Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Ground Measurements
2.1.2. Satellite Data
2.1.3. DSR Products
2.2. Methods
2.2.1. Gradient Boosting Regression Tree
- (1)
- Extracting the TOA radiance from the NOAA CDR of Visible and Near Infrared Reflectance from AVHRR;
- (2)
- Extracting the cloud properties from the NASA LaRC Cloud and Clear Sky Radiation Properties dataset;
- (3)
- Training the clear and cloudy sky models. The inputs of the clear sky model include the solar zenith angle, viewing zenith angle, relative Azimuth angle, TOA shortwave broadband albedo, reflectance (from channel 1 and 2) of AVHRR, and the brightness temperature (from channel 4 and 5) of AVHRR. The input of the cloudy sky model used the same input variables as the clear sky model and cloud optical depth;
- (4)
- Configuring the model coefficients. The optimal parameterization scheme was determined by looping in each parameter threshold. Table 2 shows the parameter setting details to determine the optimal parameterization for both the clear sky and cloudy sky conditions through the evaluation results (highest R2 value and lowest bias and RMSE values) of the testing dataset for each loop;
- (5)
- Evaluating against the ground measurements.
2.2.2. Artificial Neural Networks
2.3. Constructing the Model
2.3.1. Constructing the GBRT-Based DSR Model
2.3.2. Constructing the ANN-Based DSR Model
3. Results and Analysis
3.1. Validation with Ground Measurements
3.1.1. Validation at a Daily Time Scale
3.1.2. Validation at a Monthly Time Scale
3.2. Comparison with the ANN-Based Method
3.2.1. Validation at a Daily Time Scale
3.2.2. Validation at a Monthly Time Scale
3.3. Comparison with Existing DSR Products
3.3.1. Mapping DSR over China
3.3.2. Validation with Ground Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lu, N.; Liu, R.; Liu, J.; Liang, S. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ritchey, N.A.; Wilber, A.C.; Whitlock, C.H.; Gibson, G.G.; Stackhouse, P.W., Jr. A Climatology of Surface Radiation Budget Derived from Satellite Data. J. Clim. 1999, 12, 2691–2710. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Kafatos, M. Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling. Ann. Geophys. 2009, 27, 3691–3703. [Google Scholar] [CrossRef]
- Wild, M.; Ohmura, A.; Gilgen, H.; Roeckner, E. Validation of General Circulation Model Radiative Fluxes Using Surface Observations. J. Clim. 1995, 8, 1309–1324. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Running, S. W.; Nemani, R.; Glassy, J.M.; Thornton, P.E. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17). Algorithm Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999. [Google Scholar]
- Mondol, J.D.; Yohanis, Y.G.; Norton, B. Solar radiation modelling for the simulation of photovoltaic systems. Renew. Energy 2008, 33, 1109–1120. [Google Scholar] [CrossRef]
- Perez, R.; Seals, R.; Zelenka, A. Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Sol. Energy 1997, 60, 89–96. [Google Scholar] [CrossRef]
- Blanc, P.; Gschwind, B.T.; Lefèvre, M.; Wald, L. The HelioClim Project: Surface Solar Irradiance Data for Climate Applications. Remote Sens. 2011, 3, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Kaplanis, S.; Kaplani, E. A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values. Renew. Energy 2007, 32, 1414–1425. [Google Scholar] [CrossRef]
- Wong, L.T.; Chow, W.K. Solar radiation model. Appl. Energy 2001, 69, 191–224. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Casanova-Mateo, C.; Pastor-Sánchez, A.; Sánchez-Girón, M. Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization—Extreme Learning Machine approach. Sol. Energy 2014, 105, 91–98. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Arab, A.H.; Guessoum, A. A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach. Sol. Energy 2005, 79, 469–482. [Google Scholar] [CrossRef]
- Houghton, J.T. Climate change 2001: The scientific basis. Neth. J. Geosci. 2001, 87, 197–199. [Google Scholar]
- Zhang, X.; Liang, S.; Song, Z.; Niu, H.; Wang, G.; Tang, W.; Chen, Z.; Jiang, B. Local Adaptive Calibration of the Satellite-Derived Surface Incident Shortwave Radiation Product Using Smoothing Spline. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1156–1169. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations. Remote Sens. 2016, 8, 225. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Lu, X. Estimation of the Instantaneous Downward Surface Shortwave Radiation Using MODIS Data in Lhasa for All-Sky Conditions. Master’s Thesis, Clark University, Worcester, MA, USA, 2016. [Google Scholar]
