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Abstract: Significant gaps exist in our knowledge of the impact of leaf aging on canopy signal
variability, which limits our understanding of vegetation status based on remotely sensed data.
To understand the effects of leaf aging at the leaf and canopy scales, a combination of field,
remote-sensing and physical modeling techniques was adopted to assess the canopy spectral signals
of evergreen Cunninghamia forests. We observed an approximately 10% increase in Near-Infrared
(NIR) reflectance for new leaves and a 35% increase in NIR transmittance for mature leaves from
May to October. When variations in leaf optical properties (LOPs) of only mature leaves, or both
new and mature leaves were considered, the Geometric Optical and Radiative Transfer (GORT)
model-simulated canopy reflectance trajectory was more consistent with Landsat observations (R2

increased from 0.37 to 0.82~0.89 for NIR reflectance, and from 0.35 to 0.67~0.88 for EVI2, with a small
RMSE (0.01 to 0.02)). This study highlights the importance of leaf age on leaf spectral signatures,
and provides evidence of age-dependent LOPs that have important impacts on canopy reflectance
in the NIR band and EVI2, which are used to monitor canopy dynamics and productivity, with
important implications for RS and forest ecosystem ecology.
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1. Introduction

Forests cover approximately 30% of the Earth’s land area (4.2 × 109 hectares). Globally, forests
play critical roles in providing goods and services for terrestrial ecosystems, including filtering
water, controlling water runoff, protecting soil, regulating the climate, and cycling and storing
nutrients [1,2]. Many important biophysical processes in forests are conducted through leaves,
including photosynthesis, transpiration, respiration, and light interception. Forests and other land
vegetation currently remove approximately 30% of anthropogenic CO2 emissions from the atmosphere
through photosynthesis [3–5]. While high value has been placed on remote sensing (RS) for ecological
research, management and modeling of forest canopy status at an ecosystem scale, a concomitant
increase in understanding the factors that affect canopy reflectance has been only partially realized.

The interpretation of RS signals for forest canopies requires profound knowledge of the factors
affecting their optical properties, which may be internal or external to the forest stand [6]. To extract
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useful information related to canopy growth using time-series data, anomalies in time-series data
that are unrelated to real changes in canopies should be eliminated, such as clouds and aerosol
contamination [7,8] as well as bidirectional reflectance distribution function (BRDF) effects caused
by topography and sun-sensor geometry variation [9–14]. Abundant studies have confirmed the
existence of significant seasonal patterns in the optical RS signal trajectory that remain after removing
the impacts of these factors external to the forest stand [11,13,15,16]. Thus, variations in reflectance
trajectories contain useful information related to factors internal to the stand. Based on previously
reported experimental and modeling data, vegetation reflectance is primarily a function of tissue
optical properties (reflectance and transmittance), canopy biophysical attributes (e.g., leaf area, foliage
clumping) and background reflectance [17–21]. Leaf optical properties (LOPs) and leaf area index
(LAI) are two of the main recognized internal factors involved in controlling canopy reflectance.

Seasonality in canopy spectral signals has been attributed to a varying LAI along with new
leaf development and defoliation [22]. In deciduous forests, LAI shows high seasonality and
might be the most significant factor affecting canopy reflectance, as all leaves are shed in winter.
However, the situation is very different for mature evergreen forests, which show a relatively stable
total leaf area every year. Thus, changes in canopy reflectance do not necessarily imply changes
in LAI [23]. In evergreen forests, leaves have more than a one-year lifespan, and current-year new
leaves remain throughout the winter. Although old leaves are shed every year, new leaves are also
produced every year. The total leaf area in evergreen forests remains relatively stable throughout
a year compared with deciduous forests. However, we still find significant seasonal variation in
canopy reflectance in evergreen forests, which may not be caused by variations in LAI but rather by
other internal factors. Further studies are needed to develop a more profound interpretation of the
seasonality of optical RS signals for evergreen forests.

In addition to leaf area, LOPs are another significant factor that can change with time, which may
strongly affect canopy reflectance [19,23,24], and leaf-age effects on canopy signals require more
attention. Leaves affects the radiation field through its LOPs, including leaf reflectance and
transmittance characteristics, which are wavelength-dependent [25,26]. A few supporting studies have
confirmed the combined effects of LAI and LOPs on the seasonality of gross ecosystem CO2 exchange
(GEE), photosynthesis and NIR reflectance for Amazonian forests [23,27,28]. Many efforts aimed at
accounting for effect of stand age on canopy reflectance with forest succession have improved the
interpretation of canopy signals [29–33]. However, only a few studies have indicated that in addition
to stand age, leaf age might also have a significant impact. Our ability to both interpret RS signals and
develop new RS technologies for vegetation depends directly on our ability to resolve the multitude of
factors controlling canopy and landscape reflectance signatures. This situation inspired us to further
evaluate robust biophysical interpretations of the seasonality of optical RS signals, with a focus on
evergreen forests, by examining the effects of age-dependent leaf properties on canopy reflectance.

Different age cohorts of leaves coexist in the canopy of evergreen forests, which can be classified
to two main age groups: current-year new leaves (≤1 a) and mature leaves (>1 a), which might exhibit
different LOPs and, thus, different impacts on canopy reflectance. Mature leaves represent the majority
and new leaves are the minority of leaves flushed every year. On the other hand, new leaves are mainly
distributed at the top and in the outermost parts in tree crowns, while mature leaves are distributed
in the lower and inner parts of the canopy. Thus, the seasonal variation of canopy reflectance might
be strongly affected by changes in LOPs of both new leaves and mature leaves. This brings us to the
crux of our study: the quantitative analysis and interpretation of the different leaf-aging effects of
new leaves and mature leaves on seasonal variations in canopy reflectance. Hence, we addressed the
following research questions in this study: (1) how do the LOPs of new leaves and mature leaves vary
during the leaf maturation process? (2) How should the contributions of new leaves and mature leaves
to canopy optical properties be quantified? (3) How does leaf aging affect the seasonal variation of the
remotely sensed response spectral signals of evergreen forest canopies?
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2. Materials

2.1. Study Sites

This study focused on two National Research Stations of Forest Ecosystems in Huitong county,
Hunan province, China, as shown in Figure 1. The first station (Station 1, S1) is located at 26◦40′N,
109◦26′E, and the second station (Station 2, S2) is located at 26◦50′N, 109◦45′E. S1 was established
in 1983, and S2 was established in 1996. Two main permanent sampling plots, ZH1 and WS3, were
selected from S1 and S2, respectively, to measure and evaluate the effects of leaf aging on canopy
optical properties. Two additional auxiliary plots, i.e., FZ1 and WS2, were also selected for comparison
with the main plots. FZ1 exhibits the same plot conditions as ZH1 but is smaller, with a size of
30 × 40 m. WS3 is located next to WS2 and is eight years older than WS2.

Cunninghamia (Chinese fir) is a fast growing species, with its height increasing as much as 1 m per
year [34], and usually matures approximately 20 a. The same Cunninghamia seedlings were planted in
ZH1 and FZ1 after clear cutting. The stem density is the same in ZH1/FZ1, which exhibits half the
density in WS2 (1920 trees ha−1) and WS3 (1967 trees ha−1). ZH1/FZ1 were planted with an initial
stem density of 2500 trees ha−1 and thinned twice, once in 1997 and again in 2003, to a stable density
of 1035 trees ha−1.
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Figure 1. These four study plots are covered by Cunninghamia lanceolata (also known as Chinese fir)
plantations, which were replanted after clear-cutting.

2.2. Field Data

2.2.1. Canopy Structural Parameter Measurements

Crown shape measurements were taken from a total of forty trees in S2. The size of the selected trees
was evenly distributed in terms of height (H) (from 5.4 m to 20 m) and diameter at breast height (DBH)
(from 7.7 cm to 37.8 cm). Among the 40 trees, seven trees were located in plots close to the study site,
and 33 trees were located within sites ZH1 and FZ1. The parameters measured for the characterization of
crown shape included the following: crown width in the north-south direction (R1) and the east-west
direction (R2), tree height (H1) and height under the crown (H2), from which we can obtain the height
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of the crown center (h). A detailed description of the crown shape measurements can be found in
Appendix A.

Only DBH and H1 were measured annually for each tree in the study plots, and other canopy
structure parameters were only measured once for the 40 trees. Hence, to characterize the dominant
stand canopy structure changes with time, we needed to build allometric relationships between other
unknown canopy structural parameters with DBH or H1. The derived canopy structure parameters
included the following:

• Crown radius (R): R = (1.296 + 0.146 * DBH)/2, R2 = 0.76, RMSE = 0.72;
• Full tree height (H1): H1 = 3.928 + 14.866 * (1 − exp(−0.1865 * DBH8.285), R2 = 0.94, RMSE = 1.30;
• Crown center height (h): h = −0.32 + 0.85 * H1, R2 = 0.93, RMSE = 0.98;
• Crown ellipticity (b/R), which was fixed at the mean value of the 40 field measurements:

mean = 1.17, standard deviation (s.d.) = 0.46, since no significant relationship was found between
b/R and DBH or H1.

