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Abstract: In this paper, we present a new algorithm for cross-domain classification in aerial
vehicle images based on generative adversarial networks (GANs). The proposed method, called
Siamese-GAN, learns invariant feature representations for both labeled and unlabeled images
coming from two different domains. To this end, we train in an adversarial manner a Siamese
encoder–decoder architecture coupled with a discriminator network. The encoder–decoder network
has the task of matching the distributions of both domains in a shared space regularized by
the reconstruction ability, while the discriminator seeks to distinguish between them. After
this phase, we feed the resulting encoded labeled and unlabeled features to another network
composed of two fully-connected layers for training and classification, respectively. Experiments
on several cross-domain datasets composed of extremely high resolution (EHR) images acquired by
manned/unmanned aerial vehicles (MAV/UAV) over the cities of Vaihingen, Toronto, Potsdam, and
Trento are reported and discussed.

Keywords: manned/unmanned aerial vehicles (MAV/UAV); extremely high resolution (EHR)
images; distribution mismatch; generative adversarial networks (GANs); Siamese encoder–decoder

1. Introduction

The rapid development of remote sensing imaging technologies has allowed us to obtain
heterogonous images of the Earth’s surface with high spatial and temporal resolution. The rich
and complex structural information conveyed by these types of imagery has opened the door for the
development of advanced methodologies for processing and analysis. Among these methodologies,
scene-level classification has attracted much research from the remote sensing community in recent
years. The task of scene classification is to automatically assign an image to a set of predefined semantic
categories. This task is particularly challenging as it requires the definition of high-level features for
representing the image content to assign it to a specific category.

Among the proposed solutions, one can find approaches based on handcrafted features, which
refer to image attributes that are manually designed such as scale-invariant feature transform (SIFT) [1],
local binary pattern (LBP) [2], and bag of visual words (BOVW) model. In the BOWV model, each image
is represented as a histogram of visual word frequencies, and then a visual word codebook is generated
by partitioning an image into dense regions and applying k-means clustering. The conventional
(BoW) was mainly designed for document classification. Therefore, when it is applied to images it
describes the local information using the local descriptors but ignores the spatial information in the
image. For such purposes, improved models have been proposed to utilize spatial information of
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images. For instance, a pyramid-of-spatial-relations (PSR) model was developed in [3] to capture
both the absolute and relative spatial relationships of local features leading to rotation invariance
representation for land use scene images. Zhu et al. [4] improved the (BOVW) model by combining
the local and global features of high spatial resolution (HSR) images. They considered the shape-based
invariant texture index (SITI) as the global texture feature, the mean and standard deviation values as
the local spectral feature, and the (SIFT) feature as the structural feature. Another work [5] proposed a
local–global fusion strategy, which used BoVW and spatial pyramid matching (SPM) to generate local
features, and multiscale completed (CLBP) to extract global features. In [6], the authors proposed a
concentric circle-based spatial- and rotation-invariant representation strategy to describe the spatial
information of visual words and a concentric circle-structured multi-scale (BoVW) method using
multiple features. This model incorporates rotation-invariant spatial layout information into the
original BOVW model to enhance scene classification results.

Feature learning-based approaches provide an alternative way to automatically learn
discriminative feature representation from images. There have been many studies that attempt
to address the scene classification problem by using feature learning techniques. In [7], Cheriyadat
proposed unsupervised feature learning strategy for aerial scene classification that uses sparse coding
to generate a new image representation from low-level features. In [8], Mekhalfi et al. presented a
framework that represents an image through an ensemble of compressive sensing and a multi-feature
framework. They considered different types of features, namely histogram of oriented gradients,
co-occurrence of adjacent local binary patterns and gradient local autocorrelations. The authors of [9]
proposed a multi-feature fusion technique that describes images by three feature vectors: spectral,
textural, and SIFT vectors, which are separately extracted and quantized by K-means clustering.
The latent semantic allocations of the three features are captured separately by probabilistic topic
model and then fused into the final semantic allocation vector. In [10], Cheng et al. introduced a
classification method based on pre-trained part detectors. They used one-layer sparse coding to
discover midlevel features from the partlets-based low-level features. In [11], the authors proposed a
two-layer framework for unsupervised feature learning. The framework can extract both simple and
complex structural features of the image via a hierarchical convolutional scheme. K-means clustering
is used to train the features extractor and then K-nearest neighbors is performed for classification.
Hu et al. [12] proposed unsupervised feature learning algorithm, which learns on the low-level features
via K-means clustering. The feature representation of the image is generated by building a (BOW)
model of the encoded low-level features. Finally, in [13], the authors proposed a Dirichlet-derived
multiple topic model to fuse four types of heterogeneous features including global, local, continuous,
and discrete features.

