
remote sensing  

Technical Note

Downscaling of Satellite OPEMW Surface Rain
Intensity Data

Angela Cersosimo 1,*, Salvatore Larosa 1 , Filomena Romano 1 , Domenico Cimini 1,2 ,
Francesco Di Paola 1 , Donatello Gallucci 1 , Sabrina Gentile 1,2 , Edoardo Geraldi 1,3 ,
Saverio Teodosio Nilo 1 , Elisabetta Ricciardelli 1, Ermann Ripepi 1

and Mariassunta Viggiano 1

1 Institute of Methodologies for Environmental Analysis, National Research Council (IMAA-CNR),
85100 Potenza, Italy; salvatore.larosa@imaa.cnr.it (S.L.); filomena.romano@imaa.cnr.it (F.R.);
domenico.cimini@imaa.cnr.it (D.C.); francesco.dipaola@imaa.cnr.it (F.D.P.);
donatello.gallucci@imaa.cnr.it (D.G.); sabrina.gentile@imaa.cnr.it (S.G.); edoardo.geraldi@imaa.cnr.it (E.G.);
saverio.nilo@imaa.cnr.it (S.T.N.); elisabetta.ricciardelli@imaa.cnr.it (E.R.); ermann.ripepi@imaa.cnr.it (E.R.);
mariassunta.viggiano@imaa.cnr.it (M.V.)

2 Center of Excellence Telesensing of Environment and Model Prediction of Severe events (CETEMPS),
University of L’Aquila, 67100 L’Aquila, Italy

3 Institute for Archaeological and Monumental Heritage, National Research Council (IBAM-CNR), 85100
Potenza, Italy

* Correspondence: angela.cersosimo@imaa.cnr.it; Tel.: +39-0971-427500

Received: 9 October 2018; Accepted: 5 November 2018; Published: 8 November 2018
����������
�������

Abstract: This paper presents a geostatistical downscaling procedure to improve the spatial resolution
of precipitation data. The kriging method with external drift has been applied to surface rain intensity
(SRI) data obtained through the Operative Precipitation Estimation at Microwave Frequencies
(OPEMW), which is an algorithm for rain rate retrieval based on Advanced Microwave Sounding
Units (AMSU) and Microwave Humidity Sounder (MHS) observations. SRI data have been
downscaled from coarse initial resolution of AMSU-B/MHS radiometers to the fine resolution
of Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the Meteosat Second
Generation (MSG) satellite. Orographic variables, such as slope, aspect and elevation, are used
as auxiliary data in kriging with external drift, together with observations from Meteosat Second
Generation-Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI) in the water vapor band
(6.2 µm and 7.3 µm) and in thermal-infrared (10.8 µm and 8.7 µm). The validation is performed
against measurements from a network of ground-based rain gauges in Southern Italy. It is shown that
the approach provides higher accuracy with respect to ordinary kriging, given a choice of auxiliary
variables that depends on precipitation type, here classified as convective or stratiform. Mean values
of correlation (0.52), bias (0.91 mm/h) and root mean square error (2.38 mm/h) demonstrate an
improvement by +13%, −37%, and −8%, respectively, for estimates derived by kriging with external
drift with respect to the ordinary kriging.

Keywords: surface rain intensity; kriging with external drift; PEMW; MSG; SEVIRI; downscaling

1. Introduction

Rainfall is of primary importance in many scientific fields, such as meteorology, hydrology,
agriculture, ecology and other environmental sciences [1]. Precipitation intensity can be estimated
with different techniques, including rain gauge, ground-based radar, and satellite remote sensing
observations. Estimates from satellite are particularly relevant, as they assure a global coverage of the
Earth [2]. The major drawback of satellite rainfall remote sensing lies in their coarse spatial resolution,
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which hinders the investigation of spatial variability. This calls for the development of techniques to
improve the spatial resolution of satellite rainfall remote sensing data.

A large number of downscaling methods has been developed and applied in the last few
years. Most of these methods are based on the correlation between rainfall and environmental
information such as latitude, longitude, altitude, slope, aspect and other orographic characteristics.
In particular, Next Generation Radar (NEXRAD) daily precipitation fields were downscaled from
16 km to 4 km by considering orographic effects on precipitation distribution [3]. This method consists
of three parts, namely the rain-pixel clustering, the multivariate regression and the random cascade.
In [4], a statistical downscaling method—based on the relationships between precipitation and both
terrain factors (e.g., slope, aspect and roughness) and meteorological conditions (e.g., humidity and
temperature)—was proposed to disaggregate the Tropical Rainfall Measuring Mission (TRMM) 3B42
from 25 km to 1 km. Other studies introduced the positive relation between vegetation and precipitation
through the use of the Normalized Difference Vegetation Index (NDVI). Among these, Ref. [5] explored
the relation between TRMM rainfall estimates and NDVI at different spatial scales; the derived
relation has then been used to develop a downscaling method based on an exponential regression
model. In [6], a multiple linear regression model was developed using both NDVI and Digital
Elevation Model (DEM) as independent variables. Ref. [7] presented a geostatistical downscaling
procedure, namely a geographically-weighted regression kriging, based on the relationship between
precipitation and other variables, such as NDVI and DEM, to downscale the TRMM 3B43 product
from 25 km to 1 km. Two methods were used in [7]—namely a geographical difference analysis
and a geographical ratio analysis—to calibrate the downscaled TRMM precipitation data. Ref. [8]
applied an integrated downscaling method, based on environmental information such as vegetation,
topography, drought and albedo derived from Moderate Resolution Imaging Spectroradiometer
(MODIS) products. Two different downscaling approaches—a multiple linear regression and an
artificial neural network—were compared and used to downscale TRMM precipitation data from
25 km to 1 km spatial resolution. The above studies demonstrate that downscaled precipitation data
better capture the spatial variability compared to the original datasets.

