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Abstract: The monitoring of earthquake events is a very important and challenging task. Remote
sensing technology has been found to strengthen the monitoring abilities of the Earth’s surface at a
macroscopic scale. Therefore, it has proven to be very helpful in the exploration of some important
anomalies, which cannot be seen in a small scope. Previously, thermal infrared (TIR) anomalies have
been widely regarded as indications of early warnings for earthquake events. At the present time,
some classic algorithms exist, which have been developed to extract TIR anomaly signals before the
onset of large earthquakes. In this research study, with the aim of addressing some of the deficiencies
of the classic algorithm, which is currently used for noise filtering during the process of extracting
tectonic TIR anomalies signals, a novel TTIA (tectonic thermal infrared anomalies) algorithm
was proposed to characterize earthquake TIR anomalies using the Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature dataset (MOD11A2). Then, for the purpose
of determining the rule of the TIR anomalies prior to large earthquake events, the Qinghai-Tibet
Plateau in China was chosen as the study area. It is known that tectonic movements are very active in
the study area, and major earthquakes often occur. The following conclusions were obtained from
the experimental results of this study: (1) The TIR anomalies extracted using the proposed TTIA
method showed a very obvious spatial distribution characteristic along the tectonic faults, which
indicated that the proposed algorithm had distinctive advantages in removing or weakening the
disturbances of the atectonic TIR anomalies signals; (2) The seismogenic zone was observed to be
a more effective observation scale for assisting in the deeper understanding and investigations of
the mid- and short-term seismogenic and crust stress change processes; (3) The movement trace of
the centroids of the TIR anomalies on the Tibetan Plateau three years prior to earthquake events
contributed to improved judgments of dangerous regions where major earthquakes may occur in
the future.

Keywords: tectonic thermal infrared anomalies; wavelet transform; TTIA algorithm; earthquake events

Remote Sens. 2018, 10, 1941; doi:10.3390/rs10121941 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2565-1013
http://www.mdpi.com/2072-4292/10/12/1941?type=check_update&version=1
http://dx.doi.org/10.3390/rs10121941
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1941 2 of 33

1. Introduction

Earthquake events bring enormous disasters to human society. Therefore, the monitoring of
earthquakes is a huge and challenging task with great significance. Traditional earthquake monitoring
techniques can only observe the systems of the Earth at very local positions (i.e., deformation
observation and underground water temperature and level, outflow, and hydrogen ion exponent
(pH), etc. from the ground site) [1–4], which limits the observations of environments with seismic
activities at a macroscopic level. Meanwhile, remote sensing technology has been found to strengthen
the monitoring abilities of the Earth’s surface at a macroscopic level [5–7]. Therefore, these new types
of technology have opened up a new era for earthquake monitoring by simultaneously obtaining
large amounts of information concerning the dynamic features of the Earth’s crust and seismic
activities [8–14].

Enhanced thermal infrared (TIR) emissions from the Earth’s surface preceding an earthquake,
which are often perceivable by remote sensors, can be referred to as a thermal anomaly [8,9,15–23].
TIR anomalies have been widely reported [16–20] to occur prior to some of the major earthquake
events in the past 20 years using satellite data, among which Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data are the
most widely used [3,5,7–9,20–43]. Some researchers [2,8,21,43] have pointed out that the TIR anomalies
are associated with fault systems or main tectonic regions. These observations have been regarded
as important potential earthquake indicators, and have assisted in the predictions of earthquake
occurrences. This strategy has attracted a great deal of attention from researchers during recent years,
and has contributed to intense discussions on the mechanisms of precursory anomalies [3,44–49],
which can be attributed to degassing from rocks under stress, and the participation of ground
water have been propounded as a possible cause for generation of TIR anomalies or to p-hole
activation in the stressed rock volume and their further recombination at the rock-air interface and
frictional heating on fault surfaces as a result of seismicity [9,23,50–56]. The recent development of
the Lithosphere–Atmosphere–Ionosphere (LAI) coupling model and experimental data of remote
sensing satellites on thermal anomalies before major strong earthquakes have described the probable
physical basis behind this land surface temperature (LST) anomaly, namely that the radon emanations
in the area of earthquake preparation can possibly produce variations of the air temperature and
relative humidity [2]. The main physical process responsible for the observed variations maybe
is a result of water vapor condensation on ions produced as a result of air ionization by energetic
α-particles emitted by 222 Rn [2]. Other intense discussions mainly focuses on explorations regarding
spatial-temporal evolution patterns [29,32,57], and the development of algorithms for the identification
of TIR anomalies [35,58–72], in which the Robust Satellite data analysis Technique (RST) proposed by
Tramutoli in 2007 is a very well-known TIR anomalies algorithm [22] that is widely used to observe the
anomalies prior to the major earthquake events [9,21,22,25,31,33,42,43,62]. It has become apparent that
the proper presentation of the precursory anomalies is very crucial to the predications of earthquake
events. Therefore, the determination of methods for the accurate extraction of the TIR anomalies,
which are known to be highly related to tectonic activities, has become imperative. In actual situations,
it has been found to be very challenging to extract tectonic TIR anomalies from the entire information
of an area, which may include both the tectonic and atectonic heat information. This is due to the fact
that the tectonic TIR anomalies caused by the activities of the Earth’s crust tends to make up a very
small percentage within the entire heat information data. In this study, by reviewing the development
of the TIR anomalies algorithms, from the early stage TIR anomalies method characterized by visual
interpretation, to the more recent sophisticated algorithms, it was possible to approximately divide the
algorithms into three categories as follows: (1) The algorithms based on differential analysis [58–60],
such as the brightness temperature difference method. In this method, the anomalies are determined
by calculating the differences between of the brightness temperature values prior to and after an
earthquake event [58]; or calculating the differences between the inner and outer tectonic faults [59,60].
These algorithms are simple. However, they cannot efficiently eliminate the impacts of short-term



Remote Sens. 2018, 10, 1941 3 of 33

weather interferences on the extractions of the TIR anomalies [60]; (2) The algorithms, which are
based on background analyses [61–64], such as robust satellite techniques (RST) [21–64], are generally
based on the multi-temporal analyses of the historical data sets acquired by satellite observations
under similar observational conditions (for example, the same month of the year; same hour of the
day; same sensor, and so on). In these methods, the spatial-temporal anomalies are always identified
using a comparison of the preliminarily computed signal behaviors, such as background information;
(3) The algorithms are based on signal analyses [65–72], such as a wavelet decomposition method [65];
wavelet packet method [66]; and power spectrum method [69–72]. These methods extract the useful
characteristic signals in a frequency domain.