Finally, the variations in canopy structure with stand development can be characterized by the means
and standard deviations of the DBH and tree height (H1) for every individual tree.

2.2.2. LAI Measurements and Data Processing

Digital hemispherical photography (DHP) was the primary method for conducting regular monthly
LAI measurements from 2005 until the present. From 2005 to 2006, photographs were taken by a worker
every month using a CI-110 Plant Canopy Analyzer (Camas, WA, USA) to estimate the LAI. From 2007
onward; photographs were taken using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm f/2.8 G ED fisheye lens. The camera was horizontally mounted at a fixed height of 0.2 m
above the ground. The photographs were taken with automatic exposure under diffuse light conditions,
typically soon before sunrise or after sunset.

In the ZH1 and FZ1 plots, measurements were taken on the 15th day of each month at five fixed
locations per plot, facing in four cardinal directions. The images were processed using Gap Light Analyzer
2.0 software to calculate LAIDHP. LAIDHP measurements obtained with automatic exposure resulted
in considerable underestimation because of underestimation of the ratio of green leaves to sky [35–39].
We used the effective LAI (LAIe) measured by two LAI-2000 Plant Canopy Analyzers (LAI-2000, LI-COR)
to correct the system bias in LAIDHP data. One LAI-2000 unit was set at an open and flat area to measure
diffuse sky light, and the other LAI-2000 unit was operated under the canopy at fixed locations as well as
over the whole plots.

LAIe = LAIDHP + ε (1)

where ε can be considered as a systematic bias in the DHP method due to automatic exposure problems,
and ε was set to 1.83 for the DHP method using the average value.

The clumping index (Ω) was measured with the Tracing Radiation and Architecture of
Canopies (TRAC, Natural Resources Canada) system to convert LAIe to true LAI (LAIt) using the
following equation:

LAIt = (1− α) ∗ LAIe ∗ γe/Ω (2)

where the needle-to-shoot area ratio (γe) was set to 1.1 according to the results of the destructive sampling
method described below, conducted in August 2015. The clumping index (Ω) was set to 0.8 and the value
of the woody-to-total area ratio (α) was derived from the destructive samples for biomass estimation (0.2).
A detailed description of the data preprocessing methods of LAI can be found in Appendix B.

2.2.3. Spectral Measurements: Leaf and Soil

Soil and leaf samples were collected from WS2 and WS3 at site 2. Current-year leaves were too
short to be measured in April. Therefore, we collected current-year shoots every month during the leaf
expansion period from May to August 2017 to measure the seasonal variations in LOPs. Trees were
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selected from WS2 and WS3 separately to obtain branches from different age cohorts. Twenty branches
were randomly selected and destructively harvested for each age group to conduct spectral measurements.
Young leaves and mature leaves of 0–3 a were collected from the same branches; the leaves were carefully
stored in sealed plastic bags and measured within 48 h.

Spectral measurements over the full spectral range (350–2500 nm) were carried out in the
laboratory using a portable spectroradiometer (SVC HR-1024) attached to an integrating sphere
(Model 1800-12S, Licor). All spectra were standardized using a barium sulfate standard and the
calibrated light source supplied by Licor with the integrating sphere. We arranged 8–10 flat needles
closely together for each measurement, avoiding overlaps or gaps, to obtain leaf samples that were
sufficiently wide to cover the gap on integrating sphere. Wide transparent tape was used to assemble
the leaf leaves on the vacuum side of the blade, which was removed from the central region to avoid
any impacts on LOPs. LOPs were measured on the upper surface of the Cunninghamia lanceolata leaf
samples. A group of leaf sample is shown in Figure A4 in Appendix A.

2.3. Remote Sensing Observations

Landsat Observations

Landsat sensors have a long history and provide data with a fine spatial resolution (30 × 30 m)
that can effectively capture forest stands in the landscape. In addition to their ideal spatial resolution,
Landsat data provide certain other advantages, such as reducing the inconsistencies in observations by
always viewing from almost the same direction (nadir view) and at the same time of day. However, one
of the drawbacks of Landsat data (with a 16-day revisit period) is their relatively low temporal
frequency, which is exacerbated by cloud-cover [40]. We collected all available L1T Landsat TM/ETM+
images for our study site (path/row: 125/41) from 1987 to 2016, and abstracted pixel reflectance values
with no cloud contamination. Given the high frequency of cloud cover in forested areas, Landsat
observations over one year are insufficient to describe seasonal patterns. Therefore, all available pixel
reflectance values from all years were sorted by the day of year (DOY), based on which seasonal
trajectories of canopy reflectance were constructed. Landsat red and NIR band surface reflectance
data were used to calculate EVI2, which takes advantage of the auto-correlative properties of surface
reflectance spectra between the red and blue bands:

EVI2 = 2.5
RNIR − RRED

1+ RNIR + 2.4RRED
(3)

where RNIR is reflectance in the near infrared band and RRED is reflectance in the red band.

3. Methods

3.1. Theoretical Foundation

Geometrical Optical Radiative Transfer (GORT) Model

The interaction between electromagnetic radiation and terrestrial plant canopies is a complex
phenomenon and a key element in many RS applications. Among numerous methods for estimating
the reflectance of forest canopies, the GORT model is based on the physical structure of the underlying
scene. The GORT model is a hybrid of geometric optical (GO) and radiative transfer (RT) approaches
for modeling canopy reflectance [41,42]. The GO model [43–45] quantifies single scattering in the canopy
well and captures the fundamental properties of the canopy bidirectional reflectance distribution function
(BRDF). The assumptions of the GO model are that the scene is composed of three-dimensional solid objects
on a contrasting background and that the overall canopy reflectance can be modeled as a weighted sum of
the spectral signatures of its individual scene components, based on their corresponding areal proportions
within a pixel. The RT model is used to describe the multiple scattering within canopy elements in the GORT
model, and the GO model and RT model are linked using canopy gap probabilities [46,47]. Due to the explicit
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consideration of crown gaps and mutual shadowing effects, the GORT model is suitable for simulating
forest canopy reflectance with varying degrees of discontinuity. The GORT model has been successfully
applied to predict the fundamental features of black spruce forest canopies [42], radiation penetrating the
forest canopy to the forest floor [48] and spectral temporal manifestations of forest succession [49].

In the GO model [43–45], the reflectance of a pixel is modeled as the weighted sum of the spectral
signatures of four scene components: sunlit ground, sunlit crown, shaded ground and shaded crown,
as illustrated below:

S = Kg ∗G + Kc ∗ C + Kz ∗ Z + Kt ∗ T (4)

where S is the average reflectance of the forest canopy inside a pixel; and Kg, Kc, Kz and Kt represent
the areal proportions of the four components in the pixel; thus, Kg, Kc, Kz and Kt sum to unity. G,
C, Z and T are the corresponding spectral signatures (reflectance in a given wavelength range) of the
four components, as shown in Figure 2, which are functions of the proportions of incoming directional
beams and diffuse solar radiation.
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Figure 2. The four scene components used in the geometric optical (GO) model. C is the sunlit tree
crown; T is the shaded tree crown; G is the sunlit background; and Z is the shaded background.

The canopy structure parameters listed in Table 1 for the stands are derived based on the field
measurements of the DBH and tree height of every individual tree in the stands, and the allometric
relationships between DBH or tree height. Parameter h1 and h2 must represent the structure of the
dominant canopy layer. Therefore, we used the mean height minus s.d. to derive h1 and the mean height
plus s.d. to derive h2. FAVD is calculated by dividing LAI by the crown volume, by treating the tree
crown as an ellipsoid.

Table 1. Canopy structure parameters required for the GORT model to simulate canopy reflectance.

Symbols Parameters Source

Canopy Structure Parameters
h1 lower boundary of canopy center height O 1 and CERN 2

h2 upper boundary of canopy center height O and CERN
R horizon mean crown radius O and CERN

b/R crown spheroid ellipticity 1.17 (O)
λ tree stem density (trees/ha) CERN

FAVD foliage area volume density (m2/m3) O and CERN
k leaf angle distribution factor 0.5 (random)

Component Spectral Parameters
rL leaf reflectance O
tL leaf transmittance O
rG soil/background reflectance O

Sun-Sensor Geometry
SZN sun zenith angle (◦) Time, Lon, Lat 3

VZN view zenith angle (◦) 0
VAZ view azimuth angle (◦) 0

1 O stands for observations from field experiments from 2015 to 2017. 2 CERN: National Ecosystem Research
Network at Huitong National Research Station of Forest Ecosystem (HTF), China (http://htf.cern.ac.cn/meta/
metaData). 3 Lon: Longitude; Lat: latitude.

http://htf.cern.ac.cn/meta/metaData
http://htf.cern.ac.cn/meta/metaData
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3.2. Contribution of Component LOPs to Canopy LOPs

Different leaf-age cohorts coexist in an individual tree canopy in evergreen forests and can be
classified into two major groups: new leaves and mature leaves. The LOPs of new leaves are quite
different from those of mature leaves, thus, neither of them is representative of the LOPs of the whole
canopy. Therefore, we need to consider the contributions of new leaves and mature leaves together to
obtain the overall canopy LOPs.