In this work, we downscale precipitation data derived from the operational version of the
Precipitation Estimation at Microwave Frequencies (PEMW), an algorithm for surface rain intensity
(SRI) retrievals, developed at the Institute of Methodologies for Environmental Analysis of the
National Research Council of Italy (CNR-IMAA) [9]. SRI data by PEMW is derived from Advanced
Microwave Sounding Units (AMSU) and Microwave Humidity Sounder (MHS) radiometers on board
Low-Earth-Orbit satellites and their spatial resolution range from 16 km at nadir to 51 km at maximum
scanning angle. The Operative version of PEMW (OPEMW) was validated against simultaneous
ground-based observations from weather radar systems and rain gauges [10]. OPEMW SRI data are
downscaled from the AMSU-B/MHS spatial resolution (16 km at the sub satellite point—SSP) to the
finer MSG-SEVIRI spatial resolution (3 km at the SSP) to possibly improve their accuracy and capture
higher-resolution spatial variability. Among the methods mentioned above, a kriging technique is
chosen, namely kriging with external drift, as it was shown to provide estimations and associated
errors with satisfactory results even in the presence of few input data. Kriging with external drift
different variables and their combinations are used as auxiliary data to improve the disaggregation
process. Particularly, the Brightness Temperatures (BTs) from the MSG-SEVIRI [11] are exploited
together with some environmental information, such as elevation, slope and aspect. The MSG-SEVIRI
observations used here are from four channels, two centered in water vapour bands (at 6.2 µm and
7.3 µm) and two in the thermal infrared (at 10.8 µm and 8.7 µm). The precipitation episodes are divided
into two types (convective and stratiform), and the trend producing the best results are searched.

The paper is organized as follows: Section 2 provides a description of the data used for the
implementation and the validation of the downscaling procedure; it also describes the applied
methodology, focusing on the construction of the variogram and on the choice of auxiliary variables.
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Section 3 shows the validation comparing downscaled surface rain rate and rain gauge measurements.
In Section 4, we draw our conclusions.

2. Materials and Methods

2.1. Data Set

This section describes the OPEMW. Furthermore, we analyze the data used as auxiliary variables
in kriging with external drift, such as the MSG/SEVIRI channels and the orographic variables (slope,
aspect and elevation). Finally, we discuss details of the validation dataset, obtained by a network of
ground-based rain gauges.

2.1.1. OPEMW

OPEMW is the operational version of PEMW running at IMAA-CNR since 2010. A detailed
description of PEMW software can be found in [9]; here, we only provide a brief discussion.
PEMW consists of a rainfall estimation algorithm that exploits both the radiometric observations
made at window channels of 89 GHz and 150 GHz and at the water vapor band of 183 GHz [9].
It exploits the window channels to detect the size of the precipitating particles and to sense low-level
precipitation, while the three water vapor bands are used to discriminate precipitation at different
altitudes (high convective system, middle-altitude stratiform precipitation) [10]. PEMW is based
on the observations acquired from AMSU-B on board the National Oceanic and Atmospheric
Administration’s (NOAA) Polar Operational Environmental Satellites (POES), from MHS on board the
European Polar System (EPS) and finally from the most recent NOAA POES. AMSU-B and MHS are
respectively cross-track, line scanning microwave radiometers measuring radiances in five channels
in the frequencies ranging from 89 GHz to 190 GHz. In particular, AMSU-B exploits channels at
central frequencies of 89 GHz, 150 GHz, 183 ± 1 GHz, 183 ± 3 GHz and 183 ± 7 GHz, while MHS
at central frequencies of 89 GHz, 157 GHz, 183 ± 1 GHz, 183 ± 3 GHz and 190 GHz. AMSU-B
and MHS fly at a nominal altitude of 850 km, and they scan the Earth about ±50◦ from subsatellite
point. Each channel has an antenna beam width of 1.1◦. This provides a resolution of 16 km at nadir
and 90 consecutive fields of view (FOVs) per scan. One of the main advantages related to the use
of AMSU-B and MHS observations is the good spatial resolution, which is often an issue for MW
instruments. The OPEMW algorithm has been validated against ground-based observations from a
network of 20 weather radar systems and a network of more than 3000 rain gauges distributed over the
Italian territory [10]. The data set used for the validation spans over one year of surface rain intensity
(July 2011–June 2012). The validation shows 98% accuracy in correctly identifying rainy and non-rainy
areas. The correlation coefficient is larger than 0.8 and 0.9 with respect to rain gauge and weather
radars, respectively, though a binned analysis in the 0–15 mm h−1 range suggests that the algorithm
tends to overestimate rain rate values below 6–7 mm h−1 and underestimate those above 6–7 mm h−1.