Currently, many arguments still exist in regard to the efficiency of algorithms’ abilities to indicate
tectonic activities. Although these methods are known to be able to remove the impacts of solar
radiation, they cannot effectively address the filtering of atmospheric disturbances and human activities.
Therefore, in order to extract as much possible TIR anomalies information, which is highly related to
tectonic activities, this study proposed a novel algorithm to characterize tectonic TIR anomalies, which
is referred to in this study as TTIA (tectonic thermal infrared anomalies). Two important devastating
earthquakes (Ms 8.0 Wenchuan earthquake in 2008, and Ms 7.3 Yutian earthquake in 2014) were
selected as the study cases. The spatial-temporal evolution of the tectonic TIR anomalies based on
the proposed TTIA algorithm during the entire time period (2003 to 2015) were presented. In this
study, the tectonic TIR anomalies from the macroscopic scope were successfully observed, and some
new findings were obtained regarding the TIR anomalies evolution characteristics prior to major
earthquake events. The results of this research study may potentially provide important references for
predicting the dangerous regions where significant earthquakes may occur in the future.

The main objectives of this study were as follows: (1) To propose a novel algorithm to characterize
the TIR anomalies which are highly related to tectonic activities; and (2) To demonstrate and summarize
the tectonic TIR anomalies evolution rule of two previous major earthquakes, and provide ideas for
outlining potentially dangerous regions where major earthquakes may occur in the future.

The remainder of this research document is organized as follows: In Section 2, the MODIS LST
data used in this study, along with the methodology, are described. In Section 3, the experimental
results are presented. The discussion and conclusions reached in this study are detailed in Sections 4
and 5, respectively.

2. Methodology

2.1. Study Area and the Two Examined Earthquake Cases

The Qinghai-Tibet Plateau was taken as the study area. As a whole, the Qinghai-Tibet Plateau
was actually formed by isostatic mountain building processes beginning in 3.6 Ma, which were
accompanied by the isostatic subsidence of the peripheral basins and depressions, and major changes
in the topography and environment of the area. A series of pulsating mountain building events
occurred at 3.6 Ma, 2.5 Ma, 1.8 to 1.2 Ma, 0.9–0.8 Ma, and 0.15–0.12 Ma, which were associated
with the equilibrium of gravity and the isostactic adjustments of the crustal materials. There events
led to the formation of a composite orogenic belt in which the originally relatively independent
Himalayas, Gangdise, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian Mountains became
unified. The result was the formation of the complete Qinghai-Tibet Plateau with a unified mountain
root following the Miocene uplift of the entire plateau [73]. With its very thick continental crust
(70 km thickness on average; double the normal thickness of the crust), and the dramatic uplift of
the late Pleistoeene period (now with an average elevation of between 4500 and 5000 m), along with
its sustained and strong tectonic deformations [74], the Qinghai-Tibet Plateau has become one of
the most unique geological areas in the world. It spans across Eurasia, and is an important part
of the Alps-Himalayan tectonic belt. The stratum development of the plateau is now complete.
The drastic lifting movement is known as the “the roof of the world”, where a series of large-scale



Remote Sens. 2018, 10, 1941 4 of 33

and active fault zones have been formed since the Cenozoic. These fault zones include the following:
the Himalaya main thrust belt (F1); Karakorum-Jiali fault zone (F2); Mani-Yushu-Xianshuihe fault
zone (F3); Kunlun-Maqin fault zone (F4); Altyn-Haiyuan fault zone (F5); and the Jinshajiang-Honghe
fault zone (F6), from the south to the north. These six main fault zones divide the Tibetan Plateau into
six different active blocks as follows: The Chuandian (B1); Lasa (B2); Qiangtang (B3); Bayankala (B4);
Chaidamu (B5); and Qilian (B6) [69], as shown in Figure 1.
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Figure 1. Tectonic blocks and fault zones in the Qinghai-Tibet Plateau. The Yellow Border 1 on the left
denotes the Altyn fault region; and the Yellow Border 2 on the right is the Longmenshan fault region.
The sizes of these two sub-regions of the study area were both 10◦ × 10◦.

The Tibetan Plateau is a very important seismically active region which is known for its high
incidence level of earthquakes due to its special tectonic region, i.e., locating the convergence region
where the Indian Plate extrudes the Eurasian plate from south to north. Most of the tectonic activity
occurs on the boundaries of the blocks [75,76]. Earthquakes are the results of abrupt releases of
accumulated strain energy that reaches the threshold of strength of the earth’s crust. The boundaries of
tectonic blocks are the locations of the most discontinuous deformation and highest gradient of stress
accumulation, thus they are the most likely places for strain energy accumulation and releases, and in
turn, devastating earthquakes, to occur [75,76]. Previous research indicated that the mechanisms of
precursory anomalies can be attributed to degassing from rocks under stress, and the participation of
ground water or to p-hole activation in the stressed rock volume and their further recombination at
the rock-air interface, especially at the boundaries of active tectonic zone [3,9,23,37,44–56], thus more
TIR anomalies occurred along the tectonic zone [2,8,21,43]. It is well-known that the Tibetan Plateau is
made up of the several important second level active tectonic blocks, detailed in Figure 1. Therefore,
the area has been hit by many major earthquakes. Only within this territorial region of China, there
were nearly 50 shallow earthquakes (focal depth not more than 20 km) with magnitudes greater than
Ms 6.0 during the period examined in this study (2003 to 2015, illustrated in Figure 2). Among these,
the earthquakes with magnitudes larger than Ms 7.0 consisted of the Ms 8.0 Wenchuan earthquake
of 2008; the Ms 7.3 Yushu earthquake of 2010; the Ms 7.0 Yaan earthquake of 2013; and the Ms 7.3
Yutian earthquake which occurred in 2014. These earthquake events caused enormous economic losses
and casualties.
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On 12 May 2008, at 14:28 local time (06:28 UTC), the devastating Ms 8.0 Wenchuan (Sichuan,
China) earthquake ruptured the Longmen Shan fault zone on the eastern edge of China’s Tibetan
Plateau (illustrated in the yellow square box labelled 2 in Figure 1) [77]. The main earthquake event
was followed by thousands of aftershocks. Among these, 53 reached or exceeded Mw 5.0. This major
earthquake caused extreme damages that extended almost 300 km along the Longmen Shan and its
adjacent area. A large number of landslides, debris flows, surface fractures, and dammed lakes were
observed. Overall, more than 80,000 fatalities were reported. This catastrophic event was one of the
deadliest earthquakes in China during the past few centuries.

On 12 February 2014, at 17:19 local time (09:19 UTC), a significant Ms 7.3 Yutian (Xinjiang, China)
earthquake occurred in the Altyn-Haiyuan fault zone of the northwest edge of China’s Tibetan Plateau
(represented by the yellow square box labelled 1 in Figure 1). The epicenter was located at 36.1◦N,
82.5◦E, and the depth of the hypocenter of 12 km. This major earthquake event was followed by 739
aftershocks, one of which reached Ms 5.0, and ten reached or exceeded Ms 4.0. As a result of this major
disaster, more than 455,000 people became homeless; 68,340 houses were toppled; 11,515 domestic
animals were killed; 497 bridges were badly damaged; and 113 landslide events occurred.