3.2.1. Leaf Area Proportion of New and Mature Leaves

The first factor affecting the average canopy spectral properties is the proportion of the leaf area
at different ages: the higher the proportion of the leaf area for a given age, the greater its impact on
canopy optical properties. Thus, we need to consider the proportions of new leaves and mature leaves
viewed by the sensor. Ltotal is the total LAI of all leaves, which consists of two parts:

Ltotal = Lnew + Lmature (5)

including the LAI of new leaves (Lnew) and mature leaves (Lmature). The proportions of new and mature
leaves were estimated based on destructive field measurements conducted by Zhongkun et al. [50],
who studied the LAI of leaves at different leaf ages in Chinese fir, and we constructed the seasonally
dynamic leaf area proportions by interpolating the data recorded using the phenology rule, assuming
stable proportions to be reached at summer.

3.2.2. Spatial Organization of New and Mature Leaves

In addition to differences in the quantities of new and mature leaves, the spatial organization of new
and mature leaves also has significant impacts on canopy component spectral signatures. Top crowns
are mostly occupied by new leaves, and approximately 80% of the upper crown leaf area is occupied by
new leaves in Chinese fir canopies [50]. Leaves distributed in upper crowns have significant impacts on
canopy reflectance when viewed from the top of the crown. In contrast, old leaves (1 a, 2 a, 3 a) are mainly
located in the inner and lower parts of tree crowns, which are less likely to be observed directly from the
nadir view. Thus, contribution of new leaves located at the top of canopies cannot be ignored.

When we simulate canopy reflectance based on Landsat viewing geometry, new leaves occupy the
majority of the field of view of the sensor, and solar radiation interacts with the leaves in the top layer
first before reaching the lower canopy. Thus, new leaves in the upper canopy have a larger influence on
canopy reflectance than mature leaves in the lower canopy. The influences of new and mature leaves on
canopy LOPs are modeled as the areal-weighted averages of new and mature leaves observed by the
sensors, as follows:

Rave = w1 ∗ Rnew + w2 ∗ Rmature (6)

and
Tave = w1 ∗ Tnew + w2 ∗ Tmature (7)

where Rave and Tave are the average leaf reflectance and transmittance at the canopy scale, respectively.
Rnew and Rmature are the reflectance of new and mature leaves, respectively. Tnew and Tmature are the
transmittance of new and mature leaves, respectively. Finally, the parameters of w1 and w2 are the areal
weights for new and mature leaves, respectively.

Here, we model the areal weights, w1 and w2, considering both leaf-area and leaf-age impacts,
as follows:

w1 =
(1− e−Lnew)

(1− e−Ltotal )
(8)

and

w2 =
(1− e−Ltotal )− (1− e−Lnew)

(1− e−Ltotal )
=

(e−Lnew − e−Ltotal )

(1− e−Ltotal )
(9)
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where w1 highlights the importance of new leaves in the crown in the top canopy, and the weight of
mature leaves (w2) is estimated from the total contribution of all leaves after subtracting the occlusion
effect of the new leaves.

3.3. LOPs at the Canopy Scale

LOPs at the canopy scale are a combination LOPs of both new leaves and mature leaves. At the leaf
scale, LOPs are age-dependent and the LOPs of new leaves and mature leaves vary differentially. At the
canopy scale, age-dependent LOPs provide a mechanism for producing seasonally varying forest albedo
and changing NIR to red ratios, independent of changes in other canopy attributes. Our hypothesis is
that component LOPs vary with leaf maturation, and contribute to the seasonality in canopy reflectance
trajectories. In the following part, we describe methods for retrieving seasonal LOPs and examining the
relationship between LOPs and canopy signals.

3.3.1. Model Sensitivity Analysis

To retrieve LOPs from Landsat observations using the GORT model, we need to obtain a
comprehensive understanding of the sensitivity of model driven parameters. First, wide ranges are
allowed for all parameters, and we used canopy structural measurements of young stands (stand age = 1 a)
as the lower limit and canopy structural parameters of mature stands (stand age = 33 a) as the upper
limit. Stem density and background reflectance were set to their true values. Since sensitivity analysis
covered parameter ranges on a long temporal scale (1 a to 33 a), insensitive parameters are eliminated.
Then, the remaining sensitive parameters are involved in the new sensitivity analysis with a smaller range,
taking the field measurements of each parameter as prior knowledge.

The global sensitivity of the model parameters is analyzed using the extension of the Fourier
amplitude sensitivity testing (EFAST) method [51]. EFAST is a variance decomposition method
determining what fraction of the variance in the model output can be explained by the variation in each
input parameter (i.e., partial variance). The basis of the EFAST method is a parametric transformation
that can reduce multidimensional integrals over the input parametric space to one-dimensional
quadratures using a search curve that scans the whole input space [52]. Scanning is conducted so that
each axis of the parametric space is explored at a different frequency. Then, Fourier decomposition is
used to calculate both the first-order sensitivity (the contribution to the variance of the model output
by each input, Si) and total-order sensitivity (the first-order effect plus interactions with other inputs,
STi) of each input parameter, given as (Saltelli et al., 2008):

Si =
Vi

V(Y)
=

V[E(Y|Xi)]

V(Y)
(10)

and

STi = Si +∑j 6=i Sij + . . . =
E[V(Y|X∼i)]

V(Y)
(11)

where X∼i denotes the variation in all input parameters except for Xi, and Sij is the contribution to the
total variance from the interactions between parameters.

Following Saltelli et al. [53], to compute Si and STi, we created a quasi-random sequence parameter
sampling matrix, P, with dimensions of (m, n) for each SA test, where m is the sample size, and n is the
number of input parameters. We set m = 2n, which was sufficient to test the convergence of the sensitivity
index and the stability of the rankings. Each row in matrix P represents a possible value set of X, and the
quasi-random sequence helps to distribute the sampling points as uniformly as possible in the parameter
space and avoid clustering, in addition to increasing the convergence rate. The global sensitivity analysis
method is complex, and more details can be found in the work by Saltelli [53–55]. Fortunately, SimLab
software [40] can help implement the EFAST method.
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3.3.2. Model Inversion Strategy

In this section, we describe the GORT model inversion strategy used to retrieve LOPs from
satellite observations. Landsat reflectance in the red and NIR bands and the derived EVI2 were used
to retrieve sensitive parameters. The multi-stage inversion strategy proposed by Li et al. [56] was
adopted for parameter retrieval. The main objective of the iterative inversion process is to adjust
the model parameters so that the model output reflectance is as close as possible to the observed
reflectance. The most sensitive parameter is retrieved first, and used as prior knowledge in the next
inversion stage.

One of the most popular methods for solving the inversion problem is to minimize the cost
function of control variables. In this study, the cost function [57] used to retrieve sensitive parameters
from Landsat surface reflectance data is as follows:

J(x) =
1
2

 N

∑
n=1

[
fn(X)− yn

obs
]2

δn2 +
L

∑
l=0

[
Xl −Xl

prior]2
δl

2

 (12)

where yn
obs and fn(X) are the observed reflectance/EVI2 value and the corresponding modeled

reflectance/EVI2 value, respectively. The variables δn
2 and δl

2 are the variances of the observational
data and the prior distribution of parameters, respectively. The variables Xl and Xl

prior are the
parameter values and the initial values in the model, respectively. N is the number of observations,
and L is the number of parameters. Sequential quadratic programming [58], an optimization algorithm
for solving nonlinear programming problems, was adopted to search for the cost function minimum.

3.3.3. Validation: Direct and Indirect Methods

During the retrieval process, the LOPs of mature leaves in the red and NIR bands were set to fixed
values, except for leaf transmittance in the NIR band, which was interpolated using field measurements;
the LOPs of new leaves in the red band were also interpolated using SVC measurements for leaves.
The retrieval results for new leaf LOPs in the NIR band were tested in direct and indirect ways,
as shown in Figure 3.
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We decomposed retrieved LOPs into new leaf (time variant) and mature leaf (known) components
according to the calculated the contribution weights (w1 and w2) described in Section 3.2, and evaluated
the decomposed LOPs transmittance using SVC field measurements directly. Additionally, we tested
the applicability of the retrieved LOPs as a second-step validation. LOPs retrieved at one site (ZH1
plot) were applied to another site (FZ1 plot) to simulate canopy reflectance using the GORT forward
simulating mode, and evaluated pixel reflectance using Landsat observations. FZ1 plot and ZH1 plot
have similar growing conditions, but are located at different stands at Station 1. These sites exhibit
different canopy structure properties but with the same tree species, stem density and stand age and
close LAI values. In the simulation of canopy reflectance for FZ1 plot, the same LOPs, sun-sensor
geometry and soil reflectance for the ZH1 plot were used, but a used different canopy structure
was employed.