- Barzin, R.; Shirvani, A.; Lotfi, H. Estimation of daily average downward shortwave radiation from MODIS data using principal components regression method: Fars province case study. Int. Agrophys. 2017, 31, 23–34. [Google Scholar] [CrossRef]
- Liu, H.; Pinker, R.T. Radiative fluxes from satellites: Focus on aerosols. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Stone, P.H.; Risbey, J.S. On the limitations of general circulation climate models. Geophys. Res. Lett. 2013, 17, 2173–2176. [Google Scholar] [CrossRef]
- Betts, A.K.; Zhao, M.; Dirmeyer, P.A.; Beljaars, A.C.M. Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Rossow, W.B.; Zhang, Y.C. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res. Atmos. 1995, 100, 1167–1197. [Google Scholar] [CrossRef]
- Gui, S.; Liang, S.; Wang, K.; Li, L.; Zhang, X. Assessment of Three Satellite-Estimated Land Surface Downwelling Shortwave Irradiance Data Sets. IEEE Geosci. Remote Sens. Lett. 2010, 7, 776–780. [Google Scholar] [CrossRef]
- Jia, B.; Xie, Z.; Dai, A.D.; Shi, C.; Chen, F. Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos. 2013, 118, 3431–3446. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wild, M.; Jiang, B. Analysis of surface incident shortwave radiation from four satellite products. Remote Sens. Environ. 2015, 165, 186–202. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Liang, S. Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sens. Environ. 2010, 114, 2393–2402. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ye, B. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteorol. 2006, 137, 43–55. [Google Scholar] [CrossRef]
- Cano, D.; Monget, J.M.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy 2010, 37, 31–39. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Min, M. Development of a 50-year daily surface solar radiation dataset over China. Sci. China Earth Sci. 2013, 56, 1555–1565. [Google Scholar] [CrossRef]
- Perez, R.; Moore, K.; Wilcox, S.; Renné, D.; Zelenka, A. Forecasting solar radiation—Preliminary evaluation of an approach based upon the national forecast database. Sol. Energy 2007, 81, 809–812. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Dongdong, W.; Shunlin, L.; Tao, H.; Qinqing, S. Estimation of Daily Surface Shortwave Net Radiation from the Combined MODIS Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5519–5529. [Google Scholar] [CrossRef]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef]
- Muneer, T.; Younes, S.; Munawwar, S. Discourses on solar radiation modeling. Renew. Sustain. Energy Rev. 2007, 11, 551–602. [Google Scholar] [CrossRef]
- Mueller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—A LUT based eigenvector hybrid approach. Remote Sens. Environ. 2009, 113, 1012–1024. [Google Scholar] [CrossRef]
- Li, Z.; Leighton, H.; Cess, R.D. Surface net solar radiation estimated from satellite measurements: Comparisons with tower observations. J. Clim. 1993, 6, 1764–1772. [Google Scholar] [CrossRef]
- Qin, J.; Tang, W.; Yang, K.; Lu, N.; Niu, X.; Liang, S. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products. J. Geophys. Res. Atmos. 2015, 120, 4975–4988. [Google Scholar] [CrossRef]
- López, G.; Batlles, F.J. Estimating Solar Radiation from MODIS Data. Energy Procedia 2014, 49, 2362–2369. [Google Scholar] [CrossRef]
- Mellit, A.; Eleuch, H.; Benghanem, M.; Elaoun, C.; Pavan, A.M. An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers. Manag. 2010, 51, 771–782. [Google Scholar] [CrossRef]
- Jiang, Y. Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models. Energy Policy 2008, 36, 3833–3837. [Google Scholar] [CrossRef]
- Voyant, C.; Muselli, M.; Paoli, C.; Nivet, M.L. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation. Energy 2011, 36, 348–359. [Google Scholar] [CrossRef]
- Wang, T.; Yan, G.; Chen, L. Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions. Remote Sens. Environ. 2012, 124, 61–71. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Z.; Yang, K.; Liang, S.; Tang, W. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Appl. Energy 2011, 88, 2480–2489. [Google Scholar] [CrossRef]
- Zhou, Q.; Flores, A.; Glenn, N.F.; Walters, R.; Han, B. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- McInerney, D.O.; Nieuwenhuis, M. A comparative analysis of kNN and decision tree methods for the Irish National Forest Inventory. Int. J. Remote Sens. 2009, 30, 4937–4955. [Google Scholar] [CrossRef]