2.2. Remotely Sensing Data

The LST is an important index for evaluating the heat balance, which represents a collective
outcome of the tectonic activities of the deep Earth’s crust. Also, the terrain and land cover and
meteorological activities are known to be important indexes. Therefore, this study adopted the LST
to measure tectonic activities. The data used in this study were the synthetic LST datasets with the
average surface temperatures of eight days (MOD11A2 Version 5 (V5) of MODIS) provided by NASA,
with a 1 km spatial resolution. This V5 product was a significant improvement over past versions.
In this experiment, in order to weaken the influences of solar radiation and local variations due to
cloud cover or shadows during the day-time hours, the data observed at night were used. In addition,
since the MOD11A2 was one of the mature LST products, there was no need to implement atmosphere
corrections [66]. The detailed information regarding the data set is summarized in Table 1. The original
images of the MOD11A2 are shown in Figure 3 according to the time sequence. Figure 3 shows that the
original LST of the MOD11A2 were noticeably dominated by solar radiation and terrain, and exhibited
very distinct seasonal characteristics. Therefore, for extracting out the TIR anomalies closely related to
tectonic activities, the influences of atectonic factors must be removed from the original MODIS LST
data and weakened.
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Table 1. Data set of the MOD11A2.

Name Data Type
Effective

Numerical
Range

Unit Filling
Values

Calibration
Coefficient

LST_Day_1 km: 8-Day daytime
1 km grid LST 16-bit unsigned int 7500–65535 K 0 0.02

QC_Day: Quality control for daytime LST
and emissivity 8-bit unsigned int 0–255

Day_view_time: Average time of daytime
LST observation 8-bit unsigned int 0–240 h 255 0.1

Day_view_angle: Average view zenith
angle of daytime LST 8-bit unsigned int 0–130 Degree 255 1(-65)

LST_Day_1 km:8-Day nighttime
1 km grid LST 16-bit unsigned int 7500–65535 K 0 0.02

QC_Day: Quality control for nighttime
LST and emissivity 8-bit unsigned int 0–255

Day_view_time: Average time of
nighttime LST observation 8-bit unsigned int 0–240 h 255 0.1

Day_view_angle: Average view zenith
angle of nighttime LST 8-bit unsigned int 0–130 Degree 255 1 (−65)

Emis_32: Band32 emissivity 8-bit unsigned int 1–255 0 0.002 (+0.49)

Emis_31: Band31 emissivity 8-bit unsigned int 1–255 0 0.002 (+0.49)

Clear_sky_days: the days in clear sky
conditions and with valid LST 8-bit unsigned int 1–255 0

Clear_sky_nights: the nights in clear sky
conditions and with valid LST 8-bit unsigned int 1–255 0

2.3. Introduction of the New Algorithm

The objective of the developed algorithm was to extract the tectonic activities information by
filtering or weakening the impact of the atectonic factors (solar radiation, atmospheric disturbances,
and human activities. It is widely known that solar radiation is the first and foremost factor which
affects the land surface temperature field. It has been regarded as a type of stable annual periodic
signal that has observable seasonal fluctuating properties. In addition, the influences of air masses and
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human activities (urban heat islands) should not be ignored. In accordance with the spatio-temporal
scale characteristics of the various interference factors, this study proposed a new algorithm (TTIA) to
characterize the tectonic TIR anomalies. The process was introduced in detail as follows:

Step (1) Constructing the LST background field and calculating the residuals: The annual trend
values were extracted from the sequential LST data, such as the temperature background
field, using a harmonic analysis fitted curve method. The detailed introduction on this step
is shown in Section 2.3.1. The fitting residual error image (shown in Step 3© of Figure 4)
filtered the solar radiation influence and climate change. We then applied a 1-D wavelet
transform, and by means of deleting the first order high frequency of wavelet transform, the
effect of the short-term meteorological factors could be removed. However, it still consisted
of disturbances in the atmosphere and human activities.

Step (2) Spatial filtering to weaken the impacts of the atmosphere and human activities (urban heat
island): It was considered in this study that the air masses and urban heat islands did indeed
have evident influences on the surface temperature field. Therefore, these disturbance
factors needed to be removed or weakened. The spatial scales dominated by these two
factors were profoundly different. Generally speaking, an air mass can cover hundreds to
thousands of km. However, the influence range of the heat islands only measure tens of
km [78]. Therefore, a 2-D wavelet transform technique was used in this study to filter the
disturbance factors, and extract the tectonic thermal information. A detailed introduction to
this is shown in Section 2.3.2.

Step (3) Presenting the tectonic thermal anomalies information by calculating the value image
(shown in 5© of Figure 4): Further details of this calculation process are shown in
Section 2.3.3.

The above steps were the core parts of this study’s proposed new algorithm, and the process is
vividly illustrated in Figure 5.
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2.3.1. Construction of the LST Background Field and Calculation of the Residuals

First of all, this study ranked the pixels according to their temporal sequence. Then, a yearly trend
value was extracted as the background field by approximating the curve of the LST over a period of
13 years (2003 to 2015). A key point of this process was that all the observed values were regarded as a
whole, and a new approximation function was obtained [79–81]. A least squares criterion was used to
build the new function as follows:

â Least squares approximation

By assuming that the known function f (x) was defined in the space [a, b], then ρ(x) ≥ 0. Where
ρ(x) is a weight function that is not identical to zero. Also, by assuming that the norm of f (x) exists, and
that the inner product space is L2[a, b], then the norm of f (x) can be obtained using Equation (1) [82]
as follows:

‖ f (x)‖2 =
∫ b

a
ρ(x) f 2(x)dx (1)

The nature of the optimal approximation in L2 is that, for any f (x) ∈ (a, b), function ϕ(x) should
be looked for on the basis space M = {ϕ1, ϕ2, . . . , ϕn} as follows:

ϕ(x) =
∫ n

i=1
ci ϕi (2)

which is subject to the following:

∫ b

a
ρ(x)[ f (x)− ϕ(x)]2dx → min (3)

Equation (3) indicated that the square of the error function reached a minimum value after solving
the integral. Therefore, ϕ(x) can be referred to as the optimal square approximation of f (x).
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â Optimal Fourier approximation

When the function to be approximated is periodic, or the primitive function is too complex, then
the primitive function has to be approximated using discretization processing. In this study’s case,
this step was performed using a Fourier approximation. By letting M be made up of trigonometric
functions (sine or cosine functions) [83,84], then ϕ(x) will be the optimal Fourier approximation
of ϕ(x).