During the forward simulation process for canopy reflectance, three situations were considered
and compared: (1) without taking leaf-age effects into consideration: setting LOPs parameters as fixed
values using monthly average rL-nir and tL-nir of mature leaves; (2) considering the leaf-age effects for
mature leaves: setting LOPs parameters using monthly varying rL-nir and tL-nir datasets of mature
leaves; and (3) considering the leaf-age effects of both mature leaves and new leaves: setting LOPs
parameters using monthly varying canopy-scale rL-nir and tL-nir datasets, which are up-scaled from
the seasonal LOPs of new leaves and mature leaves. Finally, simulated canopy reflectance signatures
were compared with pixel reflectance derived from Landsat time-series observations at FZ1 as an
indirect validation.

4. Results

4.1. Sensitivity Analysis and Retrieval Results: GORT

4.1.1. Total-Order and Single-Order Sensitivity Analysis Results

Sensitivity analyses run two times for the GORT model for the red band and the NIR band. In the
first sensitivity analysis, parameters with wide ranging variations were involved in the sensitivity
analysis. In the second sensitivity analysis, we eliminated stem density (λ) and crown radius (r) in the
analysis and focused on the remaining parameters, since stem density was known during our study
time, and the average tree crown radius can be estimated based on the allometric relationship with
DBH. In the second sensitivity analysis, the remaining parameters (LAI, h1, h2, λ, rL, tL, rG) varied
within the same range as in the first sensitivity analysis.

The sensitivity of the model input parameters was characterized using the total-order sensitivity
index (Figure 4). For canopy reflectance in the red band, canopy reflectance is most sensitive to
the crown radius and stem density in the first step of sensitivity analysis (Figure 4A). Given r and
λ are known, LAI, h2, rL and tL become the most influential parameters in order (Figure 4B). For
canopy reflectance in the NIR band, rL, h2 and r are the main influential parameters over the long-term
(Figure 4A). After removing the uncertainty of the crown radius and stem density, tL becomes the third
most influential parameter following rL and h2.

To reveal the potential for retrieving uncertain parameters from canopy reflectance, we further
analyzed the single-order sensitivity of each sensitive parameter in the GORT model outputs by fixing
other parameters at stand average values. Taking the year of 2005 as an example, the single-order
sensitivity results are shown in Figure 5. We found that during our study period, LAI and h2 were
not influential regarding canopy spectral signatures in the red (Figure 5A) band, since LAI remains
within a limited range (LAI > 3 m2/m2) for mature evergreen forests, and the crown radius remained
the most influential parameter, especially in the red band (Figure 5A). For canopy reflectance in the
NIR band, h2 was not influential within the range (18–23 m) for mature evergreen forests (Figure 5B).
LOPs were sensitive parameters for both the red and NIR bands.
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adjusted each time to study variations in the model output spectral signatures.

4.1.2. Prior Knowledge of Model Parameters

All prior knowledge of parameter values was obtained from field measurements and used for
analyzing the sensitivity indexes of model parameters, as summarized in Table 2. According to
total-order and first-order sensitivity analysis results, the influential parameters include: the crown
radius (r), rL and tL, which were assumed to be adjustable during retrieval process. Non-influential
parameters were set to values estimated using field measurements as described in Section 2.2.
Multi-process model inversion was conducted in the following sequences: (1) Landsat red band
reflectance −> crown radius (r); (2) Landsat NIR band reflectance/EVI2 −> leaf reflectance (rL) for
the NIR band; (3) Landsat NIR band reflectance/EVI2 −> leaf transmittance (tL) for the NIR band;
(4) Landsat red band reflectance/EVI2 −> leaf reflectance (rL) for the red band; (5) Landsat red band
reflectance/EVI2 −> leaf transmittance (tL) for the red band. The results for the retrieved parameters
are summarized in Table 2.
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Table 2. Prior knowledge of input parameters and corresponding value ranges used in sensitivity analysis.

Parameter Results Prior Knowledge * (s.d.) Lower Limit Upper Limit

LAI - - 0.07 5.27
h1 - - 1.49 13.5
h2 - - 2.48 22.5

stem density (λ) - - 0.1035 0.252
crown radius (r) 1 1.7 1.5 0.92 2.57

rL-red 0.07(0.02) 0.05 0.12
tL-red 0.04(0.03) 0.02 0.1
rG-red - - 0.3 0.4
rL-nir 0.52(0.02) 0.35 0.6

tL-nir 1 0.36(0.05) 0.25 0.4
rG-nir 1 - - 0.35 0.45

1 Adjustable parameters. * The prior knowledge is the initial value of parameters; the lower and upper limit values
are the thresholds of the parameters.

4.2. Optical Properties of Individual New and Mature Leaves

4.2.1. Leaves at Different Ages

We first studied the leaf-age effect on leaf optical properties, and found that leaves in the canopy
can be classified into two age groups: new leaves (0 a) and mature leaves (1–3 a). Field SVC
measurements of the full spectra for all leaf samples were converted to Landsat-view using the
Landsat relative spectral response (RSR) functions in the following three bands: green, red and NIR.
Leaf samples were grouped into four age classes: 0 a, 1 a, 2 a and 3 a. Significant differences in LOPs
were observed between 0 and 1 a leaves, while the differences between mature leaves at different ages
(1–3 a) were not distinct (Figure 6). Thus, LOPs mainly varied within 0–1 a, i.e., during the maturation
process of newly flushed leaves.
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Figure 6. Leaf reflectance (ݎ, A1–C1) and transmittance (ݐ, A2–C2) for Chinese fir leaves at different 
ages (0–3 a) at three (green, red and NIR) short-wave bands. Leaves were collected on 5 May 2017. 

Differences in leaf reflectance at different ages are observed in two visible bands and the NIR 
band (Figure 6A1–C1). New Leaves (0 a) exhibited a higher reflectance in the green and red bands 
compared with mature leaves (Figure 6A1–B1). In the NIR band, 1 a and 2 a leaves exhibited a slight 
increase in reflectance, but the reflectance of 3 a leaves was similar to that of 0 a leaves (Figure 6C1).  

As can be observed in the Landsat-view transmittance signatures shown in Figure 6A2–C2, the 
trends in the changes in transmittance characteristics as a function of age were similar for these three 
bands. Significant differences were observed between 0 a and 1 a leaves, with the 0 a leaves showing 

Figure 6. Leaf reflectance (rL, A1–C1) and transmittance (tL, A2–C2) for Chinese fir leaves at different
ages (0–3 a) at three (green, red and NIR) short-wave bands. Leaves were collected on 5 May 2017.

Differences in leaf reflectance at different ages are observed in two visible bands and the NIR
band (Figure 6A1–C1). New Leaves (0 a) exhibited a higher reflectance in the green and red bands
compared with mature leaves (Figure 6A1–B1). In the NIR band, 1 a and 2 a leaves exhibited a slight
increase in reflectance, but the reflectance of 3 a leaves was similar to that of 0 a leaves (Figure 6C1).

As can be observed in the Landsat-view transmittance signatures shown in Figure 6A2–C2,
the trends in the changes in transmittance characteristics as a function of age were similar for these
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three bands. Significant differences were observed between 0 a and 1 a leaves, with the 0 a leaves
showing a consistently higher level of transmittance compared with mature leaves. The decrease in
transmittance as a function of increasing leaf age is due to the increase in absorption characteristics
after a new leaf matures, which is also supported by the increasing area between the upper and lower
set of curves shown in Figure 7A1–E1.
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Figure 7. Field spectral curve data (mean ± 1 s.d.) in shortwave bands for new (A1–E1) and mature 
(A2–E2) needle samples (n) from Chinese fir collected on 5 May, 24 June, 28 July, 14 September and 
13 October 2017. From May to October, n = 22, 15, 26, 30 and 39 respectively, and each sample includes 
5 to 8 leaves. Reflectance data (ݎ) for each month are presented as the lower set of curves within each 
plot, while transmittance data (ݐ) are presented as the upper set of curves. Absorption characteristics 
are depicted based on the area between the upper and lower set of curves. SD values for new leaf ݐ 
are depicted in the upper and lower dash lines, to avoid overlap with ݎ, while SD values for all other ݎ and ݐ measurements are depicted in gray buffed areas. 
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expansion period, which is consistent with the increasing trend in NIR reflectance from 0 a to 1 a 
leaves as presented in Figure 6C1. Although this variation in NIR band reflectance is not as 
pronounced as in the green bands, it could have a greater impact at the canopy scale from the view 
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(A2–E2) needle samples (n) from Chinese fir collected on 5 May, 24 June, 28 July, 14 September and
13 October 2017. From May to October, n = 22, 15, 26, 30 and 39 respectively, and each sample includes
5 to 8 leaves. Reflectance data (rL) for each month are presented as the lower set of curves within each
plot, while transmittance data (tL) are presented as the upper set of curves. Absorption characteristics
are depicted based on the area between the upper and lower set of curves. SD values for new leaf tL

are depicted in the upper and lower dash lines, to avoid overlap with rL, while SD values for all other
rL and tL measurements are depicted in gray buffed areas.

