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Abstract: Grasslands, which represent around 40% of the terrestrial area, are mostly located in
arid and semi-arid zones. Semiarid ecosystems in Africa have been identified as being particularly
vulnerable to the impacts of increased human pressure on land, as well as enhanced climate variability.
Grasslands are indeed very responsive to variations in precipitation. This study evaluates the
sensitivity of the grassland ecosystem to precipitation variability in space and time, by identifying the
factors controlling this response, based on monthly precipitation data from Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) and the Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) data from the Multi-angle Imaging SpectroRadiometer-High Resolution
(MISR-HR) datasets, used as proxy for productivity, at 60 grassland sites in South Africa. Our results
show that MISR-HR products adequately capture the spatial and temporal variability in productivity
at scales that are relevant to this study, and they are therefore a good tool to study climate change
impacts on ecosystem at small spatial scales over large spatial and temporal domains. We show
that combining several determinants and accounting for legacies improves our ability to understand
patterns, identify areas of vulnerability, and predict the future of grassland productivity. Mean annual
precipitation is a good predictor of mean grassland productivity. The grasslands with a mean annual
rainfall above about 530 mm have a different functional response to those receiving less than that
amount of rain, on average. On the more arid and less fertile soils, large inter-annual variability
reduces productivity. Our study suggests that grasslands on the more marginal soils are the most
vulnerable to climate change.

Keywords: Grassland productivity; precipitation variability; MISR-HR products; vulnerability;
semi-arid regions; legacy effects; soil characteristics; consumption by fire and grazers; non-linearity

1. Introduction

Grasslands, which are defined as ground covered with graminaceous plants with less than
10% tree and shrub cover [1], representing 40.5% of the global terrestrial area, excluding Greenland
and Antarctica [2]. Extensive grasslands are mostly located in arid and semi-arid zones. Fires and
herbivores are the two main biomass consumers of these grasslands, and these are fundamental
to their ecology [3]. The livestock that supply meat, milk, leather, and fiber are mostly raised on
grasslands [4]. Grasslands have a key role in greenhouse gas mitigation, in terms of carbon storage
and sequestration [4].

Around a quarter of the grasslands globally are considered to be degraded [5–7]. Increased
grazing intensity is among the key drivers of grassland degradation. In Africa and elsewhere,
land degradation severity, extent, and trend depend on the nature of the soil, the agro-ecological zone,
and the exploitation intensity of the natural resources by people and their domestic livestock [8].
Land degradation may be defined as the long-term, persistent loss of ecosystem function and capacity
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to generate ecosystem services. Some definitions also include the loss of grassland biodiversity [7].
In general, degradation is considered to be human-induced, either directly or indirectly; for instance,
through climate change. In grasslands, it is the result of a combination of processes such as soil erosion,
the deterioration of desirable soil properties, loss of natural vegetation cover, a switch to a plant
species community (either indigenous or alien) that is less desirable than the native community, or an
ecohydrological change resulting in poorer infiltration of rainfall [9]. The key ‘ecosystem function’
that implicitly underpins most of these definitions is the net primary productivity (NPP) [10,11].
A standard or benchmark for grassland productivity is required to detect a ‘persistent reduction’
in NPP, and several studies identify the absence of a quantitative benchmark of expected vegetation
status as an impediment to detecting degradation in grasslands [12,13]. In the absence of a benchmark,
a decline in NPP can be inferred from a long production time series, provided that the degradation
occurs in the observed period. These two conditions are seldom met; thus, an accurate model of what
the expected productivity would be under given circumstances would provide a useful reference level.

In parallel with an increased use-pressure on the land, projections of climate change suggest that
many drylands, including in southern Africa, will face increased rainfall variability, often associated
with decreased soil moisture resulting from one or both of decreased average rainfall or increased
evaporative demand. The increase variability leads to an increased frequency of extreme events,
such as floods or drought [14]. Drylands, comprising arid, semiarid, and dry sub-humid ecosystems,
are characterized by having water-limitations to plant growth for a large part of the year—more than
three months continuously, but typically six months or more [15]. Semiarid ecosystems in Africa have
been identified as being particularly vulnerable to the impacts of warming, drying, and increased
climate variability [16]. Biome comparisons indicate that grasslands are more responsive, in the
short term, to variation in precipitation than are most ecosystems. Precipitation is the key factor in
controlling the primary productivity of most of the world’s grassland ecosystems, and by definition,
this is especially so for arid and semi-arid regions [17–19]. Plant growth is limited by water availability,
which reflects a balance between inputs (rainfall) and losses (evaporation from the soil, transpiration
and drainage), mediated by storage in the soil profile. Since evaporative demand is much less variable
than rainfall between years and places—and in semi-arid grasslands it is typically two to three times
in excess of rainfall—low and variable precipitation is the key proxy for plant water availability.

A large fraction of the variability in grassland productivity can be explained by precipitation
variability, and to some extent, local soil characteristics [20–22]. The correlation between productivity
and precipitation is stronger across space than through time [23]. In the range of 400 to 800 mm of
Mean Annual Precipitation (MAP), the spatial variability in the mean annual aboveground grassland
productivity (AGNPP) is well-predicted by a simple linear regression model; and essentially the
same relation holds across several continents, including southern Africa. This relation, AGNPP
(gDM m−2 y−1) ∼= 0.58 MAP (mm), accounts for 80% or more of the spatial variability.

For a single site, on the other hand, the year-to-year variation in precipitation accounts, on average,
for only 15% of the inter-annual variability in grassland productivity (the range is 0% to 77%).
Some studies suggested that the lower correlation through time than space is a result of the interaction
between nutrients and water to limit or boost growth in particular years [24], while others hypothesize
that it may be due to legacy effects based on drought or abundance in previous years, i.e., a multi-year
lag in the response of ecosystems to changes in water availability [23,25,26]. Few studies have combined
both environmental and legacy effects to identify areas of vulnerabilities of semi-arid grasslands to
climate change. From the perspective of climate change, ‘vulnerability’ refers to the probability of some
desirable property—in this case AGNPP—being negatively affected by the change in the mean climate
or its variability (including extreme events). A better understanding of the sensitivity of grassland
productivity to climate mean and variability is a key step to assessing their vulnerability.

The objective of this study was to assess the sensitivity of the semi-arid grassland ecosystems
of southern Africa to mean rainfall and its inter-annual variability. The following research questions
were formulated:
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• How sensitive is the productivity of grasslands in semi-arid regions to mean rainfall and
inter-annual variability?