2.1.2. MSG-SEVIRI

SEVIRI is the visible/infrared imager on board the geostationary MSG satellite. SEVIRI is
characterized by high temporal (15 min) and spatial resolutions. SEVIRI is a 50 cm diameter
aperture, line by line scanning radiometer, which has the capability to observe the Earth in 12 spectral
channels [11]. Out of these, eleven channels, namely the Visible (VIS), Near-InfraRed (NIR) and
InfraRed (IR) ones, cover the full disk and have an imaging sampling distance of 3 km at SSP.
Conversely, the remaining twelfth channel, i.e., the High Resolution Visible (HRV) channel, covers half
the full disk with a 1 km at SSP imaging sampling distance at subsatellite point [12,13].

The MSG-SEVIRI BTs from the water vapor (6.2 and 7.3 µm) and the thermal-IR (10.8 and 8.7 µm)
channels are exploited as auxiliary variables in the implementation of the kriging with external drift
method. We consider: (i) BT differences between thermal-IR at 10.8 µm and water vapor at 6.2 µm
channels, as this information is useful to identify deep-convection areas [14–17]; (ii) BT differences
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between water vapor at 6.2 and 7.3 µm channels, to recognize areas of intense precipitation [18];
and finally (iii) BT difference between 8.7 µm and 10.8 µm (thermal-infrared) channels, useful to
discriminate liquid and ice cloud that could be associated to mid-level stratiform cloud (nimbostratus)
and convective clouds, respectively.

2.1.3. Rain Gauge Network

The downscaled surface rain intensity data are validated against ground observations of rain
rate measured by rain gauges distributed on the area of Basilicata region, Southern Italy (Figure 1).
The considered rain gauge network is currently managed and maintained by the Functional Center
Decentralized (FCD) of Basilicata [19]. The FCD carries out daily hydrometeorological monitoring and
forecasting activities using meteorological data from national forecasting models and data recorded
by ground stations. The FCD of Basilicata currently manages 63 monitoring stations homogeneously
distributed on the regional territory. The sensors installed on each station vary depending on the
monitored site and, generally, consist of rain gauges, hydrometers, thermometers, anemometers,
barometers and radiometers. The data flow into an archive managed by the FCD and they are
processed after quality control operations. The acquisition and processing of data measured by rain
gauges are performed at different temporal intervals, ranging from 5 to 60 min. We consider only
44 rain gauges for the validation of the downscaling procedure, as these provide data at the shortest
time interval (15 min). The rain rate is measured by double-tipping rain gauges and the unit of
measurement of the water deposited on the ground is millimeters (mm). The rain gauges used in
the validation are homogeneously distributed on the territory under analysis, as shown in Figure 1.
More details on considered rain gauges are shown in Appendix B.
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panel, blue is for water and white is for land.

2.1.4. Elevation, Slope, Aspect

Digital Terrain Models (DTMs) are a primary input to any modelling or quantification process
involving the earth’s topography. DTMs are raster files containing elevation data for each raster
cell. DTMs are widespread for calculations, manipulations and further analysis of a geographic area,
and are mainly used for extrapolating elevation information and other derived data, such as slope
and aspect, related to the morphological characteristics of the study area. DTM datasets are widely
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used in GIS applications, and several built-in tools are available to turn the DTM into a derivative
map. There are several free DTM products available, which feature high accuracy and data resolution.
The accuracy of the elevation is highly correlated to orographic features and DTMs play an important
role in the orographic analysis. In this work, we used a DTM from Shuttle Radar Topography Mission
(SRTM) with a spatial resolution of 3 arc seconds (≈90 m) in order to assess properly the quality of our
algorithm. SRTM data were collected during the 11-day mission in February 2000. Since then, SRTM
data were described in detail [20–22] and became accessible online for free [23] SRTM3 has 90 m spatial
resolution at the equator and is provided in mosaiced 5 deg × 5 deg tiles for easy download and use.
All tiles are produced from a seamless dataset to allow easy mosaicking. These tiles are available
in both ArcInfo ASCII and GeoTiff, formatted to ease their use in a variety of image processing and
GIS applications.

The slope map was obtained using the maximum gradient of the plane tangent to the surface of
the ground at a certain point. One of the methods for calculating the slope in one point is the finite
differences [24], for which the following calculation example is given. The east–west and north–south
gradient for the center cell in the 3 × 3 floating window (kernel) is defined as follows:[

∂z
∂y

]
=

[(
zi−1,j−1 + 2× zi,j−1 + zi+1,j−1

)
−
(
zi−1,j+1 + 2× zi,j+1 + zi+1,j+1

)
8× ∆y

]
, (1)

[
∂z
∂x

]
=

[(
zi+1,j+1 + 2× zi+1,j + zi+1,j−1

)
−
(
zi−1,j+1 + 2× zi−1,j + zi−1,j−1

)
8× ∆x

]
, (2)

where z represents the elevation of the eight surrounding cells and ∆x, ∆y specify the cell dimensions
in the horizontal and lateral directions, respectively (Figure 2).
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individual cells.