4.2.2. Leaves in Different Seasons

The results of monthly LOPs measurements during the leaf expansion period (May to October) of
0 a leaves sampled from the Chinese fir trees are presented in Figure 7. As shown in the SVC spectral
curve data for Chinese fir, significant differences were observed in the following spectral regions:
the green peak (≈530–600 nm), the chlorophyll absorption well (≈660–690 nm) and along the NIR
plateau (750–900 nm).

Differences in leaf reflectance are most pronounced in the green band. New leaves (0 a) exhibited
a consistently lower green peak reflectance from May to October, while reflectance in the chlorophyll
absorption region was shown to increase with age, especially during the first two months of the leaf
expansion period, which is consistent with the increasing trend in NIR reflectance from 0 a to 1 a leaves
as presented in Figure 6C1. Although this variation in NIR band reflectance is not as pronounced
as in the green bands, it could have a greater impact at the canopy scale from the view of satellites,
as illustrated in the following section.

With regard to leaf-level transmittance (Figure 7A1–E1), 0 a leaves showed a remarkable decrease
in transmittance in the visible region from May to October, which was similar to that observed in the
variations in leaf transmittance from 0 a to 1 a (Figure 7A2–B2). NIR transmittance characteristics first
showed a slight increasing trend (from 1 May to 28 July) and presented a decreasing trend thereafter
(from 28 July to 13 October), which coincided with the changing trend in new leaf NIR transmittance
trajectory retrieved from Landsat observations (Figure 8A1). However, the observations from May to
October could not fully explain the gap in the NIR transmittance of 0 a and 1 a leaves (Figure 8C2).
One possible reason is that leaf transmittance decreases during winter (November to April), which may
be supported by the new leaf transmittance retrieved from Landsat observations in winter time. As can
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be observed in Figure 8C1, NIR transmittance decreased significantly in November and December, but
there is still a gap between the retrieved new leaf transmittance (0.2) and measured leaf transmittance
(0.25) at the point of reaching 1 a in May of the following year after leaf production.
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Figure 8. Retrieved results for leaf reflectance (ݎ) and transmittance (ݐ) at the canopy scale in the 
NIR band (A1,A2) and RED band (B1,B2). 
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Figure 8. Retrieved results for leaf reflectance (rL) and transmittance (tL) at the canopy scale in the NIR
band (A1,A2) and RED band (B1,B2).

4.3. Leaf-Age Effects on Variability in Landsat-Viewed Canopy Reflectance

Landsat records canopy LOPs from the sensor view and time-series data can be used to estimate
seasonal variations in LOPs. First, we attempted to retrieve LOPs at the canopy scale from Landsat
observations using the GORT model. Then, we estimated the new leaf component from the retrieved
results by setting mature leaf component parameters as known parameters using field measurements.
The results were evaluated via direct and indirect methods.

4.3.1. Leaf Optical Properties at the Canopy Scale

After considering the uncertainties and sensitivities of other parameters in the GORT model,
seasonal LOPs were retrieved from Landsat observations using the proposed multi-stage inversion
method by minimizing the cost function. Retrieved LOPs at the canopy scale are shown in Figure 8 and
compared with field measurements of the spectral signatures of leaves. Changes in Landsat reflectance
were associated with variations in leaf optical properties. As shown in Figure 8A1–B1, the most
dramatic changes occurred in the NIR band, resulting in increased reflectance and transmittance during
spring (April to September) and decreased reflectance and transmittance during winter (October to
December). However, variations in NIR reflectance (0.5 to 0.55) were less notable than that of NIR
transmittance (0.25 to 0.4). In the red band (Figure 8A2–B2), differences in LOPs mainly occurred in the
first three months (May to July) and then became stable in the rest of the year. Both red reflectance and
transmittance presented low values, and transmittance was slightly lower than reflectance. No LOPs
changes in red band could be observed from Landsat alone, but including EVI2 data helped to
some extent.

4.3.2. Seasonal Leaf Optical Properties

When viewed from the top of the crown, LOPs retrieved from Landsat observations are a
combination of leaves of all ages. As analyzed in Section 3.3, we account for both the effects of
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leaf area and its spatial organization in the canopy to estimate the contribution of different leaves.
Figure 9 shows the average seasonal variations in total leaf area (A) and leaf proportions (B) of
new leaves and mature leaves in the canopy, and their contributions to canopy spectral properties
(C). The time period starts at leaf expansion at age 0 (April) and ends with leaf maturity (March in
the following year) at age 1, following the same twelve-month cycle with new leaf expansion each
year. We can see that LAI does not change very dramatically for evergreen forests between seasons
in our study period (Figure 9A). Thus, the satellite-observed seasonality of canopy reflectance is
not determined by LAI, but rather is the result of variations in the LOPs of new leaves during the
maturation process. Although new leaves only account for approximately 30% of the total leaf area
(Figure 9B), new leaves made high contribution (approximately 80% at the peak time in summer) to
canopy spectral properties from the crown top view (Figure 9C).
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Figure 9. Seasonal variations in the leaf properties of the canopy, including (A) total leaf area: average 
LAI from stand age 22 to 33 (2005 to 2015); (B) leaf proportion: the percentage of new leaves and 
mature leaves in the canopy measured by Zhongkun et al. [50]; (C) weights for new leaves (w1) and 
mature leaves (w2) from stand age 22 to 33 (2005 to 2015).  
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transmittance. Mature leaf transmittance in the NIR increased by 30% over the three months 
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no significant difference in NIR reflectance during the whole growing season (May to November).  

New leaf reflectance or transmittance can be estimated by deducting the contribution of mature 
leaves from the retrieved LOPs results, which are shown in Figure 10. It can be seen that the retrieved 
new leaf LOPs were in good agreement with the field observations (Figure 10A1,A2) from May to 
October. We can also see that new leaf LOPs in the red band decreased in the first three months (from 
April to June) and became stable thereafter (Figure 10A2). More importantly, new leaf NIR REF 
continued to increase from May to September after production (approximately 11%), while new leaf 
NIR TRA follow a nonlinear trajectory, increasing from May to August (approximately 16%) and 
decreasing thereafter (approximately 14%). A small increase in new leaf NIR REF and a small 
decrease in new leaf NIR TRA could both translate into a larger impact at the canopy scale, when the 
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Figure 9. Seasonal variations in the leaf properties of the canopy, including (A) total leaf area: average
LAI from stand age 22 to 33 (2005 to 2015); (B) leaf proportion: the percentage of new leaves and mature
leaves in the canopy measured by Zhongkun et al. [50]; (C) weights for new leaves (w1) and mature
leaves (w2) from stand age 22 to 33 (2005 to 2015).

The seasonal trajectories of mature leaf LOPs (Figure 10 B1,B2) were interpolated from field
measurements, which were quite stable during growing season, with only one exception: NIR
transmittance. Mature leaf transmittance in the NIR increased by 30% over the three months following
the beginning of a new growing cycle in May (Figure 10B1), while mature leaves showed no significant
difference in NIR reflectance during the whole growing season (May to November).

New leaf reflectance or transmittance can be estimated by deducting the contribution of mature
leaves from the retrieved LOPs results, which are shown in Figure 10. It can be seen that the retrieved
new leaf LOPs were in good agreement with the field observations (Figure 10A1,A2) from May to
October. We can also see that new leaf LOPs in the red band decreased in the first three months
(from April to June) and became stable thereafter (Figure 10A2). More importantly, new leaf NIR
REF continued to increase from May to September after production (approximately 11%), while new
leaf NIR TRA follow a nonlinear trajectory, increasing from May to August (approximately 16%) and
decreasing thereafter (approximately 14%). A small increase in new leaf NIR REF and a small decrease
in new leaf NIR TRA could both translate into a larger impact at the canopy scale, when the canopy is
coated with new leaves, and the impact of the leaf-age effect at the canopy scale will be further studied
in the following section.

A gap exists between the estimated new leaf NIR transmittance and SVC measurements in May,
and the s.d. values of new leaf field measurements in May are greater than the measurements in
other months (Figure 10A1,A2). This might be explained by the overestimation of measured leaf
transmittance samples when leaves were small, which was caused by unavoidable small gaps because
of minor misalignment in the arrangement of leaves. Large s.d. values for new leaf field measurements
in May could also occur due to the differences in leaf expansion rate and maturity times in the early
leaf flush period.
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constructed mature leaf LOPs trajectories (B1,B2). 
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Figure 10. Validation of estimated new leaf LOPs in the NIR band (A1) and red band (A2) and the
constructed mature leaf LOPs trajectories (B1,B2).