â Extraction of the LST’s yearly trend

In this study, by taking a pixel as an example, and building a Fourier approximation function
as described in Equation (4), a fitting process for the discrete sequence of the LST values in the pixel
could then be performed:

y =
m

∑
i=1

[ai sin(ωit + bi) + ci cos(ωit + bi)] + ε (4)

where i = 1, 2, . . . , m, and 2m is the number of harmonic; y represents the approximate values; t is the
specific moment in a time sequence; ai denotes the amplitude of the ith sine harmonic; bi is the phase
of the ith harmonic; ci represents the amplitude of the ith cosine harmonic; ωi is the phase of the ith
harmonic; and ε is the fitting error.

By considering the annual and diurnal changes of the LST, two types of harmonics with different
frequencies were chosen to approximate the time series. One type with a 0 frequency indicated the
average of LST, and that there was no phase. Meanwhile, the other type had a period of eight days,
which represented the short-term variations of the LST.

As indicated above, the principle of the least square method was considered in the calculation of
the variables during the approximation process, as described in Equation (5). The values of ai, bi, and
ci could be obtained by computing derivatives as follows:

∑ ε2 =
n

∑
j=1

{
yj −

m

∑
i=1

[ai sin(ωit + bi) + ci cos(ωit + bi)]

}2

(5)

2.3.2. Tectonic Thermal Signal Extraction by Spatial Two-Dimensional Wavelet Filtering for the
Purpose of Weakening the Disturbances of the Atmospheric and Human Activities

Although the LST fitting residuals had filtered out the main disturbances of the solar radiation, it
still contained the disturbances resulting from the atmosphere and human activities. It was believed
that separating the two types of thermal information from the residual images would allow for
improvements in the extraction of the thermal information related to the tectonic activities. After
considering the spatial affected scope of the air masses and human activities, this study applied the
different features between them to achieve the signal separation using a 2-D wavelet transform.

â Theory of the 2-D wavelet transform

2-D continuous wavelet transform

The 2-D continuous wavelet transform was defined as follows [7]:

W f
(
a, bx, by

)
=

∞∫
−∞

∞∫
−∞

f (x, y)Ψa,bx ,by(x, y)dxdy (6)

Ψa,bx ,by(x, y) =
1
a

Ψ
(

x− bx

a
,

y− by

a

)
(7)
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Its inverse was given by Equation (8):

f (x, y) =
1

CΨ

+∞∫
0

+∞∫
−∞

+∞∫
−∞

W f
(
a, bx, by

)
Ψa,bx ,by(x, y)dbxdby

da
a3 (8)

where a is a scaling transformation parameter; and b is a displacement transformation parameter.
When the value varied, the wavelet function changed, which corresponded to the elongation and
contraction. That is to say, when a < 1, Ψ(x, y) was elongated; and when a > 1, Ψ(x, y) had contracted.
When the value of b changed, the wavelet function exhibited a displacement.

2-D discrete wavelet transform

Due to the computational complexity of the continuous wavelet transform in terms of the
continuous values a, a 2-D discrete wavelet transform is often used to conduct the wavelet
transformation of a digital image. In this study, the 2-D discrete wavelet transform was defined
as follows [83]:

Ψm,n(t) =
1√
am

0
Ψ
(

t− nb0am
0

am
0

)
= a−

m
2

0 Ψ
(
a−m

0 t− nb0
)

(9)

where m, n are the integer,a0 6= 1 and b0 6= 0. The corresponding discrete wavelet transform can then
be defined as follows:

〈 f , Ψm,n〉 = a−
m
2

0

+∞∫
−∞

f (t)Ψ
(
a−m

0 t− nb0
)
dt (10)

The reconstruction process was the inverse process of the 2-D discrete wavelet image
decomposition. The digital images, which had met certain requirements, could be reconstituted
through controlling the high and low frequency components of the decomposition process of the
wavelet transform.

â Tectonic thermal infrared signal extraction based on a 2-D wavelet transform

Except the solar radiation, among the influencing factors that dominate the land surface
temperature, atmospheric air mass and human activities are two important and ought not to be missed
factors [84]. Generally speaking, a distributed air mass extends up to a large scope at a horizontal
direction with a homogeneous temperature and humidity characterization [85]. In terms of the thermal
property, an air mass can be divided into a cold air mass and warm air mass [86]. The arrival of an
air mass with certain thermodynamic properties can vary the land surface temperature. Therefore,
the influence of an air mass on the land surface temperature must be removed [86]. According to the
field of meteorology and physical geography, an air mass can cover a range of several hundred to
several thousands of km. In this study, in order to facilitate the calculation process, the temperature
components with ranges of more than 1000 km were taken as the contribution of the atmospheric air
mass [84–87]. In regard to the disturbances caused by human activities, such as the urban heat island
effect, the influence ranges were roughly tens of km (the length of the diameter of a city) [88,89].
Therefore, approximately 30 km was chosen in this study as the influence range of the human
activities [84,89]. Then, using a wavelet transform technique, these two types of disturbances could be
weakened to a certain degree.

To be more specific, since the spatial resolution of the MODIS LST dataset used in this study was
1 km, and considering the fact that the sampling of the wavelet transform abided by the geometry
power of two, the thermal infrared signal was able to extract more information related to the tectonic
activities by using the 2-D wavelet transform from the residual images. This was accomplished by
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weakening the influences of the solar radiation, atmospheric air masses, and human activities. As a
result, it could be defined as Ttec, and the calculation formula is given in Equation (11):

Ttec = TL4 − TL9 (11)

where TL4 represents the LST, which was extracted from the low frequency signal of the 2-D wavelet
transform in the 4th scale (corresponding to a 32 km resolution) of the residual images; TL9 is the LST
extracted from the low frequency signal of the 2-D wavelet transform in the 9th scale (corresponding
to a 1024 km resolution) of the residual images.

2.3.3. Expressions of the Tectonic Thermal Infrared Anomalies

â “kσ”rule and offset index Ktec

In this study, the “kσ”rule was used to determine the signals of the thermal anomalies. The “kσ”
principle was proposed initially by Wright in 1884 [90–93]. This simple and basic principle is as follows:

|xi − x| ≥ kσ (12)

where x and σ are the mean and standard deviation of the result x, respectively. Here the “kσ” rule is
introduced to characterize the variation of land surface temperature observations around their mean,
where k refers to the zoom multiples of standard deviation σ. When the result x meets the above
formula, then it can be defined as an anomaly signal, as illustrated in Figure 6.
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The effective thermal infrared signal values Ttec were achieved using Equation (11). Then, the
thermal anomalies were extracted through calculating the offset index Ktec according to Equation (13).
In fact, Ktec is just the embodiment of the k value in the formula (12). The introduction of Ktec aims to
characterize the variation of land surface temperature observations around their mean. Meanwhile,
Ktec can also be perceived as zoom multiples of standard deviation σTtec(ri).

