layer information in order to yield
a more accurate classification, such as FCN-8s [21]. However, the utilization of FCNNs requires densely
labeled training samples which is often impossible in most image classification tasks. The training
samples (or reference data) for remote sensing image interpretation are scarce and difficult to acquire
even with intense labor involvement. In this regard, the applications of FCNNS in the field of remote
sensing classification are limited.

2.2. Graph-Based Context Model

In order to exploit contextual information in images, the graph-based methods have been
intensively studied. For most graph-based methods, the energy functions are widely utilized in
terms of contextual information formulation, such as MRFs and CRFs. The energy function serves
as a smoother during the post-processing stage, it enforces the consistency of predicted labels in the
classification map. Traditionally, the graph-based model considers label consistency at the pixel level
and commonly with 4- or 8-neighboring pixels. However, due to the heterogeneity of high-resolution
remote sensing images, pixel-based graph mode often failed to capture useful contextual information
that lies in larger scales. Then, image segments were introduced to reduce the image heterogeneity and
graph models can be built on the top of such segments. In this way, the graph is more meaningful and
capturing contextual information more accurate than pixel-based fashion. Although, the graph model
that builds on top of image segments can effectively capture more contextual information and reduce
"salt and pepper" noises. Still, contextual information at larger scales remains unexploited. Recently,
lots of works have been published in terms of higher-order graph models. One of the most popular
methods is the integration of higher-order potential and graph cut algorithm to inference image
classification results [22]. It captures contextual information at larger ranges, which is much richer
than that in adjacent neighbors. The higher-order graph models are particularly suitable for remote
sensing imagery interpretation since they formulate larger scale dependences inside of the image.
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Many applications, such as road and roof extraction [23] have been successfully studied and deployed.
The necessity of introducing higher-order CRF in this work is mainly for (1) formulating contextual
information at larger scales in order to enforce label consistency, and (2) integrating class co-occurrences
between geographical objects and resolving result ambiguities by considering class dependencies.

3. Proposed Method

In this section, we build a higher-order co-occurrence graph model with the help of a semantic
segmentation strategy. The proposed method is mainly constituted by two processing stages, i.e., semantic
prediction and results refinement, as shown in Figure 1. For the process of semantic prediction, a CNN
with five layers was trained using the reference dataset. After the training stage, the well-trained CNN
can be directly applied to predict semantic labels for each pixel of the original image. Meanwhile,
the predicted results of pixels were integrated with segments generated by the image segmentation
algorithm. The integration of segments and semantic prediction results will produce semantic segments
which are initial probabilistic per-class labeling predictions for each geographical object. Then, for the
results refinement, the higher-order graph model can be constructed on top of semantic segments.
It effectively formulates contextual information that could be further utilized to correct false predictions
with the help of class co-occurrences and dependencies.
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Figure 1. The flowchart of dense semantic labeling with higher-order co-occurrence graph model.

3.1. Semantic Segmentation with CNN

In this study, in order to obtain deep and robust feature representations of high-resolution imagery,
we proposed an L-layer convolutional neural network, as shown in Figure 2. Given an image I and
its corresponding reference map R. Since the CNN only feeds using square image patches, we split
the input image I using a fixed square window with the sizes of S * S with having targeted pixel
in the center. For a pixel i in the original image, the extracted image patch can be represented as P;
and its label I; obtained from the reference map. Before CNN can be used to extract deep features,
two types of trainable parameters should be determined, i.e., convolutional filters W and the biases b.
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Before training, we initialized all parameters with a zero mean and variance [24]. For the process of
the feed-forward pass, the output of /—th, (¢ € L) layer is given by

dﬂ — f(llz),llz — wfdﬁ—l +b€ (1)

here, ¢ denotes the current layer, the output activation function f(-) is usually chosen to be the
hyperbolic tangent function f(x) = atanh(bx). For a multi-class problem with c classes and N training
samples. The square-loss function used for CNN training can be written as

N -]

N ¢
Zlkza'k’ — i) ©)
n=1k=1

where y = d* denotes the final output of the L—th layer CNN framework. In order to minimize the
loss function, the back-propagation algorithm is applied.
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Figure 2. Semantic prediction using Convolutional neural network.