4.3.3. Leaf-Age Effects at Pixel Scale Based on Satellite Observations

LAI and sun-sensor geometry are widely recognized as the main factors contributing to seasonality in
RS signals [12,19]. Thus, we need to distinguish leaf-age effects from the contributions of these two factors.
To identify the contribution of leaf-age effects to the seasonality in Landsat signals, we compared the
differences in the results with/without considering leaf-age effects. The forward-mode GORT model
was used to simulate canopy reflectance at the pixel scale with Landsat-viewing geometry, and the
model-driven parameters are listed in Table 1. We simulate canopy reflectance at NIR band and red band
in the following three circumstances:

1. In the first circumstance, we ignore the leaf-age effects caused by aging mature leaves and growing
new leaves, and only consider variations in LAI and sun geometry using field data. LOPs in
the GORT model were fixed using the mean LOPs for mature leaves measured from May to
September in 2017 (NIR band: REFmature = 0.51, TRAmature = 0.26 or 0.34; Red band: REFmature = 0.06,
TRAmature = 0.01).

2. Based on circumstance 1, we include variations in LOPs caused by aging mature leaves.
For comparative purposes, we first added variations in mature leaves using data shown in Figure 10B1
to drive the GORT model.

3. Based on circumstance 2, we further include variations in LOPs caused by production and expansion
of new leaves. LOPs for the GORT model are shown in Figure 8B1. LOPs at the canopy scale retrieved
at the ZH1 site are applied to the FZ1 site with different canopy structure parameters.

The overall GORT-simulated results obtained for the three circumstances are compared in Figure 11.
After considering the mature leaf-age effects on canopy reflectance, the R2 between the simulated canopy
reflectance/EVI2 and the Landsat observations increased significantly (from 0.38 to 0.83 for canopy NIR
reflectance and from 0.26 to 0.43 for canopy EVI2), as shown in Figure 11. However, the R2 of both groups
in the GORT simulation results was poor in the red band and RMSE remained low.

In circumstance 1, we can see that LAI is stable (Figure 9A) in these sub-tropical forests and is not the
main factor contributing to the seasonality of canopy NIR REF. Seasonal variation in sun-sensor geometry
from January to June to December (SZN varies from 56◦ to 25◦ to 56◦) causes a small amount of seasonality
of forest albedo, as shown based on the blue line in Figure 11A1. However, SZN alone does not sufficiently
explain the seasonality of the Landsat canopy signals in our study sites. Assuming that the LOPs of mature
leaves do not change, if we apply mature leaf LOPs measured at the peak time in summer (NIR TRA = 0.34)



Remote Sens. 2018, 10, 262 17 of 28

to other times, we might overestimate canopy NIR REF in winter; and if we apply mature leaf LOPs
measured in early spring (NIR TRA = 0.26), we might underestimate canopy NIR REF in summer.

In circumstance 2, we consider the leaf-aging effects of the mature leaves, which constitute the majority
(>60%) of the canopy LAI (Figure 9B). The LOPs of mature leaves are relatively stable in the red and NIR
bands, therefore, mature leaves have no impact on canopy red REF. However, there is one notable exception:
mature leaf NIR TRA is lower in winter and greater in summer and continued to increase from May to
October (Figure 7A2–E2). The winter-summer differences in leaf NIR TRA contribute to a steeper NIR
REF/EVI2 trajectory from April to July at the canopy scale, as shown based on the area between the blue
and gray curves in Figure 11A1,C1.

In circumstance 3, we can observe how variations in the LOPs of new leaves contributed to the
seasonal variation in canopy NIR reflectance and derived EVI2 (Figure 11A1,C1). As shown based on
the area between the green and gray curves in Figure 11A1,C1, EVI2 trajectories follow the same pattern
(Figure 11C1) as NIR reflectance. In general, new leaf production and expansion increases canopy NIR
reflectance from May to October (Figure 11A1). An increased new leaf TRA (18%) also contributes to the
increase in NIR REF at the canopy scale, but only before August. After September, an increase in NIR
REF is caused by an increase in leaf REF. However, the changing trend of canopy NIR REF is nonlinear,
which increases from May to August and decreases from August to October. As illustrated in Figure 10A1,
canopy NIR REF increases from May to August partially due to increasing new leaf NIR REF during this
period; conversely, canopy NIR REF decreases from August to October due to decreasing new leaf TRA at
this interval.

The upper-layer-located new leaves provide a mechanism for producing greater seasonality of forest
albedo in addition to mature leaves. A small increase in new leaf NIR REF (0.05 unit) has significant
impacts at the canopy scale, since new leaves are generally located at the top of the canopy. New leaf
expansion also contributes to negligible increase in canopy Red REF from March to July (Figure 11B1). EVI2
trajectories follow the same patterns (Figure 11C1) as NIR reflectance trajectories, arising from the linear
dependence of EVI2 on NIR reflectance, as proved by a previous study [23]. We can conclude that both new
and mature leaves contribute to the seasonality of forest albedo, which is independent of changes in other
canopy attributes.
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Figure 11. Aging effects of new leaves and mature leaves on seasonality of canopy signal trajectory in NIR band 
(A1), red band (B1) and EVI2 (C1). With the exception of the differences in leaf optical parameters, all other input 
parameters for the GORT model are the same in three circumstances. We evaluated the simulated canopy 
signature with Landsat observations (A2–C2). Both the simulated results and Landsat observations are at a 
monthly step with the mean value and s.d. (from 2005 to 2015).  

Figure 11. Aging effects of new leaves and mature leaves on seasonality of canopy signal trajectory
in NIR band (A1), red band (B1) and EVI2 (C1). With the exception of the differences in leaf optical
parameters, all other input parameters for the GORT model are the same in three circumstances.
We evaluated the simulated canopy signature with Landsat observations (A2–C2). Both the simulated
results and Landsat observations are at a monthly step with the mean value and s.d. (from 2005
to 2015).
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5. Discussion

5.1. Spectral Changes and Leaf Aging

For Chinese fir, the leaf spectra mainly vary during the first year of leaf production (0–1 a),
and then remain relatively stable from 1–3 a. During the new leaf expansion process, leaf water content
(LWC) and the specific leaf area (SLA) decrease rapidly, resulting in variations in LOPs: including
decreased transmittance and increased absorbance in the visible and NIR bands and decreased visible,
but increased NIR reflectance. Leaf optical properties show strong age dependence and great seasonal
difference for young and mature leaves. Spectral changes in the visible portion of the spectrum
characterized the new leaves while increased NIR transmittance and decreased NIR absorbance
characterized mature leaves. Changes observed in the visible spectrum matched similar observations
for Carica [59] and Aldina [60]. In general, absorbance at the green peak (550 nm) increases, while
reflectance and transmittance decrease at this band, which could be attributed to an increase in
chlorophyll [59] and changes in leaf internal anatomy [61]. However, the changes of LOPs in the NIR
band are complicated.

In agreement with previous findings [60], mature leaves were found to show a lower leaf albedo
(leaf reflectance plus transmittance) at the NIR band than new leaves due to leaf aging. Early changes in
the NIR band were noted during new leaf expansion, with a slight increase (11%) in leaf NIR REF being
observed from May to October and a continuous increase (14%) in leaf TRA being recorded from May to
August, followed by a slight decrease in NIR TRA during autumn and winter. Some studies [62] have
found a dramatic increase in leaf NIR reflectance between July and August, which might be caused by
differences in the leaf characteristics. Low-wax leaves display a continuous increase in NIR reflectance
until maturity, while high-wax leaves show little increase in NIR reflectance [63]. Epicuticular waxes
and thick cuticles could mask the effect of NIR increases caused by inter-cellular development in young
high-wax leaves. These characteristics might explain why only a slight increase in NIR reflectance was
found during leaf maturation in the present study, since Chinese fir is a high-wax species.

In contrast to previous studies, we observed a continuous increase in NIR transmittance for
mature leaves (1–3 a). However, a significant gap in NIR transmittance existed between new leaves
(measured from May to October) and mature leave (measured in May), and we only observed a
small decrease in NIR transmittance for new leaves from September to October. However, a dramatic
decrease in NIR transmittance might happen in winter time (November to December to January)
according to the results retrieved from Landsat observations, which will be further studied in the
future. Similar observations have been made by others [60], who found a consistent decrease in NIR
transmittance during the last nine months of the leaf cycle.