Ktec =
Ttec(ri, t)− µTtec(ri)

σTtec(ri)
(13)

where ri denotes the location of pixel i on the remote sensing image, with the abscissa and ordinate
(xi, yi); t represents the time of the acquisition of the satellite image, with t ∈ τ, where τ defines the
homogeneous domain of the satellite imagery collected in the same time-slot (hour) of the day and
period (month) of the year; Ttec is the effective thermal infrared signal; and µTtec and σTtec are the mean
value and standard deviation of the Ttec in the same time-slot, respectively. It is worth noting that
although equation 13 has a similar formation to the RST method, which was proposed by Tramutoli
1998 (RAT) [25], Tramutoli 2005 (RST) [38] and applied by Lisi et al. 2015 [42], who have used in the
same way the reference fields of mean and standard deviation; nevertheless, in equation 13, Ttec has a
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distinct meaning from T in the RST method. Here Ttec has filtered the influence of air mass and human
activities by a 2-D wavelet transformation, therefore µTtec , and σTtec in the Equation (13) has distinct
Ttec basis, compared with the µ and σ in the RST method.

3. Results

In the study results, two important observation scales were adopted to describe the TIR anomalies
in tectonic activities based on the proposed method. The first method was the whole Qinghai-Tibet
Plateau scale, while the other was the earthquake generating fault zone scale. The Tibet Plateau
contributes to observing the TIR in tectonic activities on a large scale, and to understanding the TIR
anomalies evolution of the pregnant process of earthquakes before a large earthquake event. It is well
known that earthquakes are the manifestations of abrupt huge energy releases that are directly caused
by tectonic activities. Since earthquakes are known to be highly related to tectonic activities, it can be
deduced that the relevant precursor signals of earthquakes should be evidently strongly correlated
with tectonic structures. We chose two large earthquake events that had occurred on the Tibet Plateau,
based on the consideration that before the large earthquakes events occurred, the TIR in the tectonic
activities often varied significantly and observably, which makes it more convenient for us to observe
the spatio-temporal evolution characterization of TIR and validate the new algorithm.

The period in the red typeface in Figure 7 indicates the co-seismic period. The thermal anomaly
images shown in Figure 7(1)–(9) were calculated according to the following steps: Step (1) The
calculation of the Ktec values was performed using Formula (12), which indicated the tectonic thermal
anomaly; Step (2) The abnormal periods were identified, which needed to meet the request that
Kmean ≥ µ + σ. In this study, Kmean is the spatial mean of the Ktec value image in a period; µ is the
mean of the Ktec value images in the multi-periods; and σ is the variance of the Ktec value images in
the multi-periods; Step (3) All of the selected images were overlaid by Step (2), and the average value
of the image was calculated; Step (4) The differences in the value image were calculated between the
average value image calculated by Step (3), and the Ktec mean value image of the aseismic periods
(without the occurrence of large earthquakes).

Figure 7 illustrates the fact that the spatial form of the TTIA-based TIR anomalies corresponded
well in this study to the tectonic zone distributions, which potentially provide evidence that judging the
extracted TIR anomalies signals based on the new method is reasonable. This is particularly evident in
Figure 7(3). The noticeable characteristics of the spatial distribution of most of the TIR anomalies from
east to west, along with the major faults zones of the entire Tibetan Plateau, leads us to believe that the
proposed TTIA algorithm was able to reflect tectonic activities well, as it can efficiently filter out the
majority of the other atectonic disturbance information originating from the impacts of solar radiation,
land cover, atmospheric and human activities. Figure 7 displays the evolution history of the TIR
anomalies before and after the earthquake events, which was helpful in understanding the seismogenic
stages of major earthquakes. It is well known that every earthquake has a long seismogenic stage,
which may range from several decades to hundreds or even thousands of years. Generally speaking,
the larger magnitude earthquakes have longer seismogenic stages. In this study, the TIR anomalies
evolutions were observed and analyzed, with special emphasis on the period from the three-year
pre-seismic stage to the breaking out stage of the earthquakes, in order to grasp the evolutionary
characteristics of the TIR anomalies signals during the latter seismogenic stage. Figure 7(1)–(3) illustrate
the developing processes of the TIR anomalies from May of 2005 to February of 2008 (prior to the
Wenchuan earthquake) over the entire Tibetan Plateau region. The value of the TIR anomalies can be
obviously seen as gradually rising during the period from three years to three months prior to the
Wenchuan event. Also, in that period the Ktec value of the east was clearly higher than that of the west
on the plateau. According to the theory of the relationship between the heat and stress in laboratory
testing (temperature-rise corresponding to extrusion stress), it was deduced that the surrounding rock
in the active tectonic block was increasingly extruded along the direction from east to west. This was
confirmed by the observed GPS results. Until February 9th, 2008 (approximately three months before
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the Wenchuan earthquake), the temperature in the area had been reaching its highest value, as shown
in Figure 7(3)). This was the first observed important temperature-rise stage. Then, after passing the
stage of the highest value of the TIR anomalies, the temperature was observed to slightly decline,
as shown in Figure 7(4). Soon after, the devastating earthquake event occurred, after which the TIR
anomalies fell to a relatively low level, as detailed in Figure 7(6)–(8).
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Figure 8 shows the enlarged images from Figure 7. The TIR anomalies were derived by means
of the proposed algorithm in the Lonmenshan fault zone where the Ms 8.0 Wenchuan earthquake
occurred. It can be seen that the TIR anomalies based on the TTIA method are in high correspondence
with the tectonic line.
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Figure 9 illustrates the moving tendency of the intensity centroid in the Ktec evolution process
prior to the Wenchuan earthquake event. The green, yellow, and red points denote 2 to 3 years, 1 to
2 years, and 3 months to 1 year prior to the earthquake, respectively. The centroid apparently had
gradually moved from the left to the right of the TIR anomalies image, and toward the epicenter of
the Wenchuan earthquake. In reality, this was a significant signal, and important information was
obtained that revealed that the eastern region over the Tibetan Plateau seemed to be facing a higher
threat than the western region, which will potentially contribute to future estimations of dangerous
regions where earthquakes might occur.
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In regard to the Yutian earthquake, the evolution trend of the Ktec can be seen in Figure 10. As can
be seen in the figure, the value of Ktec was not only consistently distributed along the trend of the
tectonic faults, but also the Ktec of the surrounding rock in the tectonic block was observed to steadily
rise until the highest value was reached. At that time, the value of the Ktec of the western region was
higher than that of the eastern region.

