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Abstract: A variety of canopy metrics were extracted from the snow-off airborne light detection
and ranging (lidar) measurements over three study areas in the central and southern Sierra Nevada.
Two of the sites, Providence and Wolverton, had wireless snow-depth sensors since 2008, with the
third site, Pinecrest having sensors since 2014. At Wolverton and Pinecrest, images were captured
and the sky-view factors were derived from hemispherical-view photos. We found the variation
of snow accumulation across the landscape to be significantly related to canopy-cover conditions.
Using a regularized regression model Elastic Net to model the normalized snow accumulation with
canopy metrics as independent variables, we found that about 50% of snow accumulation variability
at each site can be explained by the canopy metrics from lidar.
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1. Introduction

The snowpack in California’s Sierra Nevada has long served as the primary water resource
for agricultural and urban uses [1]. For seasonal forecasts following the onset of snow melt, the
estimation methods are turning from statistical estimates that use historical records to spatio-temporal
water-balance estimates with integrated time series and spatial data [2,3]. Quantifying the
spatio-temporal distribution of snow accumulation enables more-accurate forecasts of snow melt
and streamflow, especially in a warming climate as statistical relations broke down; and it is also
a long-standing challenge in snow hydrology [4,5]. In the high Sierra, orographic effects drive
solid-phase precipitation falling over mid-to-high elevations [6,7]. During the snow-accumulation
period, vegetation intercepts snowfall, causing the snowpack to distribute unevenly under the
canopy. In boreal forests, as much as 60% of cumulative snowfall may be intercepted by forest canopy
in mid-winter, and annual sublimation losses can be 30–40% of annual snowfall [8,9]. In mixed-conifer
forest, both observations and modeling results have shown that canopies can reduce 10–25% of
total snow accumulation in surrounding open areas; and the reduction can be 30–40% for snow
accumulation under canopy [10]. The canopy effects are also found to vary with local landscapes [11].
Accurately quantifying canopy interception of snowfall is the foundation to estimate the total
accumulation and snow melt with higher accuracy and precision during the spring season.

The canopy interception of snowfall can be quantified as the snow-storage capacity of the canopy
and interception efficiency (interception/snowfall). The snow-storage capacity is the maximum
amount of snowfall that can be intercepted by the canopy. It is determined by the leaf area, tree species,
and initial canopy snow load [12]. The interception efficiency is found to decrease with increasing
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snowfall, initial canopy snow load and temperature. It has been observed to increase with leaf-area
index (LAI) and canopy coverage [8,13].

The coniferous canopies interception of snowfall is challenging to directly measure and quantify,
which has led to interception being inferred from snowfall patterns on the ground, as noted above.
Previous studies designed special weighing devices such that the weight of the intercepted snow
and accumulated snow can be measured at the same time. The total snow interception is found
to be correlated with the season or event snowfall [8,12]. Similar findings were observed from
simulating the snow evolution by using energy balance models with canopy metrics [14–16]. Thus,
several process models have incorporated this statistical finding to estimate canopy-cover effects on
snow accumulation [17–20].

A common approach to calculate canopy interception uses canopy metrics that are highly
correlated with snow accumulation. Retrieving canopy metrics has advanced in recent years.
The technology has been advancing from the traditional plant-canopy analyzer [18,21–24],
to hemispherical-view camera [25,26], and recently, to lidar [27,28]. The plant canopy analyzer was
commonly used for retrieving the LAI in the forest. By using the hemispherical-view camera, the pixels
of an image can be classified as either canopy-covered or clear; and thus the percentage of clear
view for each zenith angle can be quantified as the sky-view factor, which was also found to be a
statistically significant predictors for parameterizing snowfall interception in process models [25,29].
The point-cloud data collected using lidar can be used for reconstructing the 3-dimensional canopy
structures if the point-cloud is sufficiently dense. Algorithms have been developed for deriving LAI
from lidar point clouds, and additional canopy metrics from lidar often get derived for quantifying the
snowfall interception [30].