• Which factors affect this sensitivity, and what is the role of legacy effects?
• What factors differentiate or correlate the sensitivity of these ecosystems to average precipitation

and inter-annual variability?
• What are the implications of grassland sensitivity for their vulnerability under future climates?

The sensitivity was evaluated at 60 representative natural grassland sites within South Africa,
using a 15-year multi-temporal record of Multi-angle Imaging SpectroRadiometer-High Resolution
(MISR-HR) satellite data [27]. The sites selection process is described in Section 2.2.1. Monthly
values of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) were extracted at a
275 m spatial resolution, over the entire grassland domain. FAPAR is a good indicator for vegetation
productivity [28], since it is physically-based and directly linked to the carbon assimilation process.
The FAPAR product derived from satellite-based sensors such as MISR constitutes a spatially and
temporally consistent long-term dataset. Monthly rainfall was obtained from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) dataset [29], at an approximately 5 km
spatial resolution.

The paper is organized as follows. In Section 2, the datasets and the method of analysis are
introduced. Section 3 shows results, which are discussed in Section 4; and conclusions are drawn in
Section 5.

2. Materials and Methods

2.1. Datasets

The following datasets were used:

• Monthly precipitation data were extracted from the Climate Hazards Group InfraRed Precipitation
with Station data, CHIRPS v2.0 [29], which covers the latitude band 50◦S–50◦N at all longitudes,
from 1981 to the near-present, at a 0.05◦ spatial resolution (available from http://chg.geog.
ucsb.edu/data/index.html). This dataset incorporates monthly precipitation climatology from
the Climate Hazards Group’s Precipitation Climatology version 1 (CHPClim), infrared satellite
observations from the Climate Prediction Center (CPC) and the National Climate Data Center
(NCDC), the Tropical Rainfall Measuring Mission (TRMM) product, atmospheric model rainfall
fields from the Coupled Forecast System version 2 (CFSv2), and in situ precipitation observations
obtained from a variety of sources including national and regional meteorological services.
The relevance and applicability of this dataset for this study were evaluated by comparing
it to precipitation records independently provided by the South African Weather Service for
five weather stations located within the study area (Bloemfontein, Vryburg, Potchefstroom,
Johannesburg and Witbank).

• The seasonally-accumulated FAPAR, estimated from the high resolution MISR-HR satellite
product [27], were used as a proxy for grassland productivity. These FAPAR data, at a spatial
resolution of 275 m, have been available since late February 2000 from the Global Change Institute,
University of the Witwatersrand (free on request to webmaster@misrhr.org). The product is
delivered in the Space Oblique Mercator projection format. The repeat frequency of observation of
an arbitrary site (under identical observation geometries) is 16 days. However, due to the overlap
of successive paths and the fact that any site in South Africa can be observed from three such
paths, the revisit frequency is much higher, at around six times per month. This feature partially
mitigates the problem of missing data due to cloud cover, especially during the rainy season.

• Natural grassland areas (i.e., excluding croplands, abandoned fields, plantations and other land
uses within the grassland biome) were extracted from the 30 × 30 m 2013–2014 South African
National Land-Cover Dataset [30] which was derived from an analysis of the 2013–2014 Landsat
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8 satellite imagery. This data can be found at http://bgis.sanbi.org/DEA_Landcover/project.asp.
The potential grassland sites were further assessed against the “grassland” class of the 2010
global land cover map from the European Space Agency (ESA), available at a 300 m resolution
based on MERIS [31], and the same class of the 2014 global land cover GLC map, available at a
1 km resolution based on global and national datasets [32]. These datasets can be downloaded
respectively at https://www.esa-landcover-cci.org and at http://www.earthenv.org/landcover.

• Soil information for the selected grassland sites were acquired from the AfSoilGrids 25 dataset [33].
The dataset contains soil characteristics—including soil organic carbon (gC/kg), pH (in H2O),
fraction of sand (kg/kg), silt (kg/kg) and clay (kg/kg), bulk density (kg/m3), and cation-exchange
capacity (CEC, cmol +/kg), in addition to estimates of depth to the bedrock (cm), the probability
of occurrence of R horizon or bedrock within 20 m, and the distribution of soil classes based
on the World Reference Base (WRB) and the United States Department of Agriculture (USDA)
classification systems—for the whole African continent at 25 spatial resolution at seven standard
soil depths (0, 5, 15, 30, 60, 100, and 200 cm). This gridded dataset was derived using machine
learning techniques from ca. 150,000 soil profiles and a stack of 158 soil covariates, mostly derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) land products, Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) derivatives, spatially interpolated
climate data on grids, and global landform and lithology maps. This dataset can be found at
https://www.isric.online/projects/soil-property-maps-africa-250-m-resolution.

• Data on herbivory and fire were taken from Archibald et al. [3] who produced maps for
sub-Saharan Africa at a resolution of 0.5◦ × 0.5◦ of the mean consumption of above ground
NPP by fire and herbivory. These data were made available for this study by S. Archibald. The fire
data are an aggregate of 50 resolution MODIS burned area data for the period from 2000 to 2015.
There is no reliable source of high-resolution herbivory data; this product combines livestock
census data with estimates of wildlife biomass.

2.2. Method

2.2.1. Grassland Sites and Selection

The 60 sites were selected to be representative of the entire grassland biome of South Africa;
distributed over the MAP range of 400–80 m per year; and on a variety of soil types (Figure 1). The exact
location of each site was determined using an individual visual assessment of high-resolution imagery
to be homogeneous, in un-degraded natural grassland, and large enough (radius 1 km) to allow for
the resolution and pointing accuracy of the instrument. The sites are selected in such a way that they
are well spread over the selected precipitation range and soil type classes. The description of the five
different World Reference Base (WRB) soil classes represented (petric Calcisols, haplic Luvisols, calcic
Luvisols, haplic Lixisols, haplic Acrisols) is provided in Appendix A.

http://bgis.sanbi.org/DEA_Landcover/project.asp
https://www.esa-landcover-cci.org
http://www.earthenv.org/landcover
https://www.isric.online/projects/soil-property-maps-africa-250-m-resolution
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Figure 1. Location of the 60 selected grassland sites, projected on the mean annual precipitation
according to the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) dataset.