Recently, deep learning methods have been shown to be more efficient than traditional methods in
many applications such as audio recognition [14] face recognition [15] medical image analysis [16] and
image classification [17]. Deep learning methods are based on multiple processing layers used to learn
a good feature representation automatically from the input data. Different from shallow architectures,
features in deep learning are learned in a hierarchical manner [18]. There are several variants of deep
learning architecture, e.g., deep belief networks (DBNs) [19] stacked auto-encoders (SAEs) [20] and
convolutional neural networks (CNNs) [21].

Deep networks can be designed and trained from scratch for a specific problem domain.
For example, Luus et al. [22] proposed a multiscale input strategy for supervised multispectral
land use classification. They proved that single deep CNN can be trained with multiscale views to
obtain improved classification accuracy compared to using multiple views at one scale only. In [23],
the authors proposed a feature selection method based on (DBN), the network is used to achieve
feature abstraction by minimizing the feature reconstruction error, where features with relatively small
reconstruction errors were taken as the discriminative features. Wu et al. [24] developed a model
that stacks multicolumn autoencoders and Fisher vector pooling layer to learn abstract hierarchical
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semantic features. Zhang et al. [25] proposed a gradient-boosting random convolutional network
framework that can effectively classify aerial images by combining many deep neural networks.

In some applications, including remote sensing, it is not feasible to train a new neural network
from scratch, as this usually requires a considerable amount of labeled data and high computational
costs. One possible solution is to use existing pre-trained networks such as GoogLeNet [26],
AlexNet [27], or CaffeNet [28], and perform fine-tuning of its parameters using the data of interest.
Several studies have used this technique to improve the network training process. Scott et al. [29]
investigated the use of deep CNN for the classification of high-resolution remote sensing imagery.
They developed two techniques based on data augmentation and transfer learning by fine-tuning from
pre-trained models, namely CaffeNet, GoogLeNet, and ResNet. Another work [30] evaluated and
analyzed three strategies using CNN for scene classification, including fully-trained CNN, fine-tuned
CNN, and pre-trained CNN used as feature extractors. The results showed that fine-tuning tends
to be the best-performing strategy. In [31], Marmanis et al. proposed a two-stage framework for
earth observation classification. In the first stage, an initial set of representations is extracted by using
a pre-trained CNN, namely ImageNet. Then, the obtained representations are fed to a supervised
CNN for further learning. Hu et al. [32] proposed two scenarios for generating image representations.
In the first scenario, the activation vectors are extracted directly from the fully connected layers and
considered as global features. In the second scenario, dense features are extracted from the last
convolutional layer and then encoded into a global feature. Then the features are fed into a support
vector machine (SVM) classifier to obtain the class label. In [33], the authors used pre-trained (CNN)
to generate an initial feature representation of the images. The output of the last fully connected layer
is fed into a sparse autoencoder for learning a new representation. After this stage, two different
scenarios are proposed for the classification system. Adding a softmax layer on the top of the encoding
layer and fine-tune the resulting network, or train an autoencoder for each class and classify the test
image based on the reconstruction error. In another work [34], used features extracted from CNNs
pre-trained on ImageNet. They combined two types of features: The high-level features extracted
from the last fully connected layer, and the low and mid-level features extracted from the intermediate
convolutional layers. Weng et al. [35] proposed a framework that combines pre-trained CNNs and
extreme learning machine. The CNN’s fully connected layers are removed to make the rest parts of
the network work as features extractor, while the extreme learning machine is used as a classifier.
Chaib et al. [36] used VGG-Net model to extract features from VHR images. They used the outputs
of the first and second fully connected layer of the network and combined them using discriminant
correlation analysis to construct the final representation of the image scene.