The slope angle is calculated with respect to the central cell i, j of the kernel window and is given
by the surface gradient module:

slope =
180
π
× arctan

√[ ∂z
∂x

]2
+

[
∂z
∂y

]2
. (3)

The slope was calculated from the SRTM3 data using the r.slope [25] algorithm within the GRASS
GIS software (version 7.4.0, Free and Open Source Software). The result is a new raster data in which
each pixel is associated with the slope angle, expressed in degrees (e.g., pixels with angle values equal
to 0 degrees represent a flat surface).

Another product derived from the DTM is the aspect map describing the orientation—with
respect to the North—of the direction of maximum slope of the plane tangent to the ground surface.
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This therefore represents the geographical exposure of the surface slope and it is obtained as the ratio,
in a grid mesh, between the two main gradients of the grid along the x- and y-axis. As for the slope
calculation, a 3 × 3 mobile window is applied to each cell (Figure 2) of the input raster and for each
cell in the center of the window the aspect is calculated using an algorithm taking into account the
values of the eight adjacent cells [26].

Consequently, the corresponding aspect is calculated with the following formula:

aspect =
180
π
× arctan

([
∂z
∂y

]
/
[

∂z
∂x

])
. (4)

The aspect is a spatial information indicating the direction or azimuth of a surface, and is measured
in degrees in a range of values ranging from 0◦ to 360◦. Values with 0◦, 90◦, 180◦, and 270◦ indicate
respectively East, North, West and South directions. The algorithm used for the aspect calculation is
r.aspect of GRASS GIS software [25], which is based on the finite difference Horn method [24] using a
3 × 3 kernel.

2.2. Methodology

This section briefly presents the downscaling technique used to improve the spatial resolution of
SRI data from AMSU-B/MHS spatial resolution to MSG-SEVIRI spatial resolution, i.e., the method
of kriging with external drift, focusing on the construction of the empirical semivariogram and its fit.
The trend used as auxiliary data to improve the downscaling process has been chosen according to the
type of precipitation, classified into convective and stratiform.

2.2.1. Downscaling Technique

The ordinary kriging method is a downscaling technique to estimate a variable of interest,
based on the spatial autocorrelation of data [27]. The value of a spatial process in a not observed site,
i.e., Ẑ(s0) with s0 /∈ s = {s1, . . . , sn}, is defined as follows:

Ẑ (s0) = λZ(s), (5)

where λ is a vector of real weights. The unbiasedness of Ẑ (s0) is satisfied by its own definition and set
the sum to weights to one, i.e.,

n

∑
i=1

λi = 1. (6)

The method of kriging with external drift, instead, also makes use of auxiliary information.
In particular, the value of Ẑ(s0) is defined as follows:

Ẑ (s0) = µ(s) + λY(s), (7)

where µ(s) is called drift or trend and it is a linear combination of deterministic functions, i.e.,
µ(s) = a f (s) with a vector of coefficients, Y(s) = (Z(s)− µ(s)) represents the residual of the random
process (assumed to be intrinsically stationary with mean equal to zero) and λ is a vector of the weights
of the corresponding residual Y(s) [27].

In both cases, the weights must be determined to minimize the estimation of the variance and
to ensure the estimator has no bias. The variance estimation of the differences between the value of
the variable under study at two different sites si and sj [27,28] is defined through a function called
semivariogram, i.e.,:

γ
(
si, sj

)
=

Var
(
Z(si)− Z

(
sj
))

2
=

E
(∣∣Z(si)− Z

(
sj
)∣∣2)

2
. (8)
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The semivariogram is a function of data variability between pairs of points at various distances
and describes the probabilistic properties of a process; it is very useful in the analysis of the spatial
dependence of a random process. The semivariogram is a continuous function in the origin, but,
in practice, it is often observed that γ(0) 6= 0 This situation is known as nugget effect (γ(0) = τ2

is called nugget) and it is linked to measurement errors or spatial resolution problems in sampling,
which in turn affect the variogram value at very small distances. Another important feature of the
semivariogram function is the sill, defined as:

τ2 + σ2 = lim
‖h→∞‖

γ(h), (9)

where σ2 is known as the partial sill (the sill minus the nugget) and h is the distance between two
different observations. In case the sill takes on a finite value, it means that the stochastic process is
weakly stationary; in addition, if this occurs for a finite value of h = h∗, then h∗ is said range of the
variogram. The range quantifies the distance over which two different observations can be considered
correlated. After the analysis of the empirical semivariogram, a fitting model must be considered to
extrapolate the spatial behaviour of the observed points to the area of interest.

In the literature, there are several theoretical semivariogram models γ̂i (e.g., linear, exponential,
Gaussian, wave and circular), with known analytical properties and physical meaning of parameters.
Once the empirical semivariogram function is defined and the different theoretical semivariogram
models are explored, it is necessary to choose a fit criterion (Appendix A), besides the graphic
inspection. These steps allow for providing the weights for the spatial interpolation through
kriging techniques.