2.2.2. Data Preparation

MISR-HR FAPAR products were extracted from the Global Change Institute (GCI) database and
aggregated into monthly averages as follows: Let i be the index pointing to one of the I = 60 sites,
and let t be the index of the calendar month of interest within the nominal set of T = 180 months
available at the start of this investigation (15 years, from 2000 to 2014, of 12 months). The NASA
Terra platform hosting the MISR instrument is on a repeating trajectory, such that the instrument
observes the same locations on the planet from the same direction every 16 days (233 orbits), or twice
a month. These patterns of repeating orbits are called paths, and the latitude-dependent overlap
between spatially contiguous MISR paths is such that each site in South Africa is actually observable
from three separate paths, hence six times per month. At each site, and for each available orbit on
the three relevant paths, the FAPAR product were extracted over a small square window of 3 by
3 MISR-HR pixels, centered on the site’s nominal geographical location. Let l be the index pointing
to these individual pixel values: l = 1, 2, . . . , L, where L = 9. If m is the number of available paths
(0 ≤ m ≤ M), with M = 3, and if nm is the number of available orbits on path m (0 ≤ nm ≤ Nm), with Nm

= 2, the maximum number of FAPAR samples (individual pixel values) that could be retrieved for a
site in a calendar month is thus K = 9 × 3 × 2 = 54.

The actual number of usable measurements will be smaller, however, because of the frequent
presence of clouds that prevent surface measurements, especially during the rainy season, or occasional
missing observations due to technical issues. Let then λ be the actual number of effectively available
pixel values in a particular square window acquisition (0 ≤ l ≤ λ ≤ L) for a specific orbit, let µ be the
actual number of effectively available MISR paths for the specified site (0 ≤ m ≤ µ ≤ M), and let νm be
the actual number of effectively available MISR orbits for that path m (0 ≤ n ≤ νm ≤ Nm). The monthly
average FAPAR value for site i and month t was then estimated as:

FAPAR(i, t) =
1

λµν ∑ λ
l=1 ∑ µ

m=1 ∑ ν
n=1FAPAR(l, m, n), (1)
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FAPAR(i,t) is an estimate of the mean FAPAR value at site i during month t. In the case that
FAPAR(i,t) could not be computed, for example due to cloud cover, its value was interpolated, but only
if at most two consecutive monthly values were missing. This approach is appropriate because a
regression analysis showed that FAPAR values for the current month were highly correlated to those
for the previous month. The missing value FAPAR(i,t) was estimated as the average of two predictors.
The first one FAPAR1(i, t) is the average value of all available monthly values for the particular month
of the year, and the second FAPAR2(i, t) is the average of the preceding and successive values within
the same year.

Formally, these were computed as follows: Let τ* denote the number of effectively available
monthly values for the missing month of the year, within the T* = 15 years of record (from 2000 to 2014),
and let t* be the index within that set (0 ≤ t* ≤ τ* ≤ T*). Then:

FAPAR1(i, t) =
1

τ∗ ∑ τ∗
t∗=1FAPAR(i, t∗), (2)

where the starred indices refer to values associated with the particular month of the year. The equation
to estimate the second predictor depends on whether the missing value is surrounded by valid values,
or whether there are two consecutive missing values (no interpolation was attempted if there are more
than two consecutive missing values). For an isolated missing value:

FAPAR2(i, t) =
1
2
[FAPAR(i, t − 1) + FAPAR(i, t + 1)], (3)

and if there are two consecutive missing values, the first one was estimated as:

FAPAR2(i, t) =
2
3

[
FAPAR(i, t − 1) +

1
3

FAPAR(i, t + 2)
]

, (4)

and:

FAPAR2(i, t + 1) =
1
3

[
FAPAR(i, t − 1) +

2
3

FAPAR(i, t + 2)
]

, (5)

respectively, where t in the last two equations points to the first missing month. The missing value
was then computed as:

FAPAR(i, t) =
1
2
[
FAPAR1 + FAPAR2

]
, (6)

This guarantees that the replacement values do not steer too far away from the long-term mean for
that month, but they are also allowed to represent conditions that may be particular during that year.

Next, for each grassland site, the monthly rainfall data for the CHIRPS grid cell that covers the
site were retrieved. For both the monthly FAPAR and precipitation datasets, the yearly cumulative
values between July and June of the following year were computed over the 2000–2014 period, given
that the growing season typically extends from October to April. The same procedure was performed
for the CHIRPS grid cells covering the five weather stations for which the yearly precipitation data
were provided by the South African Weather Service (SAWS). The correlation between CHIRPS and
the weather stations precipitation was found to be significant (Figure A1 in Appendix B, CHIRPS =
0.62SAWS + 220; R2 = 0.74, n = 75). Since the study is correlative, the CHIRPS precipitation dataset
was considered to be an appropriate proxy for site rainfall for this study.

Finally, for each of the 60 sites, a 3 × 3 matrix of AfSoilGrids25 pixels at each site was selected.
The average values of the different soil characteristics over these nine pixels were computed by soil
depth class. For the WRB soil class, which is not a quantitative variable, the most frequent soil class
over the nine pixels was assigned to the site. For fire and herbivory, the grid cells that cover the
different sites were retrieved from the database developed by Archibald et al. (2016) [3].
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2.2.3. Data Analysis

First, the spatial variability of mean annual grassland productivity was examined. The potential
factors that might affect this variability were estimated based on the analysis of the spatial correlations
between the multi-year mean FAPAR, the mean precipitation, the range of precipitation inter-annual
variability (defined as the inter-annual standard deviation), the nine quantitative soil characteristics,
and the consumption by fire and herbivory, over the period 2000–2014 and for all sites. The Pearson
correlation coefficient was used to characterize the strengths of the relations between the multi-year
mean FAPAR and the 13 site-specific variables mentioned above, and to rank those variables in order of
decreasing importance in explaining the spatial variability in grassland productivity. The significance
level of a correlation was arbitrarily set at p = 0.1. The linearity of the relations between those variables
was assumed. Based on the results of this correlation analysis, further analyses were performed,
with the soil depth showing the overall best correlation between soil characteristics and multi-year
mean FAPAR.

The slope of the regression between multi-year mean FAPAR and the mean precipitation at each
site was used as a proxy for the sensitivity of grassland productivity to spatial variation in precipitation.
To assess the potential factors affecting the response of grassland productivity to spatial variation in
precipitation, multivariate linear models were constructed, using the least square method, with the
multi-year mean FAPAR as a response variable and the multi-year mean precipitation plus one,
two, three . . . up to 12 of the other site-specific variables as explanatory variables. From this set of
12 models, the best one was selected based on the Akaike Information Criterion (AIC) [34]. AIC is a
model selection criterion that penalizes models, in which adding new explanatory variables does not
supply additional information to the model, the information being measured by the mean squared
error. The AIC works to balance the complexity of a given model and its goodness-of-fit.