From the above analysis, it appears that most of these methods were designed for a single domain
classification task (assuming the training and testing images are from the same domain). Figure 1
shows a typical situation in the case of UAV platform acquiring extremely high resolution images
(EHR) over a specific area. However, in many real-world applications, the training images used to
learn a model may have different distributions from the images used for testing. This problem arises
when dealing with data acquired over different locations of the Earth’s surface and with different
platforms, as shown in Figure 2. We recall that this aspect is not obvious in the currently available
scene datasets as the training and testing data are generated randomly during evaluation. To highlight
this undesirable effect, the authors of [37] have shown that the methods based on pre-trained CNNs
may produce low accuracies when benchmarked with cross-domain datasets. As a remedial action,
they have proposed compensating for the distribution mismatch by adding additional regularization
terms to the objective function of the neural network besides the standard cross-entropy loss.
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Figure 2. Cross-domain classification: use training samples from a previous domain to classify data
coming from a new domain.

In this work, we propose a new domain adaptation approach to automatically handle such
scenarios (Figure 2). Our objective is to learn invariant high-level feature representations for both
training and testing data coming from two different domains referred here for convenience as labeled
source and unlabeled target data. The method, termed Siamese-GAN, trains jointly in an adversarial
manner a Siamese encoder–decoder network coupled with another network acting as a discriminator.
The encoder-decoder network has the task to match the distributions of both domains in a shared space
regularized by the reconstruction ability, while the discriminator seeks to distinguish between them.
At the end of the optimization process, we feed the resulting encoded labeled source and unlabeled
target features into an additional network for training and classification, respectively.
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The major contribution of this work can be summarized as follows: (1) Introduce GANs as
promising solution for the analysis of remote sensing data. (2) Overcome the data-shift problem for
cross-domain classification by proposing an efficient method named Siamese-GAN. (4) Validate the
method on several cross-domain datasets acquired over different locations of the earth surface and
with different MAV/UAV platforms. (4) Present a comparative study against some related methods
proposed in the literature of remote sensing and computer vision.

The paper is organized as follows. Section 2 reviews GANs. Section 3 describes the proposed
Siamese-GAN method. Section 4 presents the results obtained for several benchmark cross-domain
datasets. Section 5 analyzes the sensitivity of the method and presents comparisons with state-of-the-art
methods. Finally, Section 6 concludes the paper.

2. Generative Adversarial Networks (GANs)

GANs have emerged as a novel approach for training deep generative models. The original GAN
that was mainly proposed for image generation consists of two neural networks: the generator G and
the discriminator D. The networks are trained in opposition to one another through a two-player
minimax game. The generator network learns to create fake data that should come from the same
distribution as the real data, while the discriminator network attempts to differentiate between the real
and the fake data created by the generator. During each training cycle, the generator takes a random
noise vector as an input and creates a synthetic image, the discriminator is presented with a real or
generated image and tries to classify it as either “real” or “fake”. Ideally, the two networks compete
during the training process until the Nash equilibrium is reached. The GANs’ objective function is
given by:

min
G

max
D

V(D, G) = EXvpdata (X)[log D(X)] +Ezv pz(z)[log(1− D(G(z)))], (1)

where X represents the real image from the true data distribution pdata, z represents the noise vector
sampled from distribution pz, and G(z) represents the generated image. The generator G is learned by
maximizing D(G(z)), while D is trained by minimizing D(G(z)).

Since the appearance of GANs in 2014, many extensions have been proposed to its architecture.
For instance, Deep Convolutional GANs (DCGANs) [38] were designed to allow the network to
generate data with similar internal structure as training data, improving the quality of the generated
images, and Conditional GANs [39] add an additional conditioning variable to both the generator and
the discriminator. Based on the previous architectures the concept of GANs has been adopted to solve
many computer visions related tasks such as image generation [40,41], image super-resolution [42],
unsupervised learning [43], semi-supervised learning [44], and image painting and colorization [45,46].