2.2.2. Choice of the Auxiliary Variables for Kriging with External Drift

A crucial step in the method of kriging with external drift lies in the selection of the auxiliary
variables, which strongly depends on the parameter to be downscaled. In this work, we exploit
the known relationship between rainfall and orography [1], in order to identify the most important
auxiliary variables in the construction of the semivariogram. In particular, we characterize the above
relationship by testing the slope, aspect and elevation data as auxiliary variables. This choice is
mainly justified by the characteristics of the area under study, featuring a complex orography—i.e.,
a continuous alternation of mountainous areas, valleys and plains—which, in turn, affects the local
climate. As precipitation may generally be classified in convective type (characterized by strong vertical
velocity field, high rainfall intensity and small coverage area) and stratiform type (characterized by
weak vertical velocity field, lower rainfall intensity and a more homogeneous coverage area) [29,30],
we also investigated the correlation between the precipitation type and the trend to use in the method
of kriging with external drift. To this aim, we took into consideration the information provided by
MSG-SEVIRI, i.e., BT at four channels, in order to distinguish the cloud cover type within the AMSU/B
FOV. In particular, we used:

(i) BT differences between the 10.8 µm (thermal-infrared) and the 6.2 µm (water vapour) channels,
to identify deep-convection areas [11,14–17];

(ii) BT differences between the 7.3 µm (water vapour) and the 6.2 µm channels, to recognize areas of
intense precipitation [17,18];

(iii) BT difference between 8.7 µm and 10.8 µm (thermal-infrared) channels, useful to discriminate
liquid and ice cloud that could be associated with mid-level stratiform cloud (nimbostratus) and
convective clouds, respectively.

Importantly, we have firstly performed tests using one covariate at a time, and subsequently we
have used combinations of different covariates as external drift to find the combination yielding the
best estimate of surface rain intensity data. The validation results for the downscaled data indicate
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that two different trends should be used for the two analyzed rain types. In particular, the trend
combinations for the convective (TREND_CR) and stratiform (TREND_SR) rain types are:

• TREND_CR = difference between 8.7 µm and 10.8 µm channels + slope + difference between
10.8 µm and 7.3 µm channels;

• TREND_SR = difference between 8.7 µm and 10.8 µm channels + slope + difference between
7.3 µm and 6.2 µm channels.

To notice that TREND_CR and TREND_SR are the function µ(s) described in Formula (7).
The main difference between the two trend combinations lies in the last covariate used to single
out the two types of rain. The simultaneous occurrence of convective and stratiform rain in the area
under study is analysed by applying both trends on the basis of the cloud mask outcome (Classification
Mask Coupling of Statistical and Physics Methods, C-MACSP [14,30]), which acts as the initial selecting
criterion. In detail, when C-MACSP calls for convective type rain, the trend to be used is TREND_CR;
otherwise, the trend to be used is TREND_SR. We should emphasize that the combined use of
orographic features (slope, aspect and elevation) and MSG-SEVIRI data, together with the separation
depending on rain type, represents a novelty element within the realm of downscaling applications by
means of the kriging method with external drift. In addition, the results further support this approach,
since we actually find that different covariate combinations should be used to best match the rain
gauge observations.

2.2.3. Validation

The downscaled SRI data were validated against rain gauge measurements. Furthermore, to show
the improvement provided by the downscaling procedures compared to the initial data, the OPEMW
SRI were also compared against rain gauge observations. The correlation coefficient (corr), the root
mean square error (RMSE), the mean bias error (MBE) and the mean absolute error (MAE) are used
for the validation of the results obtained by kriging with external drift, considering its different drifts.
These metrics are defined as follows:

corr =
cov(p, s)

δpδs
, (10)

RMSE =

[
1
n

n

∑
i=1

(si − pi)
2

]1/2

, (11)

MBE =
1
n

n

∑
i=1

(si − pi), (12)

and

MAE =
1
n

n

∑
i=1
|si − pi|, (13)

where p denotes the rain gauges observations, s denotes the downscaled products, n is the number
of observations, cov indicates the covariance operator, δp is the standard deviation of p and δs is the
standard deviation of s.

The validation required the space-time colocation of data from the different sources. In particular,
each rain gauge rain rate has been compared with the spatially closest OPEMW value and, after the
downscaling procedure, with the closest downscaled value. With regard to the temporal colocation,
each OPEMW SRI value is associated with the time of the satellite overpass, which is an instantaneous
observation. In order to compare the rain rate measured by OPEMW SRI with rain gauge observations,
we used the 15-minute cumulative rain value, as this is the shortest time interval available for all the
considered stations, and convert it as to match the rain rate units (mm h−1).
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3. Results

The results of the validation are presented for the ten case studies listed in Table 1 These cases
correspond overall to 440 comparisons between observed and both original and downscaled rain data.

Table 1. List of case studies.