5.2. Leaf-Aging Effects on Canopy Reflectance

At the canopy scale, canopy reflectance is a product of competing mechanisms of light
absorption [60]. The interaction of photons with dense forests is characterized by strong scattering in
the NIR and equally strong absorption in the shorter red and blue bands. The NIR reflectance of these
forests is an order of magnitude greater than the reflectance at red (blue) band. On the other hand,
aerosol scattering has greater impacts on reflectance in visible bands than the NIR band. In the NIR
band, any mechanism that increases leaf absorption (such as decreased transmittance or reflectance)
will have an enhanced effect on canopy reflectance [60]. Thus, we could expect leaf aging to have its
largest impact in the NIR band.

Age-related LOPs are factors that require special attention but have been overlooked in previous
studies focused on estimating vegetation status using optical signal trajectories. Previous studies
also found changes in canopy NIR reflectance caused by the exchange of older leaves for newer
leaves [23,24,27]. These studies considered the differences in LOPs between senesced old leaves and new
leaves, but they ignored the simultaneous aging process of new leaves and mature leaves with a life
span of more than three years. In this study, the observed seasonality of the canopy NIR reflectance of
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evergreen forests was due to age-dependent leaf optical properties at the NIR band, including both new
leaf maturation and mature leaf aging, with little changes in total leaf area. New leaf maturation mainly
increases NIR reflectance at the peak time in summer (May to October), and mature leaf aging mainly
reduces NIR reflectance during early spring (January to June). We have already excluded differences
caused by changes in the solar zenith angle [10], and our seasonally moist sub-tropical forests are free
of drought impact [24,64–66] or the impact of epiphylls on mature leaves in tropical forests [23,60,67],
which are highly debated factors causing changes in NIR reflectance in numerous studies, and the same
seasonality pattern is observed in EVI because of its strong dependence on NIR reflectance.

It is important to note that the forest canopy is composed of mixed-age leaves. Mature leaves
account for a major population, while a higher proportion of young leaves are observed by the Landsat
satellite because of their distribution at the top of the canopy. Both new and mature leaves influence
canopy NIR reflectance, and their impacts change with new leaf expansion. New leaf expansion
changes the proportions of young and mature leaves within a forest canopy over the season, thus,
further changes the canopy spectral signatures.

5.3. Potential Implications for Photosynthesis

Young leaves exhibit a higher photosynthetic capacity than older leaves, and it is therefore
essential to track changes in the age-structure of leaves in the canopy, which could substantially
improve the modeling of the seasonal dynamics of photosynthesis. Xiaoquan and Deying [68] studied
the leaf-age effects on the photosynthetic characteristics of 18-year-old Cunninghamia lanceolata stands
and found similar trends in leaf photosynthetic rate at different ages: the photosynthesis rate of newly
flushed leaves increases during the maturation process and then decreases at the end of the growing
season, while the photosynthesis rate of mature leaves (1 and 2 a) decreases as time progresses.
This study suggested that considering the temporal variation in the LOPs of new leaves matters
significantly in understanding the seasonal trend of canopy spectral signatures. Ignoring variations
in leaf-scale properties may mislead our interpretations of seasonality of RS signals from evergreen
forests where different-age leaf cohorts coexist in the canopy. This study provides new evidence of
the importance of considering the phenology of LOPs at different ages and which could contribute to
more accurately modeling of photosynthesis [69].

5.4. Implications of LOPs and Canopy Structure

At the canopy scale, seasonal variations in new leaf optical properties were shown to be the dominant
factor producing seasonal variations in canopy reflectance and altering NIR to red ratios, independent of
changes in other canopy attributes. However, our study explicitly focused on dense evergreen forests with
stable LAI (LAI > 3). The parameters that drive the GORT model may vary on different temporal scales.
For example, crown size and tree height vary annually, while LAI, leaf spectra, and sun geometry vary
seasonally. We can explore the signal differences caused by LAI and canopy structure by comparing the
annual differences in the GORT model outputs. We only applied the annual structural parameters from
2005 to 2015 (there were no data in 2009 and from 2012 to 2014) to drive the the GORT model. In addition
to annual stable structural parameters, the SZN, LAI and canopy average LOPs were updated monthly.
Although the LAI seasonality and structure parameters varied from year to year, NIR reflectance showed
similar seasonal trajectories with little annual difference, as illustrated by the vertical error bar in Figure 11.
There may be two explanations for this limited variation. First, there is a lack of LAI seasonality or the
canopy is too dense with a high LAI; thus, small changes in leaf area are not as sensitive compared with
the variations in LOPs. The results might be different for young stands, especially before canopy closure.
Second, canopy structural parameters do not change significantly during the new leaf maturation process;
thus, canopy structures have limited impacts on canopy reflectance during this period. As illustrated in
other studies [23], LAI is also an important factor contributing to the seasonality of NIR reflectance.

This study quantified the effects of leaf age on canopy reflectance in mature evergreen forests to
first explore the possible impacts on leaf quality when total leaf area does not exhibit significant seasonal
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changes. Given the findings of this case study, future studies in deciduous forests, where seasonal
variations in LAI are more significant and leaf-age groups are less complicated, would allow further
validating of our findings and apply our findings to better quantify the canopy spectral signatures to
understand the role of forests in terrestrial ecosystems.

6. Conclusions

This study evaluated the effect of LOPs for leaves at different ages on the canopy spectral signature
variation during the growing season for Chinese fir stands. For closed canopy evergreen stands with
relatively stable LAI, new leaves exerted disproportional influence on the canopy season spectral
signature due to the spatial distribution of the new leaves in the top and outer canopy. The most direct
implications of our results are related to ecological or physiological studies that utilize remote sensing,
and our findings provide a promising potential to improve the interpretation of RS signals. The most
significant finding of this study at the leaf scale is the increase in the NIR transmittance of mature leaves
and the increase in the NIR reflectance of new leaves. To date, most of the identified contributions of
leaf age to the variation in leaf optical properties have involved changes in the differences between
old leaves and new leaves. Simultaneous monitoring of new and mature LOPs with season, however,
has not been previously documented. In this study, we observed an approximately 11% increase in
NIR reflectance (0.05 unit) for new leaves and a 35% increase in NIR transmittance for mature leaves
during the growing season.

Variations of LOPs at the leaf scale have significant impacts at the canopy scale, and contribute to
seasonality of canopy NIR reflectance and EVI2. Due to the complexity of forest ecosystems, analyses
based on field data alone cannot provide guidance in the interpretation of RS signals. Conversely, studies
based on modeling alone, without proper ground measurements of the key factors driving canopy signal
variation, can be misleading. This study combined field observations with the GORT model to elucidate
the effects of leaf age on canopy-scale reflectance signals. We demonstrated that, in addition to sun-sensor
geometry, the effects of leaf aging on LOPs were the major factor contributing to the seasonality of canopy
reflectance for the Chinese fir stands:

• New leaf maturation is the main factor contributing to seasonality of canopy signals (NIR REF
and EVI2), because of the distribution of these leaves in the top and outer canopy, as well as their
increasing proportions with leaf growth. A small increase (0.05 unit) in new leaf NIR reflectance
results in a significant increase in canopy NIR reflectance from spring to summer, while a decrease
in new leaf NIR transmittance from August to October causes a decreasing trend in canopy NIR
reflectance in autumn and winter.

• Mature leaf aging is another factor contributing to the seasonality of the canopy signals (NIR REF
and EVI2) because of the significant proportion of mature leaves in the canopy. Mature leaf NIR
transmittance is greater during the growing season than off the growing season. This difference in
leaf TRA causes an increased difference in canopy reflectance between winter and summer.

Thus, the effects of leaf age cannot be ignored when conducting time series analyses using RS data
for the evergreen needle leaf forests.
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Appendix A

Appendix A.1 Data Description

Section 2.2.1 is supported with field data collected for Chinese fir forest stands located in
the vicinity of the permanent ecosystem research stations in National Research Stations of Forest
Ecosystems in Huitong county, Hunan province, southern China. This appendix provides details on
data acquisition of canopy structure parameters.

Appendix A.2 Canopy Structural Parameter Measurements

Crown shape measurements were taken for a total of forty trees in study Site 2. Measured crown
shape parameters are shown in Figure A1, among which, DBH was measured using diameter tapes,
and crown radius and tree heights were measured using telemeter rods. The size of the selected trees
was evenly distributed uniformly in terms of height (H) (from 5.4 m to 20 m) and diameter at breast
height (DBH) (from 7.7 cm to 37.8 cm). Among the 40 trees, 7 are located at plots close to the study site,
and 33 are located within the ZH1 and FZ1 sites. The parameters measured for characterizing crown
shape are presented in Figure A1, including crown width in the north-south direction (R1) and the
east-west direction (R2), tree height (H1) and height under crown (H2), from which we can obtain the
height of crown center (h). We used the measurements of these 40 trees to build regression relationships
for crown width, DBH, h and tree height. Figures A2 and A3 illustrated the field measurements of
canopy structure parameters as well as their growth trajectories with DBH, which usually correlates
well with tree ages.
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Figure A4. The vacuum side of one group of leaf leaves prepared for spectral measurement. Leaf samples
were collected on 15 July 2016.