In addition to canopy-metric retrieval from lidar, canopy effects can also be quantified using
statistical models, with dense spatial measurements of snow depth or snow water equivalent
(SWE) [28,29]. Most previous studies were conducted using lidar measurements, either airborne or
terrestrial. Both the airborne and terrestrial lidar can provide dense spatial snow-depth measurements
(>10 pts/m). With the extensive footprint provided by airborne lidar scans, the canopy effect on
snowpack spatial distribution can be quantified with large samples. Terrestrial lidar has a much
smaller footprint compared to airborne lidar [31], however, it is able to provide multiple scans per
season. Thus the temporal variation in canopy effects can also be determined.

One short coming in using lidar is that it can lack temporal completeness, especially during the
precipitation season, when cloud cover limits taking measurements. Lidar also requires clear-sky
conditions to take measurements to prevent the laser pulse intensity from attenuating because of rain
drops and snow flakes [32]. A dense cluster of snow-depth sensors can compensate the weakness
of lidar in terms of temporal consistency. Combining the vegetation structures derived from lidar
measurements and continuous snow-depth measurements, there is potential for the spatial variation
of snow accumulation to be accurately quantified. In our study, we used long-term spatially dense
snow measurements in the Sierra Nevada, together with the lidar-derived canopy metrics, to study the
canopy effect on seasonal snow accumulation.

The overall aim of the work reported here is to explain and predict the spatial variability of snow
accumulation using lidar-derived canopy metrics and clustered snow-depth sensor measurements.
We address two major question. First, to what extent can one use lidar-derived canopy metrics
to predict the snow accumulation spatially? Second, what is the relative importance of various
lidar-derived canopy metrics?

2. Methods

2.1. Study Areas and Snow-Depth Sensor Data

The study was conducted over three areas in California’s central and southern Sierra Nevada
(Figure 1a). For each study area, snow-depth sensors (Judd Communications) were deployed in
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clusters (Figure 1b,c; Table 1), with topographic characteristics (elevation, aspect) varying between
clusters and canopy-cover conditions varying within each cluster. The snow-depth sensors have an
accuracy of ±1 cm, with measurement range of 0.5 to 10 m and beam width of 22 degrees. All study
sites encounter wet winter for most of the years because of their proximity to the Pacific. Due to
the orographic effect, most precipitation falls as rain at elevations below 1500 m and as snow above
2000 m [28]. The date of peak snow-accumulation is commonly recognized as 1 April [1]. Pinecrest,
located in the Stanislaus-Tuolumne Experimental Forest, is the lowest in elevation and is also relatively
flat. The lower site of Providence has a similar elevation range as Pinecrest, and the upper site is 200 m
higher. Wolverton, the highest of the three study areas, receives mainly snow, whereas Providence and
Pinecrest receive precipitation as both rain and snow. There were 12 sensors installed at Pinecrest in
2014, 27 sensors at Providence, and 25 sensors at Wolverton, installed in 2008. All time-series data are
shown in Figure S1.

Figure 1. (a) The study areas locations in the Sierra Nevada of California. Snow-depth sensor locations
around the (b) lower met stations and (c) upper met stations in the Providence site.

Table 1. Elevation information of each site and time-series data availability.

Site Sub-Site Elevation, m Data Availability, Water-Year a

Pinecrest Upper 1808–1834 2014–2017
Lower 1748–1778 2014–2017

Providence Upper 1975–1984 2008–2016
Lower 1730–1740 2008–2016

Wolverton

Site1 2225–2227 2008–2016
Site2 2250–2266 2008–2016
Site3 2590–2602 2008–2016
Site4 2630–2648 2008–2016

a Water year begins on 1 October of the previous calendar year, e.g., water year 2014 begins on 1 October 2013.
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2.2. Lidar Data