Although the extracted deep features are able to describe complex image patterns, the interspersed
geographic objects in high-resolution images are still unreachable, due to the large gap between pixels
and geographical objects. Meanwhile, the object-based image classification method bridges the gap
between image pixel and geographical objects for high-resolution imagery interpretation. Instead
of using low-level image features, we segment the heterogeneous imagery with the extracted deep
features, in order to obtain meaningful semantic segments (segments with semantic labels). For pixel I;
in the original image, the extracted deep feature vector has the form of d; = [dil, d?, . df] Then, we use
the graph-based image segmentation algorithm to split the whole image I into N image segments
using deeply extracted image features. Each image segment can be represented as O;,j € {1,2,..., N},
and, there are M pixels [;,i € {1,2, ..., M} inside each image object Oj. Thus, each image segment only
has one significant semantic label.

{04,0,,...,05} €1 (3)

3.2. Contextual Refinement with HCO-CRF

Once the high-resolution image is delineated into meaningful regions, the complex geographical
objects can be easily represented by semantic segments. As mentioned above, contextual information
is vital for successful image labeling and understanding. Meanwhile, class co-occurrences as one of the
most popular contextual feature descriptors in image classification has been widely used to exploit the
contextual information, especially for high-resolution images [25]. Instead of using pixel-based CRF



Remote Sens. 2018, 10, 1713 6 of 15

models, we constructed the segment-based CRF model with semantic segments. In the segment-based
CRF model, each node represents a semantic segment. The weights of the neighboring matrix for
segment-based CRF are determined by shared boundaries between adjacent semantic segments. In this
way, the segment-based CRF model can effectively alleviate the phenomenon of local minima since it
exploits contextual information at larger scales. At the same time, the usage of co-occurrence correction
in the post-processing stage increased the label consistency between semantic segments also avoid the
local minimum.

Instead of pixel-based CRE, we use semantic segments as the building blocks of the segment-based
CREF. Therefore, the unary term potential for a semantic segment O; which contains K image pixels can
be formulated as

K
¢i(y;;O;) = ¢;(yj;djy, djy, s djy) = — k—Zl H(dj,, y;) @)

where y; is the label of the semantic segment O;, and d;, represents the extracted deep features
from the CNN framework. H(-) is the output function with soft-max classifier which is given by
H(dj,y;) = logp(y;ld;)). In this unary potential, each semantic segment consists of a different
number of image pixels. Therefore, the unary potentials of semantic segments are the sum of their
pixels” unary cost. Similarly, the pairwise potentials of Co-CRF have the form of

1

here, Oy, and Od], are two averaged deep features which are located in semantic segments O; and O;,
respectively. Therefore, the entire cost function of the traditional CRF can be formulated as

n; 1
E(yid) ==Y Y Hyidi)+ Y}, 5 —5T (6)
i 0,0, 1 1104, = Og |

However, the contextual information which is a key condition for accurate image labeling,
which still remains to be exploited. In order to improve the accuracy of image classification,
the co-occurrence of considering neighboring regions is naturally integrated with pairwise potentials.
At the same time, class co-occurrence as prior information could easily be acquired from reference
maps. To calculate the class co-occurrence, instead of using image segments, we count the adjacent
pixels and their labels bilaterally through training images. As a result, the neighboring co-occurrence
matrix of ¢ X ¢ can be built on sample statistics. Let N,,;, (k # ) denote the number of co-existing
labels of k and I, where both m,1 € {1,2,...,c}. Thus, the frequency of co-occurrence labels (m,1) is
Cm = i\\]]’(’:lll , where N,;; represents the number of all possible co-occurrence label pairs. Based on the
co-occurrence matrix, we can rewrite CRF pairwise potentials form

i Com,l
B == By L )T & 10, =0y ?