Appendix B

Appendix B.1 Data Description

Section 2.2.2 is supported with LAI field data collected for Chinese fir forest stands located close
to the permanent ecosystem research stations in National Research Stations of Forest Ecosystems in
Huitong county, Hunan province, southern China. Long-term LAI were measured monthly to drive
the GORT model from year 2005 to 2015. In this time period, two different DHP methods were applied
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before and after year 2006. This appendix provides details on LAI data acquisition and processing to
produce consistent LAI time-series.

Appendix B.2 Long-Term LAIe Observations: DHP Methods

(1) 2005 and 2006: CI-110 Plant Canopy Analyzer

Plant canopy imaging was the primary method for conducting regular monthly LAI measurements
from 2005 until present. From 2005 to 2006, pictures were taken every month by one worker using
a CI-110 Plant Canopy Analyzer to estimate the LAI. From 2007 onward, photographs were taken
by another fixed worker using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm f/2.8 G ED fisheye convertor. The data measured before 2007 needed to be further
preprocessed prior to further calculations to make them consistent with data measured after 2007.
We have 30 pairs of data measured at the same positions and in the same directions in ZH1 and
FZ1 to unify the original LAI time series data using data measured in December 2006 and January
2007. We employed two methods to unify these datasets: (1) Regression Method: The first method
involves deriving two average seasonal LAI trajectories, one before 2007 and the other after 2007,
and calculating their regression equations. (2) Lifting Method: The second method involves acquiring
the mean absolute deviation (∆LAI = 1.01) of the data before 2007 and those after 2007 using the mean
difference between these 30 pairs of LAI data. The results of these two methods are different, and both
are illustrated at the end of this section.

(2) 2007 to 2015: Fisheye Digital Camera

From 2007 afterwards, photographs were taken using a Canon EOS 40D digital camera equipped
with a Nikon AF-DX 10.5 mm f/2.8G ED fisheye convertor. The camera was horizontally mounted
at a fixed height of 0.2 m above the ground. The photographs were taken with automatic exposure
under diffuse light conditions, typically soon after sunrise or immediately before sunset. In the ZH1
and FZ1 plots, measurements were taken for three layers: the herb layer, shrub layer and tree layer on
the 15th day of each month at five fixed locations per plot and facing toward four cardinal directions.
All measurements were made under diffuse light conditions to avoid introducing errors due to the
presence of sunlit foliage. The images were processed by the Gap Light Analyzer 2.0 software to
calculate LAIDHP.

Incorrect exposure has been shown to cause significant underestimations in LAIDHP
measurements [35–39]. All DHP measurements were taken with automatic exposures, which resulted
in considerable underestimation. The LAI measurements made using the DHP and LAI-2000 methods
were shown to be significantly correlated in any zenith angle range. Therefore, we calibrated LAIDHP
by the LAIe measured using an LAI-2000 plant analyzer, to quantify the systematic bias ε in DHP
methods due to automatic exposure problems.

Appendix B.3 Converting LAIe to LAIt: LAI-2000 and TRAC Methods

LAI-2000 and TRAC measurements were used to convert LAIDHP to true LAI. Tracing Radiation
and Architecture of Canopies (TRAC, Natural Resources Canada, Canada Center for Remote Sensing,
Saint-Hubert, QC, Canada) and an LAI-2000 Plant Canopy Analyzer (LAI-2000, LI-COR Inc, Lincoln,
NE, USA) [41] were used to measure the LAI of each sample plot [42]. The LAI-2000 was used to
measure the effective LAI (LAIe), and TRAC was used to measure both the effective LAI (LAIe) and the
foliage clumping index (Ω).

The LAI-2000 method is based on the measurement of diffuse radiation attenuation in the blue
band caused by the canopy, which is related to gap fraction. Further details on the theories and
measurements behind LAI are given in Frazer et al. [70]. We employed two LAI-2000 units to measure
the sky radiation and under-canopy radiation simultaneously. Additionally, we cross-calibrated
these two LAI-2000 units before the field survey. One LAI-2000 unit is horizontally mounted on a



Remote Sens. 2018, 10, 262 24 of 28

rooftop facing toward our study sites and automatically records the above-canopy radiation every
5 min. Ninety-degree view caps were used on both units to avoid the influence of other objects on the
sensors and made these measurements comparable with those from the DHP methods in four cardinal
directions. The LAI-2000 measurements were taken under diffuse sky conditions in the early morning
or after sunset. The TRAC method requires direct solar radiation, so we took TRAC measurements
during midday at a constant walking pace along several parallel transects, which were perpendicular
to the direction of tree stem shadows. Distance markers were registered every 5 m. The TRAC data
were processed by TracWin software, which calculates LAIe and the clumping index (Ω).

During August 2015, we used LAI-2000 instruments to measure the LAI in the WS2 and WS3
plots. We revisited these plots in June 2016, taking measurements with both the TRAC and LAI-2000
instruments. In June 2016, we surveyed the ZH1 and FZ1 sample plots and used the LAI-2000
instruments to measure the LAI at the same locations as measured by the long-term DHP methods.
In comparison to the LAI-2000 instrument, the accuracy of DHP is affected by photograph exposure
settings because these settings impact the ratio of green leaves to sky. An LAI-2000 unit was operated
subsequently at the same locations for comparison with DHP, and then we convert LAIe to true
LAI values.

Additional correction parameters were required to convert LAIe to LAIt. The needle-to-shoot
area ratio (γe) was measured using destructive sampling conducted in August 2015. The clumping
index Ω was measured by the TRAC instrument. Additionally, the woody-to-total area ratio (α) for
Cunninghamia lanceolata was derived from destructive sampling used to calculate biomass.

Appendix B.4 Unifying LAI Measurements Using Different Methods

LAIDHP was corrected using LAIe measurements from the LAI-2000 units to decrease the
underestimation caused by the automatic exposure problem present in the DHP method. We made
comparisons between the LAI as measured using DHP and LAI-2000 in the same locations in ZH1 and
FZ1 to estimate the system bias (ε) of DHP. We applied a fixed bias instead of a regression relationship
between DHP and LAI-2000 because our study site is pure Cunninghamia lanceolata plantations and the
LAI values fall within a small range. Thus, it is not possible to build a robust regression relationship
with limited LAI variations using the field measurements made on our study sites. Although previous
studies have built and applied regression relationships between DHP and LAI-2000 LAI methods [71],
we chose to estimate the system error of DHP with a fixed value in our study site. The reasons for this
choice are listed as follows: first, regression relationships are usually site specific, lack universality and
cannot be applied to other places. We used the existing regression relationship to our study sites, but
the result was of poor quality. The regression relationship built by [71] resulted in a mean absolute error
of 1.0 LAI when compared with field LAI-2000 measurements. Second, the accuracy of the regression
relationship may vary in different ranges of values. For example, if the regression relationship fits
well in the low-value range but fits poorly at high values, then when we apply it to other places with
mainly high values, the relationship will fail. At this study site, the LAI is quite stable; as shown in
Table A2, the standard deviation is quite small (approximately 0.25 as measured by LAI-2000), and the
maximum and minimum LAI-2000 measurements within our study sites are quite close (3.19–3.36 for
ZH1, and 3.18–3.3 for FZ1). Thus, correcting for the systematic error is a sufficient and reliable method
for converting LAI values measured by the DHP method to LAI measured with LAI-2000.
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Table A2. Comparison of effective LAI derived from digital hemispherical photography (DHP) and
LAI-2000 methods.

Plot

ZH1 FZ1

DHP (5 pts *
4 Dirs)

LAI-2000 (5
pts * 4 Dirs)

LAI-2000 (26 pts *
2 Repeat)

DHP (5 pts *
4 Dirs)

LAI-2000 (5
pts * 4 dirs)

LAI-2000 (61 pts *
3 Repeat)

Maximum 1.68 3.52 3.36 1.56 3.85 3.3
Minimum 1.37 2.9 3.19 1.05 2.87 3.18

Mean 1.533 3.186 3.275 1.282 3.248 3.243
SD 0.12 0.23 0.12 0.2 0.39 0.06

System bias (ε) * _ 1.653 1.724 _ 1.966 1.962

* The LAI were measured at 5 points, in four directions, and repeated two to three times for every plot. The system
bias (ε) was calculated by (LAI-2000 LAIe- DHP LAIDHP).

According to Table A2, the system bias was set to 1.83 for the DHP method. The correction
parameters required to convert LAIe to LAIt were set as follows: the needle-to-shoot area ratio (γe) was
set to 1.1 according to the results of the destructive sampling conducted in August 2015. The clumping
index Ω was produced by the TRAC instrument and set to 0.8. The value of the woody-to-total area
ratio (α) for Cunninghamia lanceolata was derived from the destructive samples used to calculate biomass
and was set to 0.2. An illustration of the data processing workflow may be useful for understanding
how we unified the LAI field data measured by different instruments, as shown in Figure A5.
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