Next, the sensitivity of annual grassland productivity at each site to the inter-annual rainfall
variability at that site was assessed. To evaluate the period of the year during which precipitation
had the most significant impact on seasonally-accumulated productivity, lagged correlations were
performed over the 2000–2014 period at each site between the time series of the yearly FAPAR and the
time series of precipitation cumulated over different time windows. The time windows considered
were 1, 3, 6, and 12 months in length, starting from every month one year prior to the start, until the
end of current growing season. The sensitivity of the annual productivity to the inter-annual variability
of the rainfall within those different time windows was estimated at each site, based on the slope of
the regression through annual FAPAR, and the precipitation within the time windows. The Pearson
coefficient was again used to assess the strength of the correlation between datasets.

To estimate the factors affecting the sensitivity of annual productivity to precipitation inter-annual
variability, the spatial variation in correlation strength between those different temporal correlations
was evaluated against the spatial variation in precipitation, mean, and range in inter-annual variability,
soil characteristics, and consumption by fire and herbivory at each site, in a similar way, as described
above for the spatial variability in multi-year FAPAR and the various site-specific variables. The point
in time during the growing season when the monthly productivity becomes a significant proxy for
the annual productivity was estimated based on the strength of the correlations between the time
series of the yearly FAPAR and the time series of the monthly FAPAR values of each month of the year.
Here as well, the factors affecting the strength of the correlations were evaluated.

Finally, we evaluated the legacy effects on grassland productivity and the impact of abnormally
wet and dry years. At each site, the annual FAPAR anomalies were computed, by subtracting the
multi-year mean FAPAR from the annual means, and normalized by the multi-year mean FAPAR.
Normalized cumulative precipitation anomalies were computed as well, over the four time windows
mentioned above; i.e., 1, 3, 6, and 12 months. Based on these normalized FAPAR and precipitation
anomalies, contingency tables were produced and evaluated with respect to 13 site-specific variables:
the precipitation mean and inter-annual variability, the nine soil characteristics, herbivory, and fire,
as well as with the precipitation anomalies during the previous growing season. These tables helped
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to isolate the nature of the precipitation event that favor extreme or unusual FAPAR anomalies, as well
as the site-specific characteristic that tends to enhance or inhibit this behavior.

3. Results

3.1. Spatial Variability in Grassland Productivity

3.1.1. Factors Affecting Spatial Variability in Productivity

The correlation between the multi-year mean FAPAR values and the multi-year MAP at the
grassland sites is highly significant, and it accounts for a large fraction of the FAPAR spatial variability
(R2 = 0.81). Figure 2 shows that different soil type classes are successively encountered along the
precipitation gradient; i.e., the soil type evolves through the sequence petric Calcisols, calcic Luvisols,
haplic Luvisols, and Lixisols and haplic Acrisols, as MAP increases from 400 to 800 mm y−1. As a
result, each of the soil classes exhibited a significantly different range of MAP and mean FAPAR, except
the haplic Lixisols and Luvisols (see standard deviation in Figure 2). Thus, soil properties are conflated
with rainfall, which hampers further investigation of the effects of soil texture on the relationship,
since the wetter locations tend also to have lower pH, more clay, and more organic matter.
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Figure 2. Linear correlation between multiyear averages of Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) and precipitation at each grassland site (black dotted regression line).
The sites are grouped by soil type (haplic Acrisols, Lixisols, Luvisols, Calcisols, and Calcic Luvisols).
The black bars represent the standard deviation in precipitation and FAPAR per soil type.

The multiyear FAPAR at the different sites is significantly (p-value < 0.1) correlated to all
soil variables, except to the probability of occurrence within 20 m of the surface of a R horizon
(hard bedrock) (see Figure A2 in Appendix C). All soil correlations are based on the values for soil
properties at m soil depth, because overall the correlation between FAPAR and soil properties was
greatest at that depth. More than half of the spatial variability in FAPAR can be explained by the spatial
variability of one of the following individual soil variables (note that for n = 60, any R2 above around
0.15 is statistically significant at the 90% confidence level): soil pH (R2 = 0.79), soil organic carbon
content (R2 = 0.73), and soil texture; i.e., sand (R2 = 0.56) and clay (R2 = 0.53) content. The FAPAR tends
to increase with decreasing pH and sand fraction, and with increasing soil organic content and clay.
The soil pH values of the 60 sites lie between 5.7 and 7.5. Those four soil variables are all correlated
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with the MAP, and with each other; in particular, precipitation and soil pH are strongly negatively
correlated. The FAPAR is also significantly positively correlated with CEC (R2 = 0.15) and silt fraction
(R2 = 0.16), and negatively correlated with soil bulk density (R2 = 0.31) and depth to bedrock (R2 = 0.22).
The correlation of FAPAR with grass consumption by fire and herbivory is positive and significant in
both cases, but stronger in the case of fire (R2 = 0.51) than with herbivory (R2 = 0.18). Consumption by
fire is also strongly correlated with the four soil characteristics mentioned above. The multi-year mean
FAPAR is not significantly correlated to the precipitation inter-annual variability (p-value > 0.1) at the
60 grassland sites.

3.1.2. Sensitivity of Grassland Productivity to Spatial Variation in Precipitation

Figure 2 shows that the multi-year mean FAPAR increases by 6 × 10−4 for each mm increase in
mean annual precipitation. To assess the factors affecting this sensitivity, 12 multivariate linear models
were constructed, using as the dependent variable the multi-year mean FAPAR at the 60 sites, and as
explanatory variables the multi-year mean precipitation and one to 12 of the site-specific variables
discussed above, including inter-annual rainfall variability. Based on the AIC, a four-variable model
was selected (see Table A1 in Appendix D). The four variables are, in order of added value: multi-year
mean rainfall, rainfall inter-annual variability; consumption by fire and soil bulk density. Collectively,
they explain 87% of the spatial variability in multi-year mean FAPAR. The mean rainfall explains
81%, rainfall inter-annual variability a further 4%, and consumption by fire and the soil bulk density
improve the model by 1% each. The rainfall variability and bulk density tend to reduce the sensitivity
of grassland productivity to the precipitation spatial variability, while consumption by fire enhances it.