Although the revised CRF algorithm incorporates pairwise potentials and the label co-occurrence
cost that fit the prior knowledge, the contextual information that lies in larger scale ranges still remain
unexploited. In order to formulate the class-dependencies at larger scales, it is important to introduce
the higher-order co-occurrence CRF (HCO-CRF) model, as shown in Figure 3. Different from the
traditional CRF, the HCO-CREF captures class co-occurrences on top of semantic segments and avoids
the ambiguities by incorporating higher-level context. An additional regulation term that describes
higher order cliques has been added to the co-occurrence CRF model. Therefore, the formulation of
HCO-CREF can be written as
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n

Cim,1
H(y,, d; I E— 0 8
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E(y;d) =~ )
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Here, T represents the set of semantic segments obtained from the process of semantic
segmentation, and, the term ¢(O;) denotes higher order potentials which are defined over the
segments. In order to formulate higher order terms, the PN Potts potential has been widely applied.
It formulates as
2O bux if ny(0;) < Q
Amax, otherwise

¢(0;) = { )

The n;(0;) is the number of pixels inside of the segment O; that take different labels from the
dominant label. Meanwhile, the A, = 6;|0;|, |O;| counts the number of pixels inside of the segment.
Q is the truncation parameter that controls the heterogeneity inside of the segment. In our experiments,
the parameters Q and 6 can be determined by applying cross-validation. Finally, the a—expansion
algorithm is applied to minimize the cost function in an iterative way.

BR

L™
e M

O o s mé

Semantic segments Results refinement

Figure 3. The illustration of HCO-CRF improvements. Based on the semantic segments, the
initial classification result (left) can be further refined according to the co-occurrence matrix between
classes (right).

4. Experiments and Analysis

4.1. Experimental Datasets

In order to illustrate the effectiveness of the HCO-CRF algorithm, we choose the Vaihingen dataset
as the test dataset. The Vaihingen dataset was provided by the German Society for Photogrammetry,
Remote Sensing, and Geoinformation (DGPF). It includes 38 image patches with a spatial resolution of
0.09 m for each pixel. In this experiment, we chose the scene 3 (Vaihingen 3) as the standard dataset for
the rest of our work, it contains 1504 x 1003 pixels and five different types of land-cover. This dataset
was acquired over the city of Vaihingen and is mainly composed of complex urban constructions,
which made it challenging in terms of high-resolution image classification. Since the resolution of this
dataset is relatively high, it reveals much more complex patterns at finer scales, such as car windows
and road marks. Meanwhile, the computational costs of classifying such high-resolution images are
prohibitive for real applications. Therefore, in this study, we subsampled the large image dataset to
accelerate the classification process. Also, the Vaihingen images are colour-infrared aerial photos,
which contain three bands that are infrared (IR), red (R) and green (G). The selected urban scene mainly
composed of small residential houses (two or three floors), roads, some sparse trees, and vegetated
areas, as shown in Figure 4a,b.
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Figure 4. The illustration of experimental datasets and reference maps. (a,b) the Vaihingen dataset and
its reference map, (c,d) the Beijing dataset and its reference map.

To further demonstrate the adaptiveness of the proposed method, a Worldview-2 dataset is also
included in our experiments. The worldview-2 dataset has a spatial resolution of 1.8 m for each pixel,
so coarser than the 0.09 m of the Vaihingen dataset. It was captured over the Beijing area by the
Worldview-2 satellite in 2008. It contains 8 bands ranging from 0.45 to 1.04 um. The sizes of this dataset
are 500 x 500 pixels and there are six classes inside of the scene: bare soil, building, road, shadow, river,
and vegetation.

4.2. Parameter Settings

In this experiment, we explored non-overlap image samples which were used for training and
testing. The overlap threshold between two adjacent samples was set to 80%. The Vaihingen dataset
has a spatial resolution of 0.09m, so there are thousands of pixels within an individual roof. Therefore
the intra-class variation is much more challenging for the Vaihingen data in comparison to the Beijing
dataset. Consequently, many more training samples are needed for the CNN to capture the complex
spatial patterns in the Vaihingen dataset, that are needed for the Beijing data. Moreover, all training
samples were randomly selected, and detailed information about training samples (TR) and validation
samples (VA) is reported in Tables 1 and 2.