Throughout the entire process of the Ktec evolution over the Tibetan Plateau in both of the major
earthquake cases examined in this study, it was found that prior to the earthquake events, the spatial
distributions of Ktec were almost entirely arranged along the significant fault zones. Also, the majority
were extended along an east-west direction, which confirmed that the proposed TTIA algorithm could
accurately reflect the tectonic activities. Therefore, it was concluded that the TTIA-based Ktec could be
regarded as a precursor indicator for outlining potentially dangerous regions where major earthquakes
may occur in the future.
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Figure 10. TIR anomalies spatio-temporal presentation of the Ms 7.3 Yutian earthquake based on the
proposed TTIA method on the Tibetan Plateau.

Figure 11 shows the TIR anomalies based on the TTIA method in the Altyn-Haiyuan fault zone
where the Ms 7.3 Yutian earthquake occurred. It can also be clearly seen that the TIR anomalies are in
high correspondence with the tectonic line.
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Figure 11. TIR anomalies prior to the Yutian earthquake event in different periods.

Figure 12 illustrates the moving tendency of the intensity centroid in the Ktec evolution process
prior to the Yutian earthquake event. The green, yellow, and red points represent the same as in
Figure 9. Overall, it was observed that the intensity centroid of the Ktec hovered around the western
region of the plateau. In particular, in the entire energy of the anomalies with Ktec ≥ 1.0 detailed in
Figure 12a, the centroid (indicated by the yellow point) almost coincided with the epicenter of the
Yutian earthquake. The calculated intensity centroid potentially indicated that the western region
of the plateau seemed more dangerous than the eastern region. These findings were very valuable
signals, which provided supplementary information for outlining dangerous regions, and served as
early warning signs of the earthquake events.
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Figure 12. Movement tendencies of the TIR anomalies intensity centroid during the Yutian earthquake
event with: (a) Ktec ≥ 1.0; and (b) Ktec ≥ 1.5.

In this study result, another observable scale is the earthquake generating fault zone.
The spatio-temporal evolution of the TIR anomalies in tectonic activities with the TTIA algorithm
in the fault zone scale (Longmenshan fault zone and Altyn fault zone) are shown in Figures 13–16.
The following observations can be made: (1) Before the great earthquake, the fluctuations of the Ktec

value are significantly more volatile than those in an aseismic period, which indicates that the TIR
anomalies in tectonic activities in the event year are more active than those in non-event years. (2) In an
unperturbed period (when no large earthquake occurs), the Ktec value presents low value features in
both the Longmenshan fault zone (shown in Figure 14) and Altyn fault zone (shown in Figure 16).
Despite the fact that there are also some high or low Ktec pixels, their distribution still did not present
distinct regularity.

Further observing Figure 13, we can observe the fact that during the period of three to six months
before the Wenchuan earthquake event, the surrounding rock of the Longmenshan Fault presented
an increasing trend in the Ktec, approximately 100 days before the earthquake, and the Ktec of the
surrounding rock reached its highest value. Then the Ktec began to decline. On the contrary, during
this period, the fault region went through a cold status before the earthquake. Then around three
months before the event, the situation changed. The fault region was going through a hot thermal
anomaly state, breaking away from the previous cold anomaly state; i.e., the temperature of the fault
zone underwent a change process from cold to hot status. After the earthquake, the value of the Ktec

in the fault region declined, exhibiting an increasingly discrete state in terms of spatial distribution.
A similar phenomenon can be also observed in the Yutian earthquake event which occurred on the
Altyn fault on 12 February 2014.

The above mentioned observed phenomenon appears to not be coincidental. In fact, we have
investigated the characterization of TIR anomalies in tectonic activities before an earthquake event
year via the TTIA method using four earthquake cases of magnitudes greater than Ms 7.0 over the Tibet
Plateau since 2003, similar phenomena were observed in each; namely, before the large earthquake,
the temperature of the surrounding rock underwent a heating to cooling process, while the temperature
of the fault region underwent an inverse process. However, when we investigated earthquakes of
magnitude Ms 6.0 or less, we did not observe this kind of very obvious regularity.

The possible explanation for the TIR anomalies in tectonic activities occurring before a large
earthquake event is that it is the integration result of the green house air degassing from the Earth’s
crust and the stress of rocks. On one hand, green house air is able to warm up the air, thereby leading
to three phase changes of water vapor, which can produce the variation of the air temperature. On the
other hand, the compression and tension of rocks can result in LST variation through a series of
complicated geophysical and geochemical processes.
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Figure 13. Spatio-temporal evolution of 𝐾௧௘௖  extracted by the TTIA method in the Longmenshan 
fault region around the period Ms 8.0  

Figure 13. Spatio-temporal evolution of Ktec extracted by the TTIA method in the Longmenshan fault
region around the period Ms 8.0 Wenchuan earthquake breaking out in 2008. The date in red writing
indicates the period that the earthquake happens.
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Figure 14. Spatio-temporal evolution of Ktec extracted by the TTIA method in the Longmenshan fault
region in unperturbed period. The pixels values in images are the mean values of Ktec in the same
time-slot of unperturbed periods.
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Figure 16. Spatio-temporal evolution of 𝐾௧௘௖  based on the TTIA method in the Altyn-Haiyuan fault 
region in unperturbed periods. The pixel values in images are the mean values of 𝐾௧௘௖   in the same 
time-slot of unperturbed periods. 
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the ground site and the TIR anomalies value based on the TTIA method. It can be clearly seen that 

Figure 16. Spatio-temporal evolution of Ktec based on the TTIA method in the Altyn-Haiyuan fault
region in unperturbed periods. The pixel values in images are the mean values of Ktec in the same
time-slot of unperturbed periods.

4. Discussion

4.1. Comparison of the MOD11A2 LST and Ground Air Temperature Data, TIR Anomalies Value

Figure 17 shows the comparison between the MOD11A2 LST and air temperature observed by
the ground site and the TIR anomalies value based on the TTIA method. It can be clearly seen that
the MOD11A2 LST data are in high correspondence with the air temperature from the ground site,
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which can verify the efficiency of the MOD11A2 LST data. Meanwhile, the air temperature observed
by the ground site is always higher than the MODIS LST, which can be attributed to the fact that the air
temperature data are obtained during the day, while the MODIS LST used in the study are observed
at night. The annual variation and very distinct seasonal characteristics of the original MOD11A2
LST data can be clearly observed, and this is the most important disturbance factor influencing the
extraction of the tectonic TIR anomaly information. This is the reason for which we must first remove
the influences of the solar radiation in the algorithm. Upon closer observation, we can see that the
evolution process of the TIR anomalies based on the proposed TTIA algorithm is different from the
original MODIS LST and ground air temperature, which indicates that the TTIA method can effectively
remove the influence of solar radiation.
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differences observed between the two. The input of the RST algorithm was the difference values 
between the LST and the mean value of all of the LST data in a spatial domain observed at the same 
time, the objective of which was to filter out the weather disturbances. However, the input of the 
TTIA algorithm was the 𝑇௧௘௖ , which was more closely related to the tectonic activities, due to the fact 
that the influences of solar radiation, atmosphere, and human activities had been filtered out.  