The lidar survey was performed in August 2010. The flight parameters and sensor settings are
described in Table 2. The point-cloud lidar data were used for generating raster data sets. The raw
point-cloud files, we divided them into 250× 250-m tiles using LAStools lidar-processing software [33].
For all data points in the point-cloud data set, each one of them has a classification attribute and the
data point was a laser return from the ground if the classification attribute equals 2. We extracted the
ground points from each tile and interpolated them into a 0.5-m resolution digital elevation model
(DEM) using a simple kriging model with a spherical covariance function [34]. The 250 × 250-m DEM
tiles were mosaic-ed together to form a single DEM of the study area. A digital surface model (DSM)
was generated from all first returns of the lidar point cloud. Subtracting the DEM from the DSM
produces the canopy-height model (CHM). Individual trees were segmented out from the CHM using
a watershed-segmentation algorithm implemented in SAGA GIS software [35]. The segmentation was
conducted after applying a Gaussian filter with a 3× 3 moving window to fill pits in CHM and suppress
irrelevant local maximas [36,37]. Over each snow sensor location, canopy metrics, including mean
canopy height, standard deviation of canopy height, and canopy-cover fractions, were extracted at
search radii from 2 to 40 m at 1-m increments. These canopy metrics were calculated by masking
out the circular area with certain radius around the snow-depth sensor location. The canopy-height
statistics were calculated with the CHM pixels that are within the circular area. The canopy-cover
fractions were determined by calculating the percentage of canopy pixels within the circular area.
The canopy pixel is classified from the CHM if a pixel value is greater than 2 m [28]. The distance
from the sensor location to the closest tree trunk was also calculated by using the segmented-tree
information. In total we derived more than 100 canopy metrics from the above methods.

Table 2. Flight parameters and sensor settings a.

Flight Parameters Equipment Settings

Flight altitude 600 m Wavelength 1047 nm
Flight speed 65 ms−1 Beam divergence 0.25 mrad
Swath width 233.26 m Laser PRF 100 kHz
Swath overlap 50% Scan Frequency 55 Hz
Point density 10.27 m−2 Scan angle ±14◦

Cross-track resolution 0.233 m Scan cutoff 3◦

Down-track resolution 0.418 m Scan offset 0◦

a Lidar-survey flights were operated by NCALM, and point-cloud data were produced based on their
processing software.

2.3. Canonical-View Images

The canonical-view images, are the hemispherical photos taken at each snow-depth sensor.
The sky-view factors ( f , SVF) at each individual zenith angle θ were derived from the raw image,
with each pixel classified into binary representation of sky and non-sky elements. Within each zenith
angle, the SVF was estimated by the ratio of the number of sky pixels and the number of total pixels.
An example of the canonical-view image and the estimated SVF is shown in Figure 2. The total
sky-view factor at each sensor node was also estimated using the equation below [29,38],

ftot =

∫ θ=90
θ=1 sin(θ) f (θ)∫ θ=90

θ=1 sin(θ)
(1)

The sky-view-factor data are available for Wolverton and Pinecrest. Considering that only 6 sensor
locations at Pinecrest have the images, the data available are not enough to build robust statistical
models, so Pinecrest is not included in analysis with the sky-view factors. We included the total
sky-view factor and the sky-view factors at each zenith angle as independent variables for modeling
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the snow accumulation observed at each sensor location. The results are compared with the modeled
results that use lidar-derived canopy metrics as predictors.

10˚
30˚

50˚

70˚

90˚
(a)

(b)

Figure 2. (a) An example of the canonical-view image at node F72 in Pinecrest, with zenith angles at
10◦ increment specified. (b) SVFθ estimated from the image in (a), across the full range of zenith angles
from 0◦ to 90◦.

2.4. Snow Accumulation Events Detection

The data availability over time for each site is shown in Table 1. We studied the canopy effect on
snow accumulation using the following procedure (Figure 3).

1. Get the moving average of each snow-depth time series with a window size of 2 days.
Then calculate the 1st order gradient of the time series. This made estimates less vulnerable
to high-frequency noise in the snow-depth data.

2. The 1st-order gradients over all sensors, were used to calculate the x% quantile of the gradient.
The quantile statistic was then compared with a pre-configured threshold to determine if most
sensors observed snow accumulation. Neighboring accumulating days were then grouped together
to form a single event.

3. For snow-accumulation event detection, we set the quantile for snow accumulation as 30%.
It means that if 30% of sensors show an ascending trend in one day, we can classify this day
as an accumulation day.

4. The daily gradient thresholds were also need to be optimized, along with the gap length between
two adjacent snow accumulation dates. The optimized threshold for snow accumulation events
is 0.1 cm. If two snow accumulation events were temporally close, we used the following rule to
determine if the two neighboring events can be merged together or not.
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For snow-accumulation events, the optimized way to combine two neighboring events is to first
judge if the length of gaps between two events are shorter than one third of the sum of length of two
events. Then, if the snow depth data for most sensors does not show a descending trend during the
gap period, the two close events were combined into one.