Table 1. Vaihingen scene: classes, training and validation samples.

Class TR VA

Building 5167 2582
Trees 1997 996
Grass 2772 1384
Cars 150 73
Road 6231 3113

Total 16,317 8148

Table 2. Beijing scene: classes, training and validation samples.

Class TR VA

Bare soil 150 741
Building 150 1803
Road 150 2065
Shadow 150 608
River 150 860
Vegetation 150 1021

Total 900 5898
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Before high-resolution image classification, we first set up a well studied five-layer CNN
framework [26] to extract deep features for remote sensing images. More specific, the CNN feeds with
28 x 28 image patches with labeled pixels in the center. For the first convolutional layer, the input is
converted to 24 x 24 x 20 with 20 filters of 5 x 5, before being subsampled with a 2 x 2 max-pool layer
to obtain a 12 x 12 x 20 output. Then, the second convolutional layer includes 50 filters with the size
of 5 x 5 to generate an 8 x 8 x 20 output, which is then subsampled to 4 x 4 x 20 with the max-pool
operator. Finally, a fully connected dense layer with 256 hidden units is used before resolving our
different labels in a softmax output layer. The learning rate was set to 0.0001.

The co-occurrence matrix for the selected scene was acquired previously using sample statistics
over the reference map. For the Vaihingen dataset, we utilized the entire reference map to calculate
co-occurrences between different targets. The co-occurrence matrix of Vaihingen dataset is illustrated
in Table 3. This shows that the co-occurrence matrix is a symmetric matrix with the largest value
in the diagonal direction. From this matrix, we concluded that adjacent pixels or objects are more
likely to be the same class rather than different classes, and that around an objects’ edges a mixture of
classes is observed. Therefore, based on the co-occurrence matrix, we can further correct classification
errors based on knowledge of expected patterns of class co-occurrence. For the Beijing dataset, it is
difficult to statistically analyze the co-occurrence matrix since the reference labels are scarce. For the
purpose of obtaining class dependency information, we've performed CNN-based classification using
training samples. Then, the co-occurrence matrix Table 4 can be derived from the classification
map. Although the classification results may not be as accurate as the hand-crafted reference map,
it generally indicates the observed patterns of class dependencies in terms of adjacent rules. Therefore,
we referred the statistical results as the co-occurrence matrix which could be applied to improve the
classification results.

Table 3. Co-occurrence matrix of Vaihingen dataset. Building: BD, TE: Trees, GA: Grass, CA: Cars,
RD: Road.

BD TE GA CA RD

BD 0.6480 0.0691 0.1330 0.0167 0.1025
TE 0.0691 0.5830 0.1823 0.0583 0.1543
GA 0.1330 0.1823 0.5477 0.0500 0.0901
CA 0.0167 0.0583 0.0500 0.2333 0.0139
RD 0.1025 0.1543 0.0901 0.0139 0.6392

Table 4. Co-occurrence matrix of Beijing dataset. Bare soil: BS, Buildings: BD, Road: RD, Shadow: SD,
River: RV, Vegetation: VG.

BS BD RD SD RV VG

BS 04600 0.0521 0.0466 0.1503 0.2344 0.0410
BD 0.0521 0.6681 0.1400 0.1937 0.0156 0.0271
RD 0.0466 0.1400 0.7317 0.1373 0.1094 0.1660
SD 0.1503 0.1937 0.1373 03910 0.0313 0.0219
RV 02344 0.0156 0.1094 0.0313 0.2500 0.0024
VG 0.0410 0.0271 0.1660 0.0219 0.0024 0.7416

The parameter settings of HCO-CRF are determined by using a cross-validation procedure.
As illustrated in the cost function of the higher-order CRF model, both the initial classification
results and co-occurrence matrix c,, ; can be automatically deduced from prior information. For the
higher-order term, it is necessary to choose the optimal parameters in order to achieve good
classification results. To minimize the HCO-CRF cost function, we performed the cross-validation
procedure by tuning Q and 6, respectively. To be more specific, we set the range of Q from 0.1 to
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0.4 with the step of 0.1 and set the 6 from 0.5 to 1.2 with the same step, as shown in Table 5. After the
process of cross-validation, we set Q = 0.3 and 6 = 1.1 for our experiments.