Case Data Satellite Overpass
(UTC) Case Data Satellite Overpass

(UTC)

1 30 Nov 2017 06:33 6 10 Feb 2018 07:54
2 28 Dec 2017 08:24 7 13 Feb 2018 06:58
3 02 Jan 2018 08:49 8 14 Feb 2018 12:13
4 10 Jan 2018 06:54 9 20 Feb 2018 18:32
5 12 Jan 2018 06:54 10 20 Mar 2018 17:43

The continuous statistical assessment, by means of corr, RMSE, MBE and MAE values, is reported
in Tables 2 and 3 for each case and for the whole dataset, respectively. In detail, the continuous
statistics show the comparison between rain gauge observations against the original OPEMW SRI
data, the downscaled SRI data by ordinary kriging (OK) and the downscaled SRI data by kriging with
external drift (KED), obtained using the trend producing the best results for each case.

Table 2. Continuous statistics against rain gauge observations for original OPEMW data, and data
downscaled with ordinary kriging (OK) and kriging with external drift (KED) methods.

Case MAE [mm/h] MBE [mm/h] RMSE [mm/h] corr

(OPEMW, OK, KED) (OPEMW, OK, KED) (OPEMW, OK, KED) (OPEMW, OK, KED)
1 (1.46, 1.39, 1.33) (−0.72, −1.03, −0.89) (3.08, 2.97, 2.82) (0.62, 0.73, 0.75)
2 (0.32, 0.35, 0.34) (−0.22, −0.20, −0.18) (0.69, 0.67, 0.64) (0.24, 0.32, 0.42)
3 (1.38, 1.25, 1.03) (0.45, 0.47, 0.41) (2.12, 1.82, 1.46) (0.50, 0.55, 0.72)
4 (1.17, 0.70, 0.65) (0.42, 0.60, 0.53) (2.73, 1.22, 1.15) (0.62, 0.72, 0.73)
5 (2.15, 1.55, 1.43) (0.59, 0.44, 0.38) (3.56, 2.35, 2.48) (0.48, 0.63, 0.68)
6 (3.29, 3.09, 2.35) (3.29, 3.09, 2.35) (3.92, 3.63, 2.76) (0.33, 0.33, 0.49)
7 (1.32, 0.98, 0.92) (0.29, 0.07, 0.04) (1.61, 1.13, 1.06) (0.33, 0.39, 0.41)
8 (5.21, 4.99, 4.86) (5.21, 4.99, 4.86) (6.12, 5.75, 5.53) (0.27, 0.31, 0.33)
9 (1.52, 1.52, 1.52) (−1.21, −1.39, −1.39) (2.09, 2.03, 2.01) (0.30, 0.31, 0.34)
10 (3.86, 3.59, 3.52) (3.30, 3.00, 2.94) (4.61, 4.07, 3.98) (0.31, 0.34, 0.36)

Table 3. Continuous statistics against rain gauge observations for original OPEMW data, and data
downscaled with ordinary kriging (OK) and kriging with external drift (KED) methods.

Statistics OPEMW OK KED

MAE (mm/h) 2.17 1.94 1.70
MBE (mm/h) 1.14 1.44 0.91

RMSE (mm/h) 3.05 2.58 2.38
corr 0.34 0.46 0.52

The performances of the downscaling methods should be evaluated by considering also the
original OPEMW SRI efficiency for the cases considered. The results show a reasonable improvement
of the correlation coefficient in the comparison between rain gauge observations and downscaled data,
compared to the original OPEMW SRI data. The agreement in terms of RMSE, MBE and MAE is better
for downscaled data obtained by either of the two methods. In particular, the continuous statistics
shows that kriging with external drift performs better than the ordinary kriging. In fact, the use of
auxiliary information improves the estimate of the downscaled variable by +13% (corr), −37% (MBE),
−8% (RMSE), and −12% (MAE). The computational cost to obtain estimates of rainfall data on the



Remote Sens. 2018, 10, 1763 10 of 16

MSG-SEVIRI grid, which in our case consists of a number of pixels of 698, is about 1.2 s. Time refers to
a Intel(R) Core(TM) i5-4460 CPU 3.20GHz, with 8 Gb RAM.

Among the case studies listed in Table 1, we show in detail two representative cases (5 and 7).
In Figure 3, the MSG-SEVIRI images at VIS (0.6 µm) and IR (10.8 µm) channels and the correspondent
cloud classification (C-MACSP) maps are reported for both cases. The C-MACSP maps show
convection in some areas of Basilicata for case 5, while C-MACSP detects optically thick clouds in the
same area for case 7. Therefore, no convection is present in the second case; however, visual inspection
of the temporal sequence of MSG-SEVIRI images seem to indicate midlevel clouds—under high thick
clouds detected by C-MACSP—which probably generate stratiform precipitation. The visual inspection
is necessary to identify multi-layered clouds because C-MACSP does not characterize multi-layered
clouds yet.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 16 
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Figure 3. MSG-SEVIRI images at VIS (Visible) 0.6 µm (left column) and IR (InfraRed) 10.8 µm
(middle column) and C-MACSP maps (right column) for case 5 (top row) and 7 (bottom row).
C-MACSP: clear sea (blue), clear land (green), high thin cloud (cyan), low/middle cloud (white),
high thick cloud (light grey) and convective cloud (dark grey).