3.2. Temporal Variability in Grassland Productivity at a Site

3.2.1. Sensitivity to Rainfall and the Factors Affecting It

During the 2000–2014 period, positive correlations exist at all sites between the annual FAPAR
values, and the precipitation over the four moving time windows within a season; i.e., the monthly
cumulated precipitation for 1-, 3-, 6-, and 12-month, from one year prior to the start of the growing
season until the end of the season. The strength of the correlations varies strongly between sites
and over time. On average, the correlations are the strongest when the rainfall is accumulated over
12 months. Of the various site-specific variables, the clay fraction at m soil depth best explains the
variability in correlation strength between sites and along time windows. Figure 3 shows a clear
pattern in correlation strength: at sites on soils with a higher clay fraction, the amount of rainfall
during the current (rather than previous) season explains more of the FAPAR inter-annual variability.
With decreasing clay fraction, the current season precipitation becomes gradually less significant, while
the effect of previous season precipitation grows, but never to the extent of dominating current season
rainfall as a predictor. There seems to be a gradual shift of influence from the previous to current
season precipitation with increasing soil clay content. Unsurprisingly, the rainfall during the drier
winter months in between two growing seasons (April to August) hardly contributes to the yearly
FAPAR of the current growing season. Nonetheless, the largest variability between sites in correlation
strength is observed for the precipitation accumulated between March and the following February;
in other words, the contribution of the end of the past growing season and the beginning and middle
of the current growing season. Some 42% of the spatial variability in correlation strength between the
current season FAPAR and the cumulated precipitation between March and February can be explained
by the clay fraction in the soil.

The sensitivity of annual grassland productivity to precipitation inter-annual variability is
revealed by the slope of the regression line at each site between the annual FAPAR and the accumulated
precipitation. Sensitivity shows a similar pattern in relation to the various time windows, as did
correlation strength in Figure 3. The maximum sensitivity FAPAR is about 3.6 × 10−4 FAPAR units for
each mm of rainfall accumulated between March of the previous season and February of the current
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season, and it is encountered on clayey soils with high clay fraction. The intercept of the regression is
strongly linked to the slope, and it tends to decrease with increasing clay content.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 24 
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3.2.2. Relationship with in-Season Grassland Productivity

Figure 4 shows a contingency table of the correlation strength between the yearly FAPAR and
the monthly FAPAR values between the start and the end of the growing season. From this figure,
it can be seen that on soils with low clay fractions, the FAPAR observed in August–September already
significantly correlates to the yearly-accumulated FAPAR. On those soils, the values of the Pearson
coefficient increase from June to December, and gradually decrease thereafter. With increasing clay
fraction, the point in time during the growing season when the correlation becomes significant
gradually shifts to a later date; i.e., October–November. Hereafter, the strength of the correlations
fluctuates but tends to remain lower than on less clayey soils.

Multivariate linear models were constructed using the Pearson coefficients of the regression
between annual and monthly FAPAR at each site as the dependent variable, and from one to
13 site-specific variables as the explanatory variables. For each month, the best models were selected
based on the least square method and the AIC. Clay fraction and consumption by herbivory were
in general the most significant variables, and they collectively explained 54% and 45% of the spatial
variability in the Pearson coefficient values for the months of September and December respectively.
From all available explanatory variables, the clay fraction at m depth was here again the best predictor,
explaining 47% of the spatial variability in September and 34% in December.
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3.3. The Impact of Extreme Precipitation Events

3.3.1. Nature of Precipitation Event

Positive and negative annual precipitation anomalies tended to result in positive and negative
FAPAR anomalies (Figure 5). However, some of the FAPAR anomalies exhibited a different relation,
not clustered around the 1:1 line in Figure 5. For instance, the summer of 2008–2009 were much wetter
than usual (rainfall was two standard deviations above the mean), but only a small subset of sites
showed a positive FAPAR deviation from the long-term mean; and many sites exhibited a lower yearly
FAPAR than the long-term average for that year (quadrant IV in Figure 5). Similarly, the summer of
2010–2011 rainfall was two standard deviations below the mean, but most sites were characterized by
a larger yearly FAPAR value than average (quadrant I in Figure 5).

Figure 6a shows that years with negative precipitation anomalies but positive FAPAR anomalies
were preceded by very wet years (quadrant I in Figure 6a), and they are markedly clustered above the
1:1 line. Years with medium-to-high positive rainfall anomalies tend to have slightly more-than-high
FAPAR, but not significantly so if the preceding year was also wetter than average (quadrant II in
Figure 6a). Years with medium-to-high negative rainfall anomalies tend to show larger negative
FAPAR anomalies, especially if the preceding year was drier than average (quadrant III in Figure 6a).
Preceding year rainfall anomalies fail to explain the events in quadrant IV of Figure 6a, where FAPAR
is down, although rainfall is up. The events in the latter quadrant are explained by monthly rainfall
anomalies. Figure 6b shows that years with positive rainfall anomalies but negative FAPAR anomalies
are years with a large rainfall event concentrated in one specific month. These intense rainfall events
occurred mainly in December or January, on average the wettest months of the rainy season.
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Figure 5. Anomalies of the yearly cumulated FAPAR vs rainfall. The anomalies of each of the
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Figure 6. Average previous year precipitation anomalies (a) and fraction of the total yearly precipitation
during wettest month of the year (b) for each normalized FAPAR and precipitation anomalies,
as provided in Figure 5. In (a), red represents the negative precipitation anomalies and blue the
positive precipitation anomalies. The lighter the colors, the smaller the anomalies. In (b), yellow
represents low precipitation anomalies, and red, large precipitation anomalies during the wettest
month of each year.

3.3.2. Site-Specific Characteristics

Clay fraction in the topsoil best explains the likelihood that an event occurs in one of the four
quadrants of Figures 5 and 6, as is shown in Figure 7a. The probability that a site–year combination
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falls in quadrants II and III, along the 1:1 line, is greater on more clayey soils, while the likelihood of
the combination being in quadrant I and IV tend to occur on sandier soils. This pattern is enhanced for
rainfall anomalies that are more than 20% different to their long-term annual mean (Figure 7b).
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4. Discussion

4.1. Spatial Variability in Grassland Productivity

4.1.1. Factors Affecting Spatial Variability in Grassland Productivity

In our study area, mean annual precipitation accounts for more than 80% of the spatial variability
in multi-year mean FAPAR across sites (Figure 2). This very strong spatial relationship between
grassland productivity and precipitation has been observed in many studies [17,18,23]. Ecologists
suggest that water availability is the most frequent limiting factor to the functioning of arid and
semi-arid ecosystems [19,23,35].