In the context of domain adaptation, some works have recently been introduced to the literature of
computer vision. For instance, Ganin et al. [47] presented a domain-adversarial neural network method,
which combines a deep feature extractor module with two classifiers for class-label and domain
prediction, respectively. The network is trained by minimizing the label prediction loss for source
data, and the domain classification loss for both source and target data via a gradient reversal layer.
Liu and Tuzel [48] introduced an architecture that couples two or more GANs, each corresponding
to one image domain. The two generators share the weights of the first layers that decode high-level
features to learn the joint distribution of the images in the two domains, while the discriminators
share the weights of the last layers. The authors of [49] proposed an architecture based on a CNN that
is first trained with labeled source images. Then train in an adversarial manner a generator and a
discriminator on source and target data. The domain adaptation is achieved by mapping the target
data into the source domain using the trained generator. Then the mapped target data are classified
using the CNN trained previously on the source data. In another work [50], the authors proposed
an adversarial training for unsupervised pixel-based domain adaptation to make synthetic images
more realistic. The generator in this model uses the source images as input instead of the noise vector.
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The adaptation is achieved by transforming the source pixels directly to the target space, and the
synthetic images help to maximize the accuracy of the classifier.

In the context of remote sensing, Lin et al. [43] used GANs for unsupervised scene classification.
The model consists of a generator that learns to produce additional training images similar to the
real data, and a discriminator that works as a feature extractor, which learns better representations
of the images using the data provided by the generator. In another work, He et al. [44] proposed a
semi-supervised method for the classification of hyperspectral images. Spectral–spatial features are
extracted from the unlabeled images and are used to train a GAN model.

3. Proposed Methodology

In this work, we assume that we have only one source domain and one target domain. We are

given a set of labeled images Tr(s) =
{

I(s)i , yi

}ns

i=1
from the source domain, where yi ∈ {1, 2, . . . , K} is

the corresponding class label and K is the number of classes. Additionally, we are given another set

of unlabeled images Ts(t) =
{

I(t)j

}nt

j=1
from the target domain. Our objective is to learn an invariant

representation for both source and target domains by minimizing the mismatch of data distribution
between the two domains. To this end, we propose a method based on the GANs theory, as shown
in Figure 3. Detailed descriptions of the different blocks composing this network, in addition to the
optimization process, are presented in next subsections.
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3.1. Feature Extraction

We use the VGG16 network, which is a 16-layer network proposed by the VGG team in the ILSVRC
2014 competition [38]. This network is mainly composed of 13 convolutional layers, five pooling layers,
and three fully connected layers. The network was trained on 1.2 million RGB images of 224 × 224
pixel size belonging to 1000 classes related to general images such as beaches, dogs, cats, cars, shopping
carts, minivans, etc.

For feature extraction, we feed the labeled and unlabeled images to this pre-trained CNN and take
the output of the activation function of the first fully connected layer. This results in high-level features
of dimension 4096 as shown in Figure 4 We recall that other feature extractions or combinations at
different levels of the network could be considered as well.
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3.2. Siamese-GAN Architecture

Figure 5 depicts the architecture of the different networks composing Siamese-GAN. First, we
have a Siamese encoder–decoder network, where G(WG) denotes the encoder part and DE(WDE) the
decoder part. Then we have a discriminator denoted by D(WD) and a classifier denoted by CL(WCL).
Here the weights WG, WDE, WD and WCL refer to the learnable parameters associated with each
component. The encoder G aims to match the source and target data samples into an embedded
space, while the discriminator D tries to separate between the two domains. The decoders DE serve
to constrain the mapping spaces to those allowing a good reconstruction of the original source and
target samples. The classifier CL has the task of classifying the mapped target data samples after being
learned on the mapped source data.

In detail, the encoder G receives feature vectors of dimension d = 4096 and maps them to features
of dimension 128. This network consists of three dense layers, each followed by batch Normalization
and leaky linear rectified unit (Leaky ReLU) activation function, except the last layer that uses a
sigmoid activation function. The Leaky ReLU is similar to the standard rectified linear unit (ReLU),
but with a small slope α in the negative region. In the experiments, we set this slope to 0.2. The output
features obtained from the encoder are fed into the decoder that takes an input of dimension 128 and
tries to reconstruct the original feature vector. The decoder also employs batch Normalization and
Leaky ReLU for all layers except for the last layer, which uses sigmoid activation.