Input: multivariate
time-series of snow

depth

30% quantile < 0.1 cm
No accumulation for

this day

Moving average &
compute gradient

Iterate over
each time stamp,

calculate the
30% quantile

30% quantile > 0.1 cm
There is snow

accumulation for this
day

Merge consecutive
accumulation days into a

single event

Calculate gap
length between

neighboring
events

Gap length < 1/3 total
events length:

Merge neighboring
events

Output: a list of snow
accumulation events

Figure 3. The block diagram of the snow accumulation detection algorithm.

The parameters that were used in the above steps were derived from a sensitivity analysis.
The analysis was performed based on the snow-depth time series collected from Wolverton in water
year 2010. We manually extracted the snow-accumulation periods from the multivariate time-series
data and used the extracted periods as the standard to be compared with. The analysis was conducted
in a Monte Carlo manner, with parameters randomly drawn from their predefined sets. The algorithm
classifies each day of the water year as either an accumulation day or non-accumulation day.
Comparing the results produced from the algorithm to the manually extracted periods, we calculated
precision and recall as the classification accuracy for the entire year. We used these two metrics to
determine the near-optimal parameter set that was used.

2.5. Statistical Analysis

All extracted accumulation events were used for statistical modeling, with features derived
from the lidar data and the sky-view factors derived from the canonical-view camera images.
We conducted regression analysis to study if canopy metrics can be used as predictors for estimating
snow accumulation at various canopy-covered conditions. For each individual accumulation event,
the total snow accumulation at each sensor node was estimated as ∆H = Hk − H0 where Hk is the
snow-depth at the last time step and H0 is the snow depth when the precipitation event started.
Considering topographic effects on precipitation along the elevation gradient, we offset the total solid
precipitation for each individual event at each site using elevation. For all study sites, the sensors
were clustered in a lower-elevation site and a upper-elevation site. We calculated the mean snow
accumulation at both clusters and we subtracted the absolute difference of the two averages from
the snow accumulations at the upper site to derive the offset accumulations. The offset results
were standardized to the range of 0–1. The detrended target values are regressed using Elastic Net



Remote Sens. 2018, 10, 1769 7 of 15

(implemented in Python Scikit-Learn [39]), which is a regularized regression method that linearly
combines both L1 and L2 penalties in the regression model. We assumed a linear regression problem
defined as:

y = Xβ + ε (2)

where y is the target value and X is the matrix of all covariates. The regression coefficient β̂ can be
estimated with:

β̂ = arg min
β

(‖y− Xβ‖2 + λ2‖β‖2 + λ1‖β‖1) (3)

where λ1 and λ2 are the weightings for the L1 and L2 regularizations, respectively. The Elastic Net was
chosen over other regularized regression approaches for its ability to address correlated covariates and
high numbers of covariates [40,41]. We have also considered nonlinear and ensemble models, such as
the Random Forest regression, but the performance was not as good as the Elastic Net regression
(results not shown). In our case, the canopy metrics can be highly correlated when the search radii are
close and the number of covariates included in our analysis is more than 100.

In order to have representative estimates of how much variability can be explained by the Elastic
Net model we used bootstrap to resample the data for 20 iterations and estimated the cross-validated
coefficient of determination (R2) within each iteration. The distribution of the R2 was estimated from
multiple bootstrapping results.

We also applied correlation analysis to explore the most-informative radius of lidar-derived
canopy features and the most-informative zenith angle of the sky-view factors from the canonical
view images. We computed the correlation between the snow accumulation from each individual
event and the lidar-derived mean canopy height at various search radii and at various zenith angles.
The correlation coefficients (R) were compared at various radii and angles to select the optimal radius
and zenith angle. Considering that Pinecrest has a relatively short record, most of which is during a
recent drought, we did not conduct the analysis for Pinecrest. Also, camera images are not available for
Providence, thus we only conducted radius dependency analysis at that site. At Wolverton, we selected
a few near-optimal searching radii and zenith angles. We used these selected variables and conducted
a step-wise linear regression with forward selection [42] for exploring the relative importance between
variables. We used step-wise linear regression rather than other embedded feature selection approaches
in order to show the results from s perspective of correlations.