Figure 2 also shows that different soil texture classes are successively encountered along the
multi-year mean precipitation gradient. The interplay of calcium supplied by weathering, water
movement, evaporation, and pH means that soils developed under an arid climate (i.e., petric Calcisols
and calcic Luvisols) show an accumulation of lime, less apparent in moderately (i.e., haplic Luvisols)
and strongly weathered soils (i.e., haplic Lixisols and haplic Calcisols) developed under more humid
climates. The succession of soil texture classes (from sandy to clayey soils) and the pH gradient,
(basic to acid soils) follows the same pattern. It has been noted that along with precipitation, local soil
characteristics explain some of the variation in grassland productivity [20]. Climate, soil, and vegetation
interact and feedback to each other at a range of spatial and temporal scales. Our results show strong
correlations between precipitation, grassland productivity, and soil characteristics; i.e., soil pH, texture,
and soil organic carbon (OC). It is therefore not straightforward to dissociate the effect of precipitation
from the effect of soil on vegetation productivity.

A strong correlation was observed over the 60 sites between multiyear mean precipitation and soil pH.
Slessarev et al. [36] show that the amount of rainfall is linked to soil pH worldwide. Therefore, soil pH is
a good inverse proxy of the multiyear precipitation over timeframes of centuries to millennia [36].

Precipitation does not only affect soil pH. When precipitation increases, plant production increases,
and so does soil organic matter [37]. Precipitation also favors clay formation; the more precipitation,
the more easily clay is formed from the weathering products of the parent material. Clay formation is
greater in finer-grained and more basic (ferromagnesian) rocks [38]. The significant positive correlation
between cation exchange capacity, soil organic carbon, bulk density, and clay fraction can be explained
by the fact that organic carbon is better stabilized when clay colloids are abundant [39], because the
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clay particles provide a much greater surface area for adsorption, and bonding of organic matter to
clay particles retards the decomposition process. Bulk density and OC content are not independent,
because both are correlated with clay fraction, and OC itself has a lower bulk density than mineral soil.

These soil characteristics affect vegetation growth, in particular, through regulating nutrients and
water availability. Our results showed that multiyear mean grassland productivity is well correlated to
soil characteristics such as pH, texture, OC, CEC, BD, and depth to the bedrock, which is in accordance
with previous work [38,40]. Soil bulk density influences infiltration rates, aeration, root proliferation,
and plant growth. Depth to bedrock (and gravel content) defines the available rooting volume and
soil water storage capacity. Coarse-textured sandy soils generally have high infiltration rates but poor
water-holding capacities per unit volume, whereas a fine-textured clay soil has a low infiltration rate but a
good water-holding capacity per unit volume. Higher clay content typically means higher soil fertility [41];
partly mediated via the role of clays in adsorbing cations, but especially through their association with
organic matter. Most of the nitrogen in soils (typically the most-limiting nutrient in grasslands) is bound
within the OM. Soils with low organic matter have weak structure, hold little water, and erode or leach
nutrients easily. Soils with high organic matter levels have stable structures, high water-holding capacity,
and reduced erosion and nutrient leaching. At the 60 sites, the pH values are in the range of the optimum
values (5.5 to 7.5) and therefore probably have little direct impact on productivity.

Our explanatory datasets on fire and herbivory are notably coarser than the soil and climate
datasets. This was because more resolved data were not available; but in our defense, both these
variables do show quite broad-scale patterns on a decadal timeframe. Concerning the effects
of grass consumption by fire and herbivory on primary productivity, previous studies come to
contradictory conclusions. Some empirical and modeling studies suggest that herbivory reduces
primary productivity and decreases nutrient cycling rates [42–44], while other studies indicate that
herbivory can stimulate primary productivity and promote nutrient cycling [45,46]. The differences
among studies concerning the impact of herbivores are likely due to differences in herbivore density
and grazing intensity [47,48], and how they affect litter inputs and nutrient cycling in different
ecosystems [49]. According to McNaughton [50], part of the stimulation of grassland productivity
by grazing is due to the maintenance of the vegetation in an immature, rapidly growing state that is
similar to that at the beginning of the rainy season. We, however, suggest that the positive correlation
between FAPAR and grazing is probably due to the fact that grazing is heavier on grasslands that are
intrinsically more productive. Including consumption by herbivores in our model did not improve the
prediction of productivity based on mean precipitation. The same can be stated concerning the positive
correlation between consumption by fire and FAPAR, although Van de Vijver et al. [51] suggested that
burn scars facilitate nutrient-rich grass regrowth with increased leaf-to-stem ratios.

4.1.2. Factors Affecting the Sensitivity of Productivity to Precipitation Spatial Variability

Our results show the following relationship between multi-year mean FAPAR (MAF),
and multi-year mean precipitation (MAP):

MAF = 0.0006 MAP − 0.1015, for MAP of 400 to 80m y−1 (7)

which means an average FAPAR increase of 6 × 10−4 for each mm increase in mean annual precipitation
(note that FAPAR is a unitless fraction, ranging 0 to 1). This is 10% higher than the sensitivity reported
by Sala et al. [23] for the grasslands in the Serengeti Plains of East Africa. The correlation between
MAP and MAP is markedly stronger in our study. This may be due to the benefits of having, in our
case a long-term, consistent, large-site database.

The sensitivity of grassland productivity to changes in mean precipitation is, according to our
multivariate analysis, affected by the magnitude of inter-annual rainfall variability and, to a lesser
extent, by the consumption by fire and by the bulk density. Although the precipitation inter-annual
variability was not significant in the bivariate analysis, large inter-annual variability in precipitation
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at the various sites tends to reduce the sensitivity of the mean productivity to mean precipitation.
Gerhardi and Sala [52] showed, in a 6-year field experiment, that increased precipitation variability
significantly reduced ecosystem primary productivity, in particular, for grass. This might suggest that,
at an annual temporal scale, the grassland productivity does not respond linearly to precipitation
inter-annual variability. If the response of grassland productivity to inter-annual precipitation
variability were linear, increased inter-annual precipitation variability would result in a null effect on
mean multiyear productivity because the decline caused by the dry years would be compensated by
productivity increases in wet years. Non-linear or lagged responses would result in either positive or
negative effects of precipitation variations on productivity [53]. A decreasing response would result in
a negative response to precipitation variability, because, for example, the positive effect of wet years
does not compensate dry-year productivity decreases [54]. This subject is explored in the next section.

Bulk density and consumption by fire only minimally adds value to the model predictive capacity.
High bulk density tends to reduce the sensitivity of productivity to precipitation, while fire tends to
increase the sensitivity.