The discriminator receives as input a feature vector of dimension 128 from the encoder and
outputs the domain prediction through binary classification. The output of the encoder is also passed
to the classifier for multiclass classification through its softmax regression layer. For these networks,
we consider also the dropout regularization technique to reduce overfitting. This technique randomly
deactivates some neurons during the training phase, with a probability usually set to 0.5.
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3.3. Network Optimization

Let us consider Tr(s) =
{

x(s)i , yi

}ns

i=1
and Ts(t) =

{
x(t)j

}nt

j=1
the set of source and target features

obtained from the pre-trained VGG16 network. To learn the parameters of the discriminator and the
Siamese encoder sub-networks, we propose minimizing the following adversarial losses:

LD

(
D
(

x(s), x(t), WD

))
= E

[
log D

(
G
(

x(s)
))]

+E
[
log
(

1− D
(

G
(

x(t)
)))]

(2)

LG

(
G
(

x(s), x(t), WG, WDE

))
= E

[
G
(

x(s)
)]
−E

[
G
(

x(t)
)]2

2
+ λE

[(
x(s) − x̂(s)

)2
]
+ λE

[(
x(t) − x̂(t)

)2
]

. (3)

The loss LD

(
D
(

x(s), x(t), WD

))
is the standard binary cross-entropy loss used by the original

GANs for the discriminator. However, here the discriminator tries to distinguish between the source
and target features received from the output of the Siamese encoder. On the other side, the loss of
the Siamese encoder LG

(
G
(

x(s), x(t), WG, WDE

))
is composed of three terms. The first term seeks to

match the distributions of the source and target data in order to confuse the discriminator. It can be
expressed as follows:

‖E
[

G
(

x(s)
)]
−E

[
G
(

x(t)
)]
‖

2

2
= ‖ 1

ns

ns

∑
i=1

G
(

x(s)i

)
− 1

nt

nt

∑
j=1

G
(

x(t)i

)
‖

2

2

. (4)

The second and third terms represent the reconstruction error of the source and target data,
respectively. They are expressed as follows:

E
[(

x(s) − x̂(s)
)2
]
= 1

ns
∑ns

i=1

(
x(s)i − x̂(s)i

)2

E
[(

x(t) − x̂(t)
)2
]
= 1

nt
∑nt

i=1

(
x(t)i − x̂(t)i

)2 . (5)

These two losses are introduced for regularization purposes. That is to constrain the mapping
spaces to those that allow a good reconstruction of the original features. In the experiments, we show
that this regularization is crucial to obtain significant improvements in terms of classification accuracy.
At the end of the adaptation process, we learn the parameters WCL of the sub-network CL on the
encoded labeled source data G

(
x(s)
)

to discriminate between the different K classes by minimizing

the multiclass cross-entropy loss LCL

(
G(x(s)), WCL

)
:

LCL

(
G(x(s)), WCL

)
= − 1

ns

ns

∑
i=1

K

∑
k=1

1(yi = k)logP
(

yi = k
∣∣∣G(x(s)i

)
, WCL

)
, (6)

where 1(·) is an indicator function that takes 1 if statement true otherwise it takes 0 and
P
(

yi = k|G
(

x(s)i

)
, WCL

)
is the probability output vector provided by the softmax regression layer

placed on the top of the network CL.
To optimize the above loss functions, we use the backpropagation algorithm and the adaptive

moment estimation (Adam) method for updating the parameters. The Adam method is an extension
to the classical stochastic gradient descent (SGD) method. While SCD maintains a single learning rate
for all weights during the training process, the Adam method computes individual adaptive learning
rates for different parameters from estimates of first- and second-order moments of the gradients,
which makes it very efficient.

In the following, we provide the main steps for training Siamese-GAN with its
nominal parameters:
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Algorithm. Siamese-GAN.

Input: Source images: Tr(s) =
{

I(s)i , yi

}ns

i=1
and target images: Ts(t) =

{
I(t)i

}nt

i=1
Output: Target class labels

1: Set Network parameters:

• λ = 1
• Mini-batch size: b = 100
• Adam parameters: learning rate: 0.0001, exponential decay rate for the first and second moments

β1 = 0.9, β2 = 0.999 and epsilon = 1e−8

2: Obtain pre-trained CNN features: x(s) = VGG16
(

I(s)
)

and x(t) = VGG16
(

I(t)
)