3. Results

3.1. Snow Accumulation Events Extracted from Snow-Depth Time Series

Before running the snow-accumulation detection algorithm on all time series, we performed a
sensitivity analysis on the 2010 time-series data from Wolverton. We found that as long as the gap
length is about 1/3 of the total length of the neighboring events, with the snow-accumulation rate
threshold being more than 0.1 cm and less than 1 cm, and the quantile of the snow-accumulation
sensors being in between 30% to 50%, both precision and recall are higher than other parameter sets
(see Figure S2 for analysis results.)

We applied our snow-accumulation events-extraction algorithm on all snow-depth sensors for
all time periods when cleaned snow-depth data were available. The performance of the detection
algorithm is similar to manual extraction, done previously for some years (data not shown). As shown
in Figure 4, the algorithm is able to detect most major snow-accumulation periods. A summary of
accumulation events for each site is shown in Table S1 and the distribution of the magnitude of the
accumulation at each study area is shown in Figure S3. Wolverton has more events because it is at
higher elevations. At the time of this analysis, 2016–17 data were not available for Wolverton.
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Figure 4. Snow accumulation events extracted using the accumulation detection algorithm, for Wolverton
in water year 2009. Color lines are used to distinguish time series from different sensor nodes.

3.2. Statistical Modeling Results

The variability that the Elastic Net model can explain over the three sites is shown as in Figure 5.
The uncertainty range of the variability that can be explained by the Elastic Net model is much larger
for the Pinecrest (0.55 on average and ±0.1 of variation) analysis than the other two areas (0.45 on
average at Providence and 0.25 on average at Wolverton, and ±0.05 of variation for both). Note that
Pinecrest is the lowest and Wolverton the highest elevation of the 3 sites.

At Providence and Wolverton, excluding the minor accumulation events (≤15 cm) can increase the
variability that can be explained by the Elastic Net model, with more than 50% explained at Providence
and 40–50% explained at Wolverton (Figure 6a,b). Due to the fact that for minor accumulation
events the signal strengths are not greater than the uncertainty range of the snow-depth sensors,
including these data points will degrade the performance of the Elastic Net model. At Wolverton,
the spatial variability of snow accumulation that can be explained reaches the maximum when the
mean snow accumulation is between 15 cm and 30 cm (Figure 6b). At Pinecrest, no particular trends
can be observed, as the number of data points is limited. When including most of the data points,
the variability explained stabilized around 40–60% (Figure 6c).

Pinecrest Providence Wolverton
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Figure 5. R2 distribution of the trained Elastic Net model over three sites that calculated by predicting
the total precipitation using the vegetation variables.
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For Wolverton, the only study area that both SVF and lidar are available, the trends in Figure 6b
show that R2 is the maximum when the threshold is above 15 cm. We thus filtered the data with mean
precipitation that are below 15 cm. We conducted three sets of analysis, including using lidar-derived
canopy metrics as the predictors, using SVF as the predictors, and using both lidar and SVF as the
predictors in the Elastic Net model. As shown in Figure 7, the coefficient of determination calculated
from 20 bootstrapping runs of predicting the snow accumulation suggests that the trained models are
more accurate in predicting the total snow accumulation at the unobserved sensor locations if using
lidar-derived variables because the variability of the R2 is larger than that using sky-view factor. Also,
the third box-plot of this figure suggests that using both lidar-derived variables and sky-view factors is
only as good as just using lidar, indicating that the sky-view factors do not provide more information
than lidar in terms of predicting snow accumulation.
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Above threshold

10 20 30 40
Mean precipitation threshold, cm

(b) Wolverton

10 20 30 40

(c) Pinecrest

Figure 6. R2 over three sites vs. mean accumulation across sensors at (a) Providence, (b) Wolverton, and
(c) Pinecrest. The analysis were performed by setting a threshold the total precipitation, with regression
analysis conducted for events above the precitation threshold and below the threshold, separately.
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Figure 7. R2 distribution of the trained Elastic Net model over Wolverton that calculated by predicting
the total precipitation using the lidar-derived canopy variables, sky-view factors that were derived
from canonical-view photos, and both types of variables.