4.2. Temporal Variability in Grassland Productivity

4.2.1. Factors Affecting the Sensitivity to Rainfall Variability at a Site

In general, at the various sites, positive correlations are observed between the annual productivity
and the precipitation, regardless of the time window within the season over which rainfall is
accumulated. Aboveground grass net primary production in semiarid rangelands has been widely
reported to be linearly related to the rainfall received in the growing season [55,56]. Similar to our
results, Scholes [56] observed that the slope of the relationship between annual productivity and
current season precipitation is steeper on clayey soils than on sandy soils, and that the y-intercept
on clayey soils is negative, whereas on sandy soils it is positive. It was suggested that the slope is
related to the soil nutrient-supplying capacity (i.e., fertility), which is higher on clays than on sands,
whereas the intercept is related to how the site partitions its water supply between ‘productive use’ (i.e.,
transpiration, carry-over between seasons) and losses (evaporation, drainage and runoff). At low MAP,
clayey soils are effectively more arid than sandy soils because a greater fraction evaporates or runs off.
At high MAP, the reverse is true, because the sandy soils cannot retain the higher water inputs.
Scholes [56] stated that, by consequence, grass production on the clayey soils, which are more fertile,
is more sensitive to annual precipitation variability than the production on sandy soils.

While rainfall during the current season is the main driver of variability in productivity on the
clayey soils, which are mainly located in the wetter regions, our results show that on the sandier soils,
which are also mainly located in the drier areas of our study area, the productivity is sensitive to both
the current and previous season precipitation. At those sites, the grassland productivity at the start of
the growing season; i.e., September, is already a good indicator for the mean productivity over the
whole growing season, and within-season variability in current season precipitation has a weaker
effect on productivity. At all sites, grazing tends to modulate the inter-annual variability in grassland
productivity, productivity that is expected based on precipitation inter-annual variability [22].

The small proportion of annual aboveground net primary production explained by current-year
precipitation was also observed in arid ecosystems by Reichmann et al. [25]. They hypothesized
that lags in the response of ecosystems to changes in water availability explain this low explanatory
power. Lags result from the legacies of transitions from dry to wet years, or the reverse. Similar to
Sala et al. [23], we observed a much stronger sensitivity to spatial than to temporal precipitation
variability. Sala et al. [23], also attribute this difference to legacy effects. Several mechanisms
underlying those legacies have been suggested; e.g., tiller density as reflected by tuft basal area;
carry-over of stored carbohydrates; nitrogen limitation resulting from temporary depletion of readily
available pools in the soil; and carry-over of profile-stored water [25,26]. The results of this study
suggest tiller density as the most likely mechanism. Reichmann et al. [25] suggest that precipitation
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affects the capacity of plants to replace tiller populations, and that productivity is constrained by
tiller density following dry years, and enhanced following wet years. When dry years precede wet
years, tiller density can constrain productivity by limiting the recruitment of new tillers and maximum
leaf area, despite higher than previous resource availability. In contrast, when wet years precede dry
years, existing high tiller density may enhance productivity because the maintenance cost of leaves and
buds is lower than what the extra carbon/energy that plants can acquire by having such structures [23].

Nitrogen limitations would be reduced by increasing clay content [57] and not vice versa as is
the case in our dataset. Greater between-season water carryover on sandy soils (due to protection
from evaporation) would support increased legacy on less clayey soils. In an arid environment,
on sandy and less clayey soils, or on soils with shallow depth to the bedrock, tillers are more frequent
than recruitment from seeds [35]. The differences in available water holding capacity accounted
for the difference among soil textures and depths in the probability of occurrence of recruitment
events. Recruitment from seedlings is low under low precipitation. Low water availability, which is a
combination of low precipitation rate and low water holding capacity of the soil, favors vegetative
propagation. Nevertheless, tillering is sensitive to variability in precipitation, and in particular,
to previous season precipitation, as mentioned above. In addition, grasses have relatively shallow
roots and use the soil water located in the upper soil layer [58]. During wet years following dry
years, grasses do not hold enough structure to efficiently use available resources in the upper layers of
the soil. Therefore, underused resources may percolate deeper into the soil [26], particularly on sands,
where they are less susceptible to evaporation.

4.2.2. The Impact of Extreme Precipitation Events on Grassland Productivity

Legacies play an important role in explaining current-year production. Dry legacies reduce
productivity in the current year, and wet legacies increase the productivity relative to the productivity
expected on current-year precipitation. Lag effects can amplify or dampen precipitation variability
depending on the sequence of the precipitation years. In our study area, non-linearities were also
observed; larger deviations from expected productivity are observed in the case that a dry year is
preceded by an extreme dry year, compared to a wet year preceded by an extreme wet year. Large
negative precipitation anomalies lead to especially large decreases in productivity in dry years, where
the slope of the precipitation–productivity relationship is steep. However, in wet years, large positive
precipitation anomalies lead to a smaller proportional increase in productivity, due to the leveling-off
of the precipitation–productivity relation [52,54]. This asymmetry (non-linearity) might explain the
observed reduced sensitivity of multi-year mean productivity to mean precipitation (i.e., the lower slope
of the AGNPP versus rainfall relation, also often equated to the rain use efficiency) at sites with large
inter-annual variability (Section 4.1.2) [59]. Based on this, we might expect reduced mean productivity
under increased precipitation variability, as projected for arid and semi-arid regions in Africa [60].

Further non-linearities between annual productivity and precipitation were observed in our
dataset. A large fraction of events; i.e., negative FAPAR anomalies under positive precipitation
anomalies, could not be explained by extreme low or high preceding year annual precipitation.
However, they could be related to large precipitation amounts concentrated in one specific month of the
growing season. Zhang et al. [61] showed that extreme precipitation patterns decreased the sensitivity
of productivity to total annual precipitation at the regional and decadal scales, leading to decreased
rain use efficiency, RUE, which is defined as the productivity divided by precipitation. Relative
decreases in productivity were the greatest for arid grassland. The lower RUE may reflect the inability
of plants to effectively use precipitation in the years with more extreme events. When precipitation
patterns are more extreme, a smaller fraction of rainfall infiltrates into the soil water, and more is
lost as runoff [62]. Thus, the effective rainfall that is available for stimulating biological processes
is decreased [63]. A shift to more extreme events creates long periods of evapotranspiration in the
absence of rainfall, and depletes soil water to stress levels that are greater than what is typically
experienced in the historical climate period. In summary, a large variability in precipitation and a high



Remote Sens. 2018, 10, 2055 17 of 23

frequency of extreme events tends to reduce mean productivity, in particular, at the more marginal
sites; i.e., with low water availability due to the low precipitation rates and low water holding capacity
of the soils. The probability of those marginal sites of being negatively affected by the projected
increase in variability and frequency in extreme events [60,64] is higher compared to more humid sites,
with higher clay and organic content in the soil.