- Mubiru, J.; Banda, E.J.K.B. Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol. Energy 2008, 82, 181–187. [Google Scholar] [CrossRef]
- Lam, J.C.; Wan, K.K.W.; Yang, L. Solar radiation modelling using ANNs for different climates in China. Energy Convers. Manag. 2008, 49, 1080–1090. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Liu, X.N.; Xu, S. The description of Chinese radiation data and their quality control procedures. Meteorol. Sci. 1998, 2, 53–56. (In Chinese) [Google Scholar]
- Moradi, I. Quality control of global solar radiation using sunshine duration hours. Energy 2009, 34, 1–6. [Google Scholar] [CrossRef]
- Tang, W.; Yang, K.; He, J.; Qin, J. Quality control and estimation of global solar radiation in China. Sol. Energy 2010, 84, 466–475. [Google Scholar] [CrossRef]
- Minnis, P.; Bedka, K.; Yost, C.R.; Bedka, S.T.; Scarino, B.A.; Khlopenkov, K.; Khaiyer, M.M. A Consistent Long-Term Cloud and Clear-Sky Radiation Property Dataset from the Advanced Very High Resolution Radiometer (AVHRR), Climate Algorithm Theoretical Basis Document; NOAA Climate Data Record Program CDRP-ATBD-0826 Rev.1; CDR Program Library: South Carolina, SC, USA, 2016; Available online: http://www.ncdc.noaa.gov/cdr/operationalcdrs.html (accessed on 20 August 2017).
- Bhatt, R.; Doelling, D.R.; Scarino, B.R.; Gopalan, A.; Haney, C.O.; Minnis, P.; Bedka, K.M. A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology. J. Atmos. Ocean. Technol. 2016, 33, 2499–2515. [Google Scholar] [CrossRef]
- Doelling, D.R.; Bhatt, R.; Scarino, B.R.; Gopalan, A.; Haney, C.O.; Minnis, P.; Bedka, K.M. A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part II: Validation. J. Atmos. Ocean. Technol. 2016, 33, 2517–2534. [Google Scholar] [CrossRef]
- Minnis, P.B.; Kristopher; The NOAA CDR Program. NOAA Climate Data Record (CDR) of Cloud and Clear-Sky Radiation Properties; Version 1.0; NOAA National Centers for Environmental Information, 2015. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00876 (accessed on 20 August 2017).
- Doelling, D.M.; Patrick; The NOAA CDR Program. NOAA Climate Data Record (CDR) of Visible and Near Infrared Reflectance from GOES and AVHRR; Version 1.0[C00860]; NOAA National Centers for Environmental Information., 2015. Available online: https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00860 (accessed on 20 August 2017).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Zhang, T.; Stackhouse, P.W.; Gupta, S.K.; Cox, S.J.; Mikovitz, J.C.; Srb, N.G. The Effect of Cloud Fraction on the Radiative Energy Budget: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements; American Geophysical Union: Washington, DC, USA, 2011. [Google Scholar]
- Wang, Y.; Feng, D.; Li, D.; Chen, X.; Zhao, Y.; Niu, X. A mobile recommendation system based on logistic regression and Gradient Boosting Decision Trees. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1896–1902. [Google Scholar]
- Dror, G.; Koren, Y.; Maarek, Y.; Szpektor, I. I Want to answer; who has a question?: Yahoo! answers recommender system. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 1109–1117. [Google Scholar]
- Son, J.; Jung, I.; Park, K.; Han, B. Tracking-by-Segmentation with Online Gradient Boosting Decision Tree. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3056–3064. [Google Scholar]
- Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015, 58, 308–324. [Google Scholar] [CrossRef]
- Chung, Y.S. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2013, 61, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Jungangb, C.H.E.N. Traffic Flow Forecasting Method Based on Gradient Boosting Decision Tree. In Proceedings of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology, Taiyuan, China, 24–25 June 2017. [Google Scholar]
- Ding, C.; Wang, D.; Ma, X.; Li, H. Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees. Sustainability 2016, 8, 1100. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning. 2001. Technometrics 2001, 45, 267–268. [Google Scholar]
- Ridgeway, G. Generalized Boosted Models: A Guide to the GBM Package. Update 2005, 1, 1–12. [Google Scholar]
- Suzuki, K. Artificial Neural Networks—Methodological Advances and Biomedical Applications; Intech: Rijeka, Croatia, 2011; Available online: https://www.intechopen.com/books/citations/artificial-neural-networks-methodological-advances-and-biomedical-applications (accessed on 10 September 2017).