The canopy-related variables derived from lidar and canonical-view images are compared based
on the correlation coefficients between the total solid precipitation and the canopy attributes over each
individual event across sensors, as well as the step-wise linear regression. The correlation analysis
(Figure 8a) shows that the surrounding canopies have a stronger effect on the snow accumulation on the
ground than does the canopy right above. The canopy mean height within a 15-m radius at Providence
is the most effective distance, while the optimal radius is about 8 m at Wolverton. For sky-view
factor, the optimal zenith angle is about 21◦ at Wolverton. In Figure 8a, we identify each individual
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precipitation event by the transparency of each curve, from which we can see that heavier storms have
more dominant weights for characterizing the canopy effects at different search radii from lidar data
and zenith angles from canonical-view photos. In addition, the step-wise regression analysis (Figure 8b)
conducted on the selected optimal variables of lidar-derived and canonical-view imagery features
suggest that the canonical-view imagery features are more important and the marginal information
that lidar provides is limited comparing to the first canonical-view imagery feature selected.

The canopy-cover information is slightly more important than canopy-height metrics,
which include tree heights and tree-height standard deviations. This was verified by correlation
coefficients in the regression analysis between snow accumulation and both tree height at incremental
search radii and SVF at incremental zenith angles. In general, SVFs are more correlated with snow
accumulation than is tree height. The step-wise regression analysis also suggests that the sky-view
factor at the optimal zenith angle, is more important than is tree height at the optimal search radius.
Although the tree height is an important metric characterizing trees in the forest, it does not necessarily
represent the density and interception capacity of the canopy. Even though sky-view factor only
represents the canopy-cover condition at the lowest layer of canopy, it is still a direct index representing
the interception capacity of part of the tree crown. In contrast, the tree height does not necessarily
represent the interception capacity, which is the reason that the lidar-derived variables are not as
important as the sky-view factors. Please note that having a few important variables does not guarantee
more-accurate estimates in snow accumulation. Combining all lidar-derived variables together, we have
made more-accurate estimates of snow accumulation than using the sky-view factors (Figure 7).

In addition, we compared the correlation coefficient between different types of lidar-derived
canopy-related features and the snow accumulation over different sensor nodes. The features include
mean canopy height over the search radii, standard deviation of the height, maximum canopy
height, and canopy coverage. As is shown in Figure 9, the amount of data at Pinecrest is not
enough to draw solid conclusions. At Providence and Wolverton the correlation coefficient is a
concave shaped function of both canopy-height mean and canopy coverage at various searching
radii. The maximum canopy height at the smallest search radius correlates the most with the snow
accumulation. The standard deviations of the canopy heights at various search radii show contrast
trends at Providence and Wolverton.

(a)

(b)

Figure 8. (a) The correlation coefficients estimated between the total precipitation of each event
(precipitation magnitude shown in gray scale) and the lidar-derived mean canopy heights over
incremental search radii, or increasing zenith angle of sky-view factors (The first two panels are
for the lidar-derived mean canopy heights from Providence and Wolverton, respectively. The third
panel is for the sky-view factors from Wolverton). (b) Coefficients of determination estimated from the
step-wise linear regression using both lidar-derived mean canopy heights and sky-view factors.
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Figure 9. Correlation coefficients between different types of lidar-derived vegetation attributes and total
precipitation of each event over increasing search radius used in calcualating the attribute from lidar.
The red curves represent the mean correlation coefficients across all precipitation events. The darkness
of gray curves represent the magnitude of each precipitation event.

4. Discussion

4.1. Canopy Effect at Different Elevations

Among the three sites studied, the variability of snow accumulation that the canopy-related
variables can explain varies from site to site and also depends on the mean cumulative precipitation
over the entire event. The difference between sites can be attributed to different elevations, as the
canopy-cover density decreases as elevation increases and the solid-phase precipitation increases with
elevation. For example, the instrumentation locations at Pinecrest and Providence are at much lower
elevations compared to Wolverton. About 40% of snow-accumulation variability is attributable to the
canopy effects at these two sites, however only 25% can be explained over Wolverton. This suggests
that at higher elevations, where precipitations is heavier, the canopy effects can be diluted by the heavy
snowfall, which is similar to previous findings [13], where total interception of snowfall saturated when
the total precipitation reached certain thresholds for different tree species. In addition, we observed
some noise introduced by the low-precipitation events in the regression analysis [11]. Figure 6 suggests
that the spatial variability of precipitation is less explainable by the canopy-related variables when the
total precipitation is small.