Furthermore, Figures 4 and 5 show the comparison between OPEMW SRI data, rain gauge
observations and downscaled data by kriging with external drift. The continuous statistic for the two
cases considered is reported in Tables 4 and 5.
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Figure 4. Comparisons between rain gauge observations, the original OPEMW SRI and downscaled
data for the date 12 Jan 2018 at 06:54 a.m. UTC. The white circles represent the SRI measured by rain
gauges and the orange circles represent the OPEMW SRI. The symbol size represents the SRI in mm/h.
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Table 4. As in Table 3 but for data from date 12 Jan 2018 at 06:54 UTC.

Statistics OPEMW OK KED

MAE (mm/h) 2.15 1.55 1.43
RMSE (mm/h) 3.56 2.48 2.35
MBE (mm/h) 0.59 0.44 0.38

corr 0.48 0.63 0.68

Considering case 5 (Figure 4), the initial OPEMW SRI data set is composed by 33 pixels; out of
these, only 13 feature surface rain intensity different from zero. For this case, the results show a good
improvement of correlation in the comparison between rain gauge observations and downscaled
data compared to the original OPEMW SRI data (0.68 against 0.48). In addition, the agreement for
downscaled data in terms of RMSE and MAE is substantial (2.35 mm/h against 3.56 mm/h and
1.43 mm/h against 2.15 mm/h, respectively).

Considering case 7 (Figure 5), the initial OPEMW SRI data set consists of 34 pixels; however,
only 21 of these report surface rain intensity different from zero. In this case, the results show an
improvement of correlation in the comparison between rain gauge observations and downscaled data
compared to the original OPEMW SRI data (0.41 against 0.33). In addition, the agreement in terms of
RMSE and MAE is significant for downscaled data (1.06 mm/h against 1.61 mm/h and 0.92 mm/h
against 1.32 mm/h, respectively).
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Table 5. As in Table 3 but for data from 13 Feb 2018 at 06:58 UTC.

Statistics OPEMW OK KED

MAE (mm/h) 1.32 0.98 0.92
RMSE (mm/h) 1.61 1.13 1.06
MBE (mm/h) 0.29 0.07 0.04

corr 0.33 0.39 0.41

In both cases, the improvement obtained by using the auxiliary variables is evident.
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4. Conclusions

In this paper, we have applied a geostatistical downscaling procedure, i.e., the method of kriging
with external drift, in order to improve the spatial resolution of satellite-based rainfall observations
from the original resolution to finer resolution. The kriging with external drift method features
several additional advantages compared to standard kriging techniques, since it relies on auxiliary
variables-sampled frequently and regularly [31]—which may further minimize the error of the
estimation. Therefore, a crucial step in this method lies in the selection of the auxiliary variables,
which strongly depends on the parameter to be downscaled.

The known relationship between rainfall and orography [1] lead us firstly to test the slope,
aspect and elevation data as auxiliary variables. Furthermore, as precipitation may generally be
classified in convective and stratiform types, we also took into account the information provided by
MSG-SEVIRI BT observations, acquired in the water vapor band (6.2 µm and 7.3 µm) and in thermal-IR
(10.8 µm and 8.7 µm), in order to distinguish the cloud cover and precipitation types. We initially used
one covariate at a time and then a combination of different covariates as external drift to find the most
suitable combination yielding the best estimate for the data analysed. In detail, kriging with external
drift was applied to all the proposed cases study by varying the auxiliary variables and, subsequently,
analysing the validation results for each rain type separately. From this analysis, it resulted that
different auxiliary variables should be used for the two rain types. In particular, we found that the
trend for the convective (TREND_CR) rain cases is a combination of slope, the 8.7 µm IR channel and
the difference between 10.8 µm and 7.3 µm channels, whereas, for the stratiform (TREND_SR) rain
cases, the trend is a combination of the slope, the 8.7 µm IR channel and the difference between 7.3 µm
and 6.2 µm channels.

To evaluate the performances of our procedure, we considered ten case studies corresponding
overall to 440 comparisons between rain gauge observations and original/downscaled rain data.
The statistical analysis is based on the calculation of the RMSE, MBE, MAE and correlation. The results
show a reasonable improvement of the correlation coefficient in the comparison between rain
gauge observations and downscaled data, compared to the original OPEMW SRI data. In addition,
the agreement in terms of RMSE, MBE and MAE is better for downscaled data. In particular,
the results show that kriging with external drift clearly outperforms the ordinary kriging, which only
considers coordinates and distances between observations to be downscaled. In fact, the use of
auxiliary information improves the estimate of the downscaled variable by +13% (corr), −37% (MBE),
−8% (RMSE), and−12% (MAE). Therefore, the proposed methodology has produced results improving
the statistics compared to the original OPEMW SRI data as well as the ordinary kriging. Thus,
the combination of the orographic features (slope, aspect and elevation), together with MSG-SEVIRI
data, represents a novelty element that allowed us to use different covariate combination for improving
the quality and resolution of satellite rainfall observations.

Author Contributions: A.C., F.R., S.L. and E.R. designed the research, wrote the paper and contributed to
evaluation process. D.C., F.D.P., D.G., S.G., E.G., S.T.N., E.R. and M.V. contributed to data processing and analysis.
All the co-authors helped to revise the manuscript.