Table 5. Setting parameters for the higher-order term.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.1 88.72 88.69 88.63 8851 8792 88.01 8737 84.82
0.2 86.23 8731 8885 89.05 89.12 89.08 89.16 8891
0.3 8648 86.18 88.01 8847 89.13 89.10 89.15 89.03
0.4 8594 86.79 87.63 88.26 8887 89.01 8879 88.45

Q

4.3. Experimental Results

4.3.1. Vaihingen Dataset

After the CNN training, the deep features of the Vaihingen dataset can be easily acquired. We then
split the Vaihingen scene into homogeneous regions based on robust deep features. Since we only
utilized image segments to keep image edge information, the segmentation scale was set to 50. In order
to illustrate the effectiveness of the proposed method, we compared it with other benchmark methods
that are used for image classification. For instance, the Extended Morphological Profiles (EMP)
with areas {50, 500} and standard deviation ranges from 2.5% to 20%. Meanwhile, we employed
the pixel-based CNN (PCNN) and object-based CNN (OCNN) methods to illustrate improvements
compared to the standard CNN method. Also, we included the fully connected CRF (i.e., Dense
CRF) method to further improve the classification results of the OCNN. The classification maps with
different methods are shown in Figure 5. Meanwhile, we selected the training samples according to
the class ratios for available samples. In order to demonstrate the robustness of our method, we only
chose 10% available samples (satisfies the overlap condition) for CNN training and another 5% for
validation, and the detailed information about classification accuracies is listed in the Table 6.

Table 6. Classification results of Vaihingen dataset with different strategies (in percentage). OA:
Overall Accuracy.

Class EMP PCNN OCNN Dense CRF HCO-CRF

Building 7599  88.83 90.82 91.73 94.28
Trees 7436  73.08 73.50 72.84 91.13
Grass 61.41 66.88 67.55 67.91 71.79
Cars 3.99 29.41 29.87 32.57 40.21
Roads 85.13 88.54 89.92 90.16 91.09

OA 75.33  80.30 82.03 83.53 86.52
Kappa 0.66 0.73 0.75 0.79 0.81

Due to the variable nature of high-resolution image datasets, it is difficult to accurately classify
complex urban scenes into semantic maps. As shown in Figure 5, the SVM classification method which
only utilized spectral information, it has the worst performance in terms of interpretation accuracies.
The reason behind this phenomenon is that different land-cover objects are highly mixed together
in the spectral feature space. To improve the performance of high-resolution image classification,
the EMP-based method was proposed. It overcomes spectral variation and generates spatial descriptors
using various spatial filters under different configurations. In general, the EMP-based methods both
rely on low-level image features which lead to a failure in terms of high-resolution image classification.
The CNN can automatically learn complex image patterns that could be used for efficient classification.
Therefore, we introduced the well-known PCNN for comparison. In general, the PCNN method is
much better than the traditional method in terms of classifying complex buildings and cars. Generally,
the building classification accuracies increased from 75.99% to 88.83%. However, the accurate mapping



Remote Sens. 2018, 10, 1713 11 of 15

rate still ranges from 3.99% to 29.41% for the car class. The cause of this phenomenon should be the
unbalanced training sample settings where only 150 car samples compare to other classes with a large
number of training samples. But, it is impossible to keep the balance for different types of training
samples as the car are quite small compared to other geographical objects.