3: Set the number of mini-batches: nb = ns/b
4: for epoch = 1 : num_epoch

4.1 Shuffle randomly the source labeled samples and organize them into nb groups each of size b
4.2 for k = 1 : nb

• Pick minibatch k from the source data: x(s)k =
{

x(s)i

}knb

i=1+(k−1)nb

• Pick randomly another minibatch of size b from the target data x(t)rand

• Compute the encoded source and target features: G
(

x(s)k

)
and G

(
x(t)rand

)
• Update the parameters WD of the discriminator D by minimizing the loss defined in (2) by

training on G
(

x(s)k

)
and G

(
x(t)rand

)
• Pick randomly new mini-batches x(s)rand and x(t)rand each of size b from both source and

target data
• Update the parameters WG and WDE of the Siamese encoder by minimizing the loss

defined in (3) by training on x(s)rand and x(t)rand

5: Feed the complete source x(s) and target data x(t) to the trained Siamese encoder to generate the final
encoded data.

6: Train the sub-network CL on the encoded source data G
(

x(s)
)

data by minimizing the loss function
defined in (5).

7: Classify the encoded target data G
(

x(t)
)

.

4. Experimental Results

4.1. Datasets Used for Creating the Cross-Domain Datasets

To evaluate the performance of the proposed method, we use four aerial datasets acquired
with different sensors and altitudes and over diverse locations over the earth surface to
build several benchmark cross-domain scenarios. Originally, these datasets were proposed for
semantic segmentation and multilabel classification. Here, we tailor them to the context of
cross-domain classification.

The first dataset was captured over Vaihingen city in Germany using Leica ALS50 system at an
altitude of 500 m above ground level in July and August 2008. The resulting images are characterized
by a spatial resolution of 9 cm. Each image is represented by three channels: near infrared (NIR),
red (R), and green (G) channels. The dataset consists of three sub-regions: the inner city, the high
riser and the residential area. The first area is situated in the center of the city, and is characterized by
dense and complex historic buildings along with roads and trees. The second area consists of a few
high-rise residential buildings surrounded by trees. The third area is a purely residential area with
small detached houses and many surrounding trees.
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The second dataset was taken over the central district of the city of Toronto in Canada by the
Microsoft Vexcel’s UltraCam-D camera and the Optech’s airborne laser scanner (ALTM-ORION M)
at an altitude of 650 m in February 2009. This dataset is located in a commercial zone that has
representative scene characteristics of a modern mega city, containing buildings with a wide range of
shape complexity in addition to trees and other urban objects. The resulting images have a ground
resolution of 15 cm and RGB spectral channels.

The third dataset was acquired over the city of Potsdam using an airborne sensor. This dataset
consists of RGB images with a ground resolution of 5 cm. Typically, this dataset contains several land
cover classes such as buildings, vegetation, trees, cars, impervious surfaces, and other objects classified
as background.

Finally, the Trento dataset consists of UAV images acquired over the city of Trento in Italy,
on October 2011. These images were captured using a Canon EOS 550D camera with an 18 megapixels
CMOS APS-C sensor. The dataset provides images with a ground resolution of approximately 2 cm
and RGB spectral channels.

4.2. Cross-Domain Datasets Description

From the above four datasets, we build several cross-domain scenes by identifying the most
common classes through visual inspection. For Toronto and Vaihingen, we identify nine common
classes labeled as trees, grass, buildings, cars, roads, bare soil, water, solar panels, and train tracks.
For the Trento and Potsdam datasets, we identified only eight classes, as the images for water and
train track classes are unavailable for the first and second one, respectively. Table 1 summarizes the
number of images per class extracted for each dataset, while Figure 6 shows some samples (cropped
from the original images) normalized to the size 224 × 224 pixels. In the experiments, we refer to the
resulting 12 transfer scenarios as source→target. For example, for the scenario Toronto→Vaihingen we
have nine classes with 120 images per class. The total number of labeled source images and unlabeled
target images used for learning is equal for both to 1080.

Table 1. Cross-domain scenarios built from Toronto, Trento, Vaihingen, and Potsdam datasets.