- Yadav, A.K.; Chandel, S.S. Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model. Renew. Energy 2015, 75, 675–693. [Google Scholar] [CrossRef]
- Şahin, M. Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data. Int. J. Remote Sens. 2013, 34, 7508–7533. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 581, pp. 586–591. [Google Scholar]
- Qian, Y.; Jia, Z.; Jiong, Y.U.; Yang, F. Application of BP-ANN to classification of hyperspectral grassland in desert. Comput. Eng. Appl. 2011, 47, 225–228. [Google Scholar]
- Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G. Global distribution of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys. Discuss. 2005, 5, 2847–2867. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Simarro, J.; Nerry, F. Atmospheric water vapor content over land surfaces derived from the AVHRR data: Application to the Iberian Peninsula. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1425–1434. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez, J.C.; Raissouni, N.; Soria, G. A simplified method for estimating the total water vapor content over sea surfaces using NOAA-AVHRR channels 4 and 5. IEEE Trans. Geosci. Remote Sens. 2002, 40, 357–361. [Google Scholar] [CrossRef]
- Xia, X.A.; Wang, P.C.; Chen, H.B.; Liang, F. Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Wu, F.; Fu, C. Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China. Meteorol. Atmos. Phys. 2011, 112, 155. [Google Scholar] [CrossRef]
- Hakuba, M.Z.; Folini, D.; Sanchez-Lorenzo, A.; Wild, M. Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res. Atmos. 2013, 118, 8585–8597. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
Inputs Data | Model | Unit | Range |
---|---|---|---|
Solar zenith angle | Clear and cloudy sky | Degrees | 0–180 |
Viewing zenith angle | Clear and cloudy sky | Degrees | 0–90 |
Relative azimuth angle | Clear and cloudy sky | Degrees | 0–180 |
Top of atmosphere shortwave broadband albedo | Clear and cloudy sky | N/A | 0–1.5 |
Reflectance of channel 1 and 2 of AVHRR | Clear and cloudy sky | Percent | 0–12.5 |
Brightness temperature of channel 4 and 5 of AVHRR | Clear and cloudy sky | Degrees/Kelvins | 160–340 |
Cloud optical depth | Cloudy sky | N/A | 0–150 |
Cloud mask | Clear and cloudy sky | N/A | 0–1 |
Parameters | Threshold | Intervals |
---|---|---|
The number of iterations | 50–300 | 50 |
Shrinkage | 0.1–1 | 0.3 |
The depth of the tree | 6–9 | 1 |
Sampling rate | 0.2–1 | 0.2 |
Sky Condition | Dataset | Method | R2 | RMSE (W·m−2) | Bias (W·m−2) |
---|---|---|---|---|---|
Clear sky | Training set | GBRT | 0.92 | 19.05 (19.06%) | 0 (2.41%) |
ANN | 0.85 | 26.53 (41.84%) | −0.09 (0%) | ||
Validation set | GBRT | 0.82 | 27.71 (38.38%) | −2.53 (1.37%) | |
ANN | 0.83 | 27.15 (46.07%) | −3.67 (1.60%) | ||
Cloudy sky | Training set | GBRT | 0.79 | 33.37 (30.21%) | 0.01 (4.74%) |
ANN | 0.66 | 42.07 (33.99%) | 0.17 (3.13%) | ||
Validation set | GBRT | 0.64 | 42.97 (34.57%) | −2.83 (1.45%) | |
ANN | 0.65 | 42.39 (34.50%) | −4.35 (0.17%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, X.; Liang, S.; Yao, Y.; Jia, K.; Jia, A. Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method. Remote Sens. 2018, 10, 185. https://doi.org/10.3390/rs10020185
Yang L, Zhang X, Liang S, Yao Y, Jia K, Jia A. Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method. Remote Sensing. 2018; 10(2):185. https://doi.org/10.3390/rs10020185
Chicago/Turabian StyleYang, Lu, Xiaotong Zhang, Shunlin Liang, Yunjun Yao, Kun Jia, and Aolin Jia. 2018. "Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method" Remote Sensing 10, no. 2: 185. https://doi.org/10.3390/rs10020185
APA StyleYang, L., Zhang, X., Liang, S., Yao, Y., Jia, K., & Jia, A. (2018). Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method. Remote Sensing, 10(2), 185. https://doi.org/10.3390/rs10020185