(b) PCNN (c) OCNN

Legend

B Road

(d) Dense CRF (e) HCO-CRF

Figure 5. Classification results on Vaihingen dataset with different strategies. (a) EMP-based classification;
(b) pixel-based CNN classification; (c) the object-based CNN classification; (d) Dense CRF classification;
(e) HCO-CREF classification result.

In general, the PCNN method can effectively increase the classification accuracy at the pixel
level. However, many geographical objects in images that are poorly characterised are crucial for
understanding the image and accurate mapping. Thus, we introduced the Dense CRF method in order
to classify high-resolution images more efficiently. From the classification results, we can conclude that
the classification accuracy of building and road have significantly increased at the object level (OCNN).
However, the Dense CRF method only enforces smoothness over adjacent objects and regardless
the co-occurrences between them. Finally, we compared the previous classification results with the
HCO-CRF method. With the introduction of co-occurrence information between different objects,
the initial classification results can be further refined.

4.3.2. Beijing Dataset

In order to keep a balanced training samples, we selected 150 samples for each class for the CNN
training. After the training process, we applied the well-trained CNN to extract deep features and
obtain the initial classification results. Also, the segmentation scale was set to 30, in order to get
accurate information about shapes and edges of geographical objects. With the integration of image
segments and the CNN-based classification results, the classification accuracy can be further improved.
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Moreover, the PCNN, OCNN and Dense CRF methods were included to demonstrate the effectiveness
of the proposed method. The classification results are illustrated in Figure 6. The detailed information
about classification accuracies is shown in Table 7.

(c) OCNN

Legend

[:I Bare sail
[ Buitding
B Road
- Shadow
-
- Vegetatior:

(d) Dense CRF (e) HCO-CRF

Figure 6. Classification results on Beijing dataset with different strategies. (a) EMP-based classification;
(b) pixel-based CNN classification; (c) the object-based CNN classification; (d) Dense CRF classification;
(e) HCO-CREF classification result.

Table 7. Classification results of Beijing dataset with different strategies (in percentage). OA:
Overall Accuracy.

Class EMP PCNN OCNN Dense CRF HCO-CRF

Baresoil 79.76  84.71 90.32 97.38 99.06
Buildings 7093  89.91 95.06 97.26 98.29
Roads 95.09 9592 97.65 98.07 99.19
Shadows 9891  95.78 96.67 84.32 85.42
Rivers 100 78.27 80.63 83.28 88.91
Vegetation 92.64  77.68 75.30 89.42 91.88
OA 86.99  89.03 92.61 95.61 97.42
Kappa 0.81 0.85 0.89 091 0.94

Comapred to the Vaihingen dataset, the Beijing dataset has a coarser spatial resolution but with
significant richer spectral information. Moreover, the geographical objects such as buildings are much
blurrier than what appeared in the Vaihingen scene. At first, we applied the EMP algorithm to classify
the Beijing dataset by using spectral information. It is efficient to detect natural geographical objects
with significant spectral differences, such as shadow, water, and vegetation. With the help of EMP
features, it is difficult to capture the complex buildings with higher accuracies. As for the CNN
framework, the classification accuracy of buildings has increased from 79.76% to 84.71%. However,
due to the limited number of deep features, the rivers and vegetation suffer a significant drop, in terms
of classification accuracies. This is probably because their deep spectral features are limited and their
spectral properties are highly distinctive. At last, the HCO-CRF further refined the classification
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results by introducing the higher-order co-occurrence term. For instance, the classification accuracies
of road and building can be as high as 99.19% and 98.29%. Therefore, it further demonstrated that the
proposed method is capable to accurately classify complex urban scenes.