Class
Number of Images per Dataset of Size: 224 × 224 Pixels

Toronto Trento Vaihingen Potsdam

Trees 120 120 120 120
Grass 120 120 120 120

Houses 120 120 120 120
Bare soil 120 120 120 120

Roads 120 120 120 120
Cars 120 120 120 120

Water 120 - 120 120
Solar Panels 120 120 120 120
Train Tracks 120 120 120 -

Total 1080 960 1080 960
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4.3. Experimental Setup

We implement the Siamese-GAN method in a Keras environment, which is a high-level neural
network application programming interface written in Python. For training the related subnetworks,
we fix the mini-batch size to 100 samples. Additionally, we set the learning rate of the Adam
optimization method to 0.0001. Regarding the exponential decay rates for the moment estimates
and epsilon, we use the following default values 0.9 and 0.999 and 1e−8, respectively.

In the first set of experiments, we present the results by fixing the regularization parameter of
the reconstruction loss to λ = 1. Next, we provide a detailed sensitivity analysis of Siamese-GAN
with respect to this parameter, besides other features related to the network architecture. Finally, we
compare our results to several state-of-the-art methods. For performance evaluation, we present the
results on the unlabeled target images using per-class accuracy through confusion matrices, the overall
accuracy (OA), which is the ratio of the number of correctly classified samples to the total number of
the tested samples, and the average accuracy (AA) for each method, which represents the sum of the
OA obtained for all scenarios divided by 12 (i.e., AA = OA/12). The experiments are performed on a
MacBook Pro laptop (processor Intel Core i7 with a speed of 2.9 GHz, and 8 GB of memory).

4.4. Results

In this first set of experiments, we analyze the performance of our proposed method compared
to the standard off-the-shelf classifiers solution. To this end, we first run the experiments by feeding
the features extracted from VGG16 directly to an additional NN. This extra network has a similar
architecture to the one shown in Figure 5c. Table 2 shows the classification accuracies for the 12
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cross-domain scenarios. The lowest accuracy is obtained for Toronto→Vaihingen with an OA of
64.72%, while Potsdam→Trento shows the best result with an OA of 80.24%. Over the 12 scenarios,
this solution yields an AA of 70.82%. We repeat these experiments using a linear multiclass SVM
classifier with one-versus-one training strategy. We search for the best value of the regularization
parameter according to a 3-fold cross-validation procedure in the range [10−3 103]. In this case,
the scenario Vaihingen→Potsdam shows relatively the lowest OA accuracy with 61.35%, while the best
result is obtained for the scenario Potsdam→Trento with an OA of 86.55%. The average classification
accuracy across the 12 scenarios is equal to 70.23%, which is very close to result obtained by the
NN method.

Next, we run the Siamese-GAN method as explained in Section 3.3. In Figure 7, we show the
evolution of the Siamese encoder and discriminator losses. We recall that the Siamese encoder–decoder
aims the match the distributions of both source and target while the discriminator seeks to discriminate
them. The results reported in Table 2 show clearly that it improves greatly the AA accuracy for all
scenarios from 70.81% to 90.34%, which corresponds to an increase of around 19%. For certain scenario
like Trento→Vaihingen, it improves the OA by 28.85%. To understand better the behavior of the
network, we show in Figure 8 the data distributions before and after adaptation for three typical
scenarios, which are Potsdam→Vaihingen, Toronto→Vaihingen, and Trento→Toronto, respectively.
This figure shows that the shift between the source and target distributions is obvious before adaptation,
which explains the low performance obtained by off-the-shelf classifier solution. However, this
discrepancy is greatly reduced by Siamese-GAN, while keeping the discrimination ability between the
different classes.

In Figures 9–11 we report the confusion matrices before and after adaptation. For example for
Potsdam→Vaihingen, the accuracies of classifying some classes with (NN) such as Water and House
were already high before adaptation (96% and 97%), and have been increased to 100% with adaptation.
For classes with low accuracies such as Grass, more than 60% of the images were misclassified as
either Roads, Cars or Bare soil. The result has been improved with adaptation from 29% to 98%,
which is equal to 69% gain in accuracy. Additionally, the confusion between Roads and Bare soil
has been reduced, resulting in an increase from 68% to 94%. For Trento→Toronto, before adaptation
65% of Trees samples were misclassified as Bare soil and the accuracy has increased after adaptation
from 33% to 60%. On the other hand, the confusion between Grass and Bare soil classes has been
resolved with adaptation, and the classification accuracy of the Grass class increases from 43% to 100%.
For Toronto→Vaihingen, the accuracy of Grass samples has been greatly increased from 0% to 92%
with adaptation. However, the Roads class accuracy dropped from 73% to 43%.
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5. Discussion