Figure 17. Comparison of the temperature between from MODIS LST data and air temperature
acquired by the Yutian meteorological ground station, and TIR anomaly based on the TTIA algorithm.
The blue line denotes the daytime air temperature data observed by the ground site, the red line denotes
the MODIS LST data at night, and the black line denotes the TIR anomaly based on the TTIA algorithm.

4.2. Comparison of the TTIA and RST Algorithms

The RST method is also an effective TIR anomalies extraction algorithm. It is based on a
multi-temporal analysis of the historical data set, which is defined as follows:

⊗∆T
(
r, t′
)
=

∆T(r, t′)− µ∆T(r)
σ∆T(r)

(14)

where r ≡ (x, y) represents the location coordinates on a satellite image; t′ is the time of acquisition
of the satellite image at hand, with t ∈ τ, where τ defines the homogeneous domain of the satellite
imagery collected in the same time-slot (hour) of the day, and the same period (month) of the year;
∆T(r, t′) denotes the difference between the current (t = t′) TIR signal value T(r, t′) at location r, and
its spatial average T(t′), computed in place on the image at hand, with the cloudy pixels discarded,
and only the land pixels considered; µ∆T(r) and σ∆T(r) are the average and standard deviation values
of ∆T(r, t), at location r, respectively, computed on cloud-free satellite records belonging to a selected
homogeneous data-set (t′ ∈ τ).

Although Equation (13) shows a certain similarity to Equation (14) in form, there were evident
differences observed between the two. The input of the RST algorithm was the difference values
between the LST and the mean value of all of the LST data in a spatial domain observed at the same
time, the objective of which was to filter out the weather disturbances. However, the input of the TTIA
algorithm was the Ttec, which was more closely related to the tectonic activities, due to the fact that the
influences of solar radiation, atmosphere, and human activities had been filtered out.

The experimental results shown in Figure 18 exhibited the spatial distribution at Tibetan Plateau
scope of the LST-based TIR anomalies with a contiguous group distribution characterization, rather
than extending along the tectonic faults like the TTIA-based TIR anomalies shown in Figure 6. This was



Remote Sens. 2018, 10, 1941 23 of 33

the main observed distinct difference between the TTIA and RST methods in regard to reflecting the
spatial distribution of TIR anomalies on a large plateau scope. The extracted TIR anomalies space form
prompted us to believe that the TTIA method is more sensitive to the tectonic TIR anomalies.
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Figure 18. TIR anomalies spatio-temporal presentation of the Ms 8.0 Wenchuan earthquake event based
on the RST method on the Tibetan Plateau.

Figure 19 shows the comparison of the spatio-temporal evolution of TIR anomalies extracted
by the RST method and TTIA method respectively in the Longmenshan fault region six months to
two months before the devastating Ms 8.0 Wenchuan earthquake event of 2008. From Figure 19,
the following facts can be clearly observed. The spatial distribution of TIR anomalies based on the RST
are roughly similar to those based on the TTIA method, such as in Figure 19a(3), b(3), yet nevertheless
there was still some difference in the detailed section in the TIR anomalies between both methods, i.e.,
the distribution features of the clumps of TIR anomalies were more obvious in the RST method than
the TTIA method. In addition, comparing Figure 19c(5–8),d(5–8), we can observe that, although the
general distribution of the TIR anomalies was similar, the contrast between the positive TIR anomalies
in the surrounding rocks region and negative TIR anomalies in the Longmenshan fault region based
on the TTIA method was distinctly stronger than that based on the RST method, which demonstrated
that the TTIA method was possibly more sensitive to the tectonic TIR anomalies signal.
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Figure 19. Comparison of spatio-temporal evolution of TIR anomalies extracted by the RST method
and TTIA method respectively in the Longmenshan fault region half a year to 2 months before the
period Ms 8.0 Wenchuan earthquake event.

The calculated results of TTIA and RST in the Longmenshan Fault zone are presented in a time
series, shown as Figures 20 and 21. Each black or red dot indicates the mean value of TIR anomalies
throughout the fault zone (10

◦ × 10
◦
) in a certain 8-day period between 2003 and 2015. In addition,

it must be emphasized that the red dots indicate that earthquakes with magnitude between Ms 6.0 to
Ms 6.5 took place in the corresponding period. The red arrow shows that an earthquake of magnitude
greater than Ms 6.5 occurred. The red solid arrow lines indicate that the earthquakes occurred inside
the fault zone. The red dotted arrow lines indicate that the earthquake occurred outside the fault zone,
yet the epicenter of the earthquake is close to the fault zone, so that they may have produced a certain
impact on the tectonic thermal field in the fault zone.

Comparing Figures 20 and 21, we can observe some significant differences between the two
methods: (1) The cluster based on the TTIA algorithm presents a more aggregate distribution trend
than that based on the RST algorithm during an unperturbed period. This means that the TTIA
algorithm has a lower false warning rate. For example, during the period of 2003 to 2004, when no
large earthquake occurred, corresponding with the period marked by Figure 20a, in the region of
Longmenshan Fault, all of the Ktec-mean is less than µ + 2σ based on the new algorithm. In contrast,
during the same period, there are four occurrences where the Ktec value exceeded µ + 2σ, with the
RST method, as shown in Figure 21, which indicates that the TTIA algorithm has a lower false alarm
rate compared with the RST algorithm; (2) During the seismic periods, the warning rate of earthquakes
of the TTIA algorithm is higher than that of the RST. For example, in the Longmenshan Fault zone, the
Ms 8.0 Wenchuan earthquake broke out on 12 May 2008 and the Ms 7.0 Ya’an earthquake occurred
on 20 April 2013. Before these two earthquakes, the Ktec value with the TTIA appeared to be more
prominent than the RST, as exhibited in stages (b) and (c) of Figures 20 and 21. Specifically, during the
period of one year before the Wenchuan earthquake, there were four instances where the Ktec value
exceeded the value of µ + 2σ, based on the TTIA method. However, there were only three instances
where Ktec value exceeded the value of µ + 2σ, as shown based on the RST method. Similarly, one year
before the Ya’an earthquake, there were four instances where the Ktec value exceeded µ + 2σ, as shown
by the TTIA method. In contrast, the Ktec value did not exceed µ + 2σ, as shown by the RST method.
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Figure 20. Tectonic TIR anomalies in time series extracted by the TTIA method in the Longmenshan
Fault zone.

Remote Sens. 2017, 9, x FOR PEER REVIEW  27 of 34 

 

 

Figure 20. Tectonic TIR anomalies in time series extracted by the TTIA method in the Longmenshan 
Fault zone. 