5. Discussion

5.1. Semantic Segments Extraction

In order to extract semantic information from the high-resolution remote sensing imagery, it is
important to design accurate classification procedures to perform image labeling. At the same
time, image features representatively describe the characteristics of image targets. Based on the
effective descriptions of the image pattern, image targets with distinctive characters can be effectively
discriminated. However, as the spatial resolution gets finer, traditional feature representations may not
be distinctive enough to differentiate image targets with similar patterns, e.g., building roofs and road
surface with similar materials. In this regard, we introduced a deep learning strategy to extract more
robust and representative features from higher conceptual levels. To be specific, the convolutional
neural network (CNN) was applied to automatically generate hierarchical features by feeding
square-sized image patches. For the conventional CNN, it usually consists of convolutional layers and
pooling layers. For the convolutional layer, numbers of image filters with learnable parameters are
stacked together to perform image filtering. Given the outputs of the convolutional layer, the pooling
layer directly shrinks the sizes of the output feature maps and further strengthen the robustness of
the extracted features. Compare to the traditional image feature representations, the extracted deep
features are much more effective in terms of exploiting the small differences. Therefore, we applied
the CNN model to perform dense labeling of high-resolution imagery. Still, the classification results
of the CNN model suffers from the spatial information loss and “salt-pepper” noise. Moreover, the
classification results in mere pixel-level labeling which has no access to geographical entities. To
extract semantic information from high-resolution imagery, it is necessary to map the targets at the
object level. In this study, instead of using CNN to directly predict the semantic information of each
pixel, we integrated the results of dense labeling and image segments. In this way, spatial information
about geographical targets can be kept intact. For each image segment, the simple majority vote is
applied to determine the semantic label of the segment. As a result, the high-resolution image is
delineated into semantically uniform regions that each part represents a geographical target. Based on
the results of semantic segmentation, rich semantic information of the high-resolution image can be
automatically extracted.

5.2. Higher-Order Contextual Formulation

Given the results of semantic segmentation, it is easy to access the semantic contents of the
high-resolution images. Although, the classification accuracy of the CNN-based method is usually
higher than the conventional pixel- or object-based methods, still, small errors are frequently observed
from CNN-based classification results. For instance, road surfaces may share similar texture or spatial
patterns with building roofs which make classifiers difficult to distinguish them from each other.
The reason for this phenomenon is that the CNN model is only fed with a square window that
neglected the global context. To better grasp the contextual information, post-processing models such
as CRF are one way to formulate the image context. CRF mainly exploits the prior knowledge such
as the fact that nearby pixels (in the spatial or feature domain) likely share the same semantic label.
The standard CRF model usually consists of unary and pairwise terms in a fashion of 4- or 8-connected
neighborhood. With the help of the CRF model, the classification results of the high-resolution
image can be further improved. For one thing, the pixel-based classification refinement often suffers
from “salt-pepper” noise, therefore, it is necessary to build a CRF model on top of image segments.
Image segments can capture richer contextual information than a single pixel. Also, the computational
costs can be greatly reduced if one considers pairwise interactions between image segments rather
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than pixels. For another, the conventional CRF model only formulates the local pairwise potentials that
capture interactions between pairs of image pixels or segments. Thus, the conventional CRF model
works like a smoother at the local range and neglect the long-range context of the high-resolution
image. To capture more contextual information at longer ranges, we formulated the CRF model with
a higher order potential. It directly captures the interactions over cliques larger than just two nodes.
Therefore, it provides a better way to model the co-occurrences between geographical objects and
further improving classification results.

6. Conclusions

In this paper, we proposed a graph-based model to classify high-resolution images by considering
higher-order co-occurrence information. To be more specific, instead of using low-level image features,
we investigated the CNN-based deep features for image semantic segmentation. Then, based on
the extracted semantic segments, we utilized the graph-based CRF model to capture the contextual
information for better classification results. At last, we further improved the CRF-based classification
results by considering higher-order co-occurrences between different geographical objects. In order to
illustrate the effectiveness of the proposed method, we compared the HCO-CRF method with other
commonly used high-resolution image classification methods. The classification results indicate that
the HCO-CRF method can effectively refine classification based on the co-occurrence of different
classes. However, the parameter of the co-occurrence matrix should be defined in prior to the
loss function minimization done during the training process of the HCO-CREF training. In future
research, the quantitative measurements over geographical objects, such as co-occurrences and spatial
relationships should be thoroughly studied.
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