5. Conclusions

This study evaluated the sensitivity of grassland productivity to the precipitation mean and
variability in semi-arid environments, and the factors affecting the sensitivity. Our results show that
MISR-HR data is a good tool to reveal spatial variability in grassland productivity, and that the mean
annual precipitation is a good predictor for the mean annual FAPAR, a proxy for primary productivity.
Our predictions of mean productivity based on mean precipitation are not improved by including soil
characteristics into our model, since the variation in soil characteristics is already largely accounted
for in the rainfall gradient. However, it is clear that soil, precipitation, and grassland productivity are
strongly interrelated; therefore, it is not straightforward to unravel the causes and effects of spatial
variability in productivity. On the clayey and acid soils with higher soil organic matter, which are
encountered in the wetter regions, productivity tends to be higher. The inverse is valid on the sandier,
more alkaline, and less fertile soils located in the drier areas. In our study area, soil alkalinity is indeed
an equally as good predictor for grassland productivity as mean annual precipitation.

Including the precipitation inter-annual variability in our model, on the other hand, did improve
our predictions of the multi-year mean grassland productivity based on the multi-year mean
precipitation. Large inter-annual variability in precipitation tends to reduce the sensitivity of
productivity to multi-year mean annual precipitation. The sensitivity of grassland productivity to
precipitation inter-annual variability is at least 40% less than the sensitivity to spatial variability, and it
gradually decreases with the decreasing MAP and water holding capacity of the soil; i.e., with lower
soil moisture availability. Differing responses to rainfall inter-annual variability suggest more than one
functional type of grassland in South Africa. In particular, legacy effects were stronger at sites with
low soil moisture availability. These legacy effects, the amount of grassland consumption, and other
non-linearities, such as the lower effectiveness of rainfall under extreme precipitation events and
the saturating response to precipitation, tend to dampen the sensitivity of grassland productivity to
precipitation inter-annual variability, and they help to explain the lower sensitivity of productivity to
temporal than spatial precipitation variability. With expectations of increasing precipitation variability
and more extreme weather events, forecasts of ecosystem production should consider these nonlinear
responses to the altered extreme precipitation patterns associated with climate change. Our study
suggests that grasslands on the more arid and less fertile soils, which are already the most vulnerable
to current climate variability and extreme events, might also be the most vulnerable to climate change.
Combining the various factors and accounting for legacies and non-linearities can improve our ability
to understand patterns in grassland functional behavior, identify areas of vulnerability, and predict
the future of grasslands. MISR-HR was capable of catching the spatial and temporal variability in
productivity at scales relevant to this study, and is therefore a promising tool for studying climate
change impacts on ecosystems at appropriate spatial and temporal resolutions, over large spatial and
temporal domains.
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Appendix A. This Appendix Summarizes the Key Properties of the 5 Soil Classes (WRB) found in
the Study Area

• petric Calcisols (10 sites): Calcisols develop in dry climate, arid to semi-arid, and have a substantial
accumulation of calcium carbonate, CaCO2. Petric Calcisols have a continuous cemented horizon,
to the extent that dry fragments do not slake in water and roots cannot enter. It has a low base
saturation (<50%) and CEC (<24). They are well drained and have a good water-holding capacity.

• haplic Luvisols (10 sites): Luvisols develop in wet–dry climates, and are soils in which clay is
washed down from the surface to a deeper horizon. It has a high base saturation (>50%) and
CEC (>24). Luvisols are moderately weathered. Most Luvisols are well drained, but those with a
high silt content may be sensitive to slaking and erosion. Luvisols are generally fertile.

• calcic Luvisols (11 sites): They have similar general proprieties as the haplic Luvisols but have
additional calcic proprieties. Calcic soils are a result of the continuing accumulation of CaCO2

over a long period. If the surface soil is silty, crusts may form that restrict rapid infiltration of rain
and root penetration.

• haplic Lixisols (nine sites): Lixisols have an argic B-horizon which has a CEC < 24. The argic
B-horizon is a subsurface horizon which has a distinctly higher clay content than the overlying
horizon. These soils are strongly weathered (low level of available nutrients: low fertility but better
than acrisols), which results in a low silt/clay ratio. They have a higher pH (base saturation > 50%)
than other tropical soils (better chemical properties than Acrisols). The structure stability is lower
than in Acrisols, and slaking and caking of the surface soil is a serious problem (an issue when
exposed to the direct impact of rain drops). The moisture content at low pF is higher than in Acrisols.

• haplic Acrisols (20 sites): Acrisols are associated with humid, tropical climates. They have an argic
B-horizon (clay rich) which has a CEC < 24 and a base saturation < 50%. These soils are strongly
weathered. They have a low fertility and a high Al toxicity. During rain showers, crusting and
erosion of the top soil can occur. They mostly develop on acid rock, and in strongly weathered
clays, which are undergoing further degradation.

Appendix B. CHIRPS vs South African Weather Service Precipitation Data for Five
Weather Stations
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Appendix D. Factors Affecting the Sensitivity of Mean Productivity to Spatial Variations
in Precipitation

Table A1. Summary table of the variables selected, based on the least square method, for each
multivariate linear model with the multi-year mean FAPAR as the response variable and the multi-year
mean precipitation plus one up to 12 other site-specific variables. The “best” model was selected based
on the AIC.

Nbr. of variables Variables MSE R2 Akaike’s AIC

1 Mean precip 0.001 0.805 412.225
2 st dev precip/Mean precip 0.001 0.851 −426.178
3 st dev precip/Mean precip/fire DMI 0.001 0.861 −428.381
4 st dev precip/Mean precip/BD/fire DMI 0.001 0.865 −428.411
5 st dev precip/Mean precip/BD/Clay/fire DMI 0.001 0.869 −428.250

6 st dev precip/Mean precip/BD/Clay/Depth to
bedrock/fire DMI 0.001 0.872 −427.575

7 st dev precip/Mean precip/BD/Clay/Sand/Depth to
bedrock/fire DMI 0.001 0.875 −426.858

. . . . . .

The best model for the selected selection criterion is displayed in bold.
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