 

Figure 21. Tectonic TIR anomalies in time series extracted by the RST method in Longmenshan Fault. 

4.3. Comparison of TIR Anomalies Based on TTIA and Tectonic Lineations, Topographic Effect 

Figure 22 shows the DEM (Digital Elevation Model) data, original MODIS LST data and the TIR 
anomalies based on TTIA algorithm. Comparing the Figure 22(a1),(b1), it can be seen that original 
landsurface temperature is mainly controlled by the topography because there is a good 
correspondence between the terrain of valley and high landsurface temperature. Figure 22(a2), (b2) 
also shows a similar pattern. This indicates that the topography is the important leading factor of the 
original landsurface temperature. Figure 22(c1), (c2) presented the TIR anomalies extracted by the 
TTIA algorithm. It can be obviously seen that there is no correspondence between the TTIA-based 
TIR anomalies and the terrain, which demonstrates that the TTIA algorithm is able to remove the 
influence of the terrain, and simultaneously highlight the active tectonic lineations characteristic. 
Particularly, comparing Figure 22(a2),(c2), it can be easily seen that there are very distinct difference 
between the value of the DEM and TIR anomalies in the Longmenshan fault zone, which indicates 
once more that the TTIA algorithm is able to remove the influence of the topographic effect of 
ridges/valley in such a mountainous region and reflect the tectonic features well.  

Figure 21. Tectonic TIR anomalies in time series extracted by the RST method in Longmenshan Fault.

4.3. Comparison of TIR Anomalies Based on TTIA and Tectonic Lineations, Topographic Effect

Figure 22 shows the DEM (Digital Elevation Model) data, original MODIS LST data and the
TIR anomalies based on TTIA algorithm. Comparing the Figure 22(a1),(b1), it can be seen that
original landsurface temperature is mainly controlled by the topography because there is a good
correspondence between the terrain of valley and high landsurface temperature. Figure 22(a2),(b2)
also shows a similar pattern. This indicates that the topography is the important leading factor of
the original landsurface temperature. Figure 22(c1),(c2) presented the TIR anomalies extracted by the
TTIA algorithm. It can be obviously seen that there is no correspondence between the TTIA-based TIR
anomalies and the terrain, which demonstrates that the TTIA algorithm is able to remove the influence
of the terrain, and simultaneously highlight the active tectonic lineations characteristic. Particularly,
comparing Figure 22(a2),(c2), it can be easily seen that there are very distinct difference between the
value of the DEM and TIR anomalies in the Longmenshan fault zone, which indicates once more that
the TTIA algorithm is able to remove the influence of the topographic effect of ridges/valley in such a
mountainous region and reflect the tectonic features well.
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Figure 23 shows the DEM data, original MODIS LST data, TIR anomalies based on the
TTIA algorithm in the event year and the undisturbance year (no Ms ≥ 5 earthquakes), GPS
displacement data, and tectonic fault vector data over the Tibet-plateau. Comparing Figure 23(A1),(B1),
and Figure 23(A2),(B2), same rule can be obtained; i.e., the original landsurface temperature on the
whole Tibet plateau is controlled by the topography. The black arrows in Figure 23(C1) indicate
the vector of the GPS displacement. Observing the GPS displacement, we can know that the
Karakorum-Jiali fault zone (shown in Figure 1 with F2) is a active tectonic zone. Meanwhile the
TIR anomalies based on the TTIA algorithm present a very obvious distribution characteristic along the
active tectonic zone no matter the event year or the undisturbance year. Previous studies demonstrate
that the TIR anomalies correspond with main tectonic lines [2,8,21,43], due to the fact that the active
tectonic lines made up of the faults are often the channel of greenhouse gases, such as CO2, NH4

and so on, degassing from rocks under stress, and as well as the participation of ground water as
a possible cause for generation of TIR anomalies or p-hole activation in the stressed rock volume
and their further recombination at the rock-air interface [9,23,50–56]. The study results demonstrate
that the TTIA algorithm is an effective algorithm to extract the TIR anomalies ralated to the tectonic
zone. However, further comparing the Figure 23(C1),(D1), we can find that in an event year, the TIR
anomalies are more dramatic than that in an undisturbance year.
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In a word, through the comparison of the TTIA algorithm-based TIR anomalies and original
MODIS LST data, DEM data, GPS displacement data and as well as the active tectonic lines extension
direction, we can know that the TTIA algorithm can reduce the disturbance of the atectonic factors,
such as solar radiation, air circulation, human activities, and terrain. The study result shows that the
TTIA algorithm is effective for the characterization of thermal infrared anomalies in tectonic activities.
Moreover, the dangerous region which has high possibility to meet an impending earthquake can be
sketched by calculating the gentroid of the TIR anomalies based on this TTIA algorithm. It should
be noted that the outline of earthquake danger zone based only on TIR anomalies is not enough.
Other pre-earthquake anomalies such as the electromagnetic anomalies in the atmospheric ionosphere,
extracted by the Swarm satellite [93] and DEMETER satellite [94] should been incorporated.

5. Conclusions

In this study, a novel TTIA (tectonic thermal infrared anomalies) method was proposed to
characterize earthquake TIR anomalies. The Tibetan Plateau was chosen as the study area. Then, using
the MODIS land surface temperature (LST) products MOD11A2 via the proposed method, this study
observed the spatio-temporal evolution of the TIR anomalies over the plateau from 2003 to 2015.
A method that combined the typical earthquake cases, and analyzed the TIR anomalies signals of
the pre-seismic, co-seismic, and post-seismic periods, was implemented, which allowed for a deeper
understanding of the earthquakes’ TIR anomalies features. The TIR anomalies rule at a plateau scale
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and fault zone scale was examined prior to the onset of the major earthquake events in the area. Then,
after analyzing this study’s experimental results, the following conclusions were drawn:

1. The obtained TIR anomalies based on the new algorithm showed an obvious spatial distribution
characteristic along the main faults on the plateau. Therefore, it can be proved that the proposed
algorithm had distinctive advantages in removing or weakening the disturbances of the atectonic
factors, and was therefore very effective in extracting the tectonic TIR anomalies signals.

2. The seismogenic zone was found to be a more effective observation scope for the deeper
understanding of the mid- and short-term seismogenic and crust stress change processes.

3. The movement trace of the centroid of the TIR anomalies over the entire plateau was helpful
in judging the approximate dangerous tectonic regions where major earthquakes may occur in
the future.

4. At the observe scale of earthquake generating fault zone, before the great earthquake, the
fluctuations of the Ktec value are significantly more volatile than those in an aseismic period,
which indicates that the TIR anomalies in tectonic activities in the event year are more active than
those in non-event years.
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