Funding: This work has been financed by the Italian Ministry of Economic Development (MISE) in the framework
of the SolarCloud project, contract No. B01/0771/04/X24.

Acknowledgments: The authors acknowledge the Functional Center Decentralized (FCD) of Basilicata for
providing data from the rain gauge network.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Appendix A

This appendix describes the analysed criteria for the choice of the theoretical semivariogram model.
Given a stochastic process, several theoretical semivariogram models exist describing the features of
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the process, with known analytical properties and physical meaning of the parameters [31]. In the
following, a theoretical semivariogram model will be denoted with γ̂(h, θ), where θ =

{
σ2, a, τ2} is the

set of the specific sill, range and nugget parameters, respectively. Once the empirical semivariogram
function γ has been defined, it is necessary to choose a fit criterion for γ. In particular, the problem of
finding the best γ̂ for a given γ can be reduced to estimate the best set θ. In the literature, different
ways are proposed to fit the empirical semivariogram to a semivariogram model, e.g., the generalized
least squares methods.

In the R software, the package geoR provides xvalid, which is a function to perform model
validation by comparing observed and predicted values. In particular, this function helps to determine
the theoretical semivariogram that best fits the empirical semivariogram. In this work, we have also
implemented a procedure for the fitting of empirical semivariograms, for comparison with the geoR
tool. This procedure consists of six selection criteria that have been previously defined and tested in the
context of a more complex study that involves the downscaling of different meteorological variables.

The six selection criteria choose γ̂ by searching for the value of γ̂i that minimises

1. the difference between the nugget values of γ and γ̂i;
2. the difference between the partial sills values of γ and γ̂i;
3. the difference between the range values of γ and γ̂i;
4. the RMSE between γ and γ̂i;
5. the value of the sum of the differences determined at points 1-2;
6. the value of the sum of the differences determined at points 1-2-3-4.

The statistical assessment of the six selection criteria proved that criterion 6 is the most effective
and, consequently, we used it in this study. The results obtained by applying criterion 6 were compared
with those obtained by using xvalid, and they generally agree except for some cases in which criterion
6 performs better as shown in the example of Figure A1.
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model (lines) chosen by using criterion 6.
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Table A1. Identity code (ID), location and altitude of ground observation stations.

ID Rain Gauge Longitude
(deg north)

Latitude
(deg east) Elevation (m)

1 ABRIOLA A SELLATA PIERFAONE 15.76106 40.50064 1463
2 ALBANO DI LUCANIA 16.03541 40.58202 758
3 ANZI SIMN 15.91608 40.5167 929
4 AVIGLIANO 15.47889 40.75972 592
5 BALVANO 15.5015 40.64956 385
6 BASENTO FREATIMETRO 16.78119 40.36838 9
7 BRADANO PONTE COLONNA 16.16268 40.73881 213
8 BRIENZA 15.64131 40.47969 786
9 CASTELSARACENO PC 15.98547 40.16081 1090
10 CASTROCUCCO 15.80183 39.99217 142
11 CAVONE SS106 16.72739 40.29586 13
12 CRACO PESCHIERA 16.52011 40.36642 57
13 EPISCOPIA 16.09883 40.0667 578
14 FERRANDINA SP 16.45156 40.48611 457
15 GORGOGLIONE 16.11419 40.40786 1051
16 GRASSANO SP 16.27011 40.63236 486
17 GRUMENTO-PONTE LA MARMORA 15.84508 40.30835 552
18 IRSINA PC 16.23947 40.74858 552
19 LAGONEGRO PC 15.76206 40.13419 791
20 LAURENZANA 15.97322 40.45678 814
21 LAVELLO 15.78608 41.04806 304
22 MARATEA MASSA 15.73597 39.98358 492
23 MARSICO NUOVO PC 15.72939 40.4265 747
24 MATERA 16.59539 40.65969 403
25 MONTESCAGLIOSO SIMN 16.66371 40.56673 162
26 MURO LUCANO 15.48673 40.75361 586
27 NOEPOLI 16.32989 40.08975 556
28 OFANTO A MONTICCHIO 15.50351 40.90276 322
29 OPPIDO LUCANO 15.98543 40.76388 747
30 PICERNO 15.63724 40.63771 655
31 POTENZA 15.80161 40.63703 820
32 ROCCANOVA 16.19922 40.21056 704
33 ROTONDA SIMN 16.03237 39.95003 557
34 SINNI A VALSINNI 16.4399 40.17283 152
35 SINNI SS106 16.64803 40.16556 15
36 STIGLIANO 16.50908 40.40836 150
37 TERRA MONTONATA 16.75283 40.30469 7
38 TERRANOVA DI POLLINO SIMN 16.30374 39.97981 936
39 TITO 15.65703 40.57425 661
40 TORRE ACCIO 16.65694 40.39072 19
41 TRAMUTOLA 15.77394 40.32528 662
42 TRICARICO SIMN 16.14868 40.61671 682
43 TURSI 16.47469 40.25375 264
44 VENOSA 15.80325 40.95986 430
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