The difference of the canopy effect on snow accumulation at the lower elevations is also affected
by the rain-on-snow events. Analyzing rain-on-snow events would need more meteorological
data, especially temperature and relative humidity, for estimating the rain-snow partition along
the elevation gradient [43]. A rain event can accelerate snowmelt by altering the energy balance of
the snowpack [44,45]. As such, the snow accumulation during mixed rain and snow events reflects
the net of snow precipitation and snowmelt. The spatial patterns of total snow accumulation at each
location need to be analyzed with a full surface-energy-balance model such that canopy effects on
accumulations can be described.
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4.2. Forest Thinning Effects on Snow Accumulations

At Pinecrest, considering that not all sensor locations have sky-view factors, we used multi-year
snow-depth data from surveys and the sky-view factors for all survey locations, comparing correlation
patterns observed from this site with Wolverton. Similar to Figure 8a, in Figure 10 we see that the
adjusted R2 peaked around a zenith angle of 30◦. Over the snow survey locations, the forest above has
been thinned the same amount, but with either even density or heterogeneous density. It seems that
even thinning has a greater impact on canopy effects, as the correlation coefficient is close to zero for
most zenith angles except when the angle approaches 90 degrees. The thinning with variable forest
density holds a similar pattern comparing to the control group, with adjusted R2 peaked around a
zenith angle of 30–50◦. But the magnitudes of correlations are smaller during the dry years (2013–2014).
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Figure 10. Adjusted R2 versus zenith angles between snow depth and sky-view factor over four years
at Pinecrest.

Comparing lidar-derived canopy metrics at increment radii, Figure 9 suggests that the most
important canopy structures may not be the canopy layers right above the measured locations.
The canopy surrounding within a few meters could be even more important, as the interception capacity
can be larger when the trees are clustered together versus for a single tree. Our findings are aligned
with what was found previously [11,12]: multi-layered forest cover increases canopy-interception
efficiency, resulting in significant reductions in subcanopy snow accumulation. Even thinning will
make the trees evenly spaced [46], and as such the number of forest layers will be greatly reduced,
with commensurate reduction in canopy interception of snow. This is the reason that the snow depth
is not correlated with the SVF at any zenith angles in the evenly thinned forest at Pinecrest, while the
control group and the forest with variable density still retain multi-layered canopies.

4.3. Potentials to Extend the Analysis

The integrated sensing system, including lidar, canonical-view images, and ground measurements,
allowed us to study canopy effects on snow accumulations. The snow-accumulation detection
algorithm can be applied to most mountainous areas that have seasonal snow, with minor tuning of
parameters to fit the local snow-accumulation patterns. However, the current statistical analysis is
limited to only canopy effects, and did not address the interactions between canopy and terrain or
canopy and meteorological conditions. Although the current statistical model trained with canopy
metrics can explain about 50% of the snow-accumulation variability, more may be explained when
local topography and meteorology are considered. For canopy-terrain interactions, a spatially denser
deployment of snow-depth sensors is needed in order to build relationships between terrain and
snow that are statistically significant. For meteorological data, other than air temperature and relative
humidity mentioned in Section 4.1, wind distribution is also important as it affects canopy interception,
snow unloading from the canopy, and snow redistribution in the forest [8,12]. We did not include
wind in our analysis, as there is limited wind monitoring on site and the wind effect is negligible in
the Sierra Nevada [30], but wind can be important for regions like the Alps and the Rocky Mountains.
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5. Conclusions

We found correlations between the lidar-derived canopy attributes and snow accumulation
extracted from the multi-year time-series snow-depth measurements. The correlation is stronger when
the precipitation event has more than 15 cm of snow accumulation. And the correlation is also much
stronger at a lower elevation (<2000 m) because of denser vegetation. Although the lidar-derived
canopy attributes are complementary to sky-view factors in explaining the snow-accumulation
variability, the sky-view factors at certain zenith angles are more important than lidar-derived variables
in terms of correlation. According to the correlation analysis using lidar-derived canopy metrics at
various search radii, the canopy surrounding the snow surface within 8-m radius is more important
than canopy structures within either smaller radius or larger radius, indicating that a clustered canopy
effect is stronger than is canopy of a single tree. The above findings suggest great potential of using
lidar and ground measurements for studying canopy effects on mountain snowpack.
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