Effect of the reconstruction loss: To investigate the effectiveness of the reconstruction loss on the
classification performances of the method, we repeat the above experiments by varying the values of
the regularization parameter λ in the range [0, 1]. The results reported in Table 3 clearly suggest that
setting this parameter in the range [0.4, 1] yields a stable behavior. For the case λ = 0, corresponding
to the removal of the decoder part (i.e., no-reconstruction loss), the results drop significantly to 77.89%.
Yet the results are still better than SVM and NN. This indicates clearly the importance of the decoder
part in keeping the geometrical structure of the source and target data when matching the distributions.

Table 3. Sensitivity analysis with respect to the regularization parameter λ. Results are expressed in
terms of OA [%] and AA [%] over the 12 scenarios.

Datasets Regularization Parameter λ

0 0.2 0.4 0.6 0.8 1
Toronto→Vaihingen 75.74 78.06 85.74 83.06 83.61 82.69
Toronto→Potsdam 73.85 83.85 84.27 84.58 86.56 84.27
Toronto→Trento 73.12 91.98 92.4 91.46 92.08 91.46

Vaihingen→Toronto 72.96 88.24 88.52 89.16 88.06 88.98
Vaihingen→Potsdam 67.5 88.65 87.6 88.33 88.54 88.33
Vaihingen→Trento 78.75 84.79 92.71 92.6 91.98 91.46
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Table 3. Cont.

Datasets Regularization Parameter λ

Potsdam→Toronto 76.25 91.98 91.76 92.5 93.23 92.71
Potsdam→Vaihingen 90.83 98.12 98.23 98.12 98.54 98.44
Potsdam→Trento 85 85.83 87.02 87.02 87.14 87.62
Trento→Toronto 76.15 91.46 91.77 92.7 91.04 91.56

Trento→Vaihingen 87.6 98.12 98.65 98.44 98.85 98.75
Trento→Potsdam 76.9 89.76 89.52 88.57 89.05 87.86

AA [%] 77.89 89.24 90.68 90.55 90.72 90.34

Effect of mini-batch size b: Table 4 shows the results obtained using different mini-batch sizes
for aligning the distributions of source and target data. The results exhibits a stable behavior in
the range [40 100]. Decreasing further the min-batch size leads to a significant decrease in the
classification accuracy. As can be seen, the choice of b = 100 is a good compromise between accuracy
and computation time.

Comparison with state of the art: We compare the performance of Siamese-GAN with other
domain adaptation methods proposed in the literature. These are maximum independence
domain adaptation (MIDA) [51], which learns a subspace that has maximum independence with
the domain features. The correlation alignment (CORAL) [52], which minimizes the domain
shift by aligning the second order statistics of the source and target distributions. The domain
adaptation network (DAN) method [37], which aims to project the source and target data into a
common space to reduce the discrepancy between source and target distributions while using graph
regularization to maintain the geometrical structure of the target data. The adversarial discriminative
domain adaptation (ADDA) [49], which combines adversarial and discriminative learning. Table 5
shows that Siamese-GAN provides better results for ten cases except for Toronto→Vaihingen and
Vaihingen→Potsdam, where the DAN method yields better results. On average, it yields and AA of
90.34% whereas the DAN method got 85.48%.

Table 4. Sensitivity analysis with respect to the min-batch size b. Results are expressed in terms of OA
[%] and AA [%] over the 12 scenarios.

Datasets Mini-Batch Size b

10 20 40 60 80 100
Toronto→Vaihingen 74.9 78.06 86.67 93.06 91.57 82.69
Toronto→Postdam 70.1 79.79 85.1 86.77 84.27 84.27
Toronto→Trento 71.67 83.44 90.73 93.02 85.83 91.46

Vaihingen→Toronto 73.15 78.98 88.8 89.44 89.07 88.98
Vaihingen→Postdam 62.5 71.15 86.04 87.29 86.77 88.33
Vaihingen→Trento 72.5 86.25 93.75 86.25 84.16 91.46
Postdam→Toronto 72.81 87.29 90.52 92.19 93.02 92.71
Postdam→Vaihingen 84.48 96.56 98.23 97.92 98.44 98.44
Postdam→Trento 72.62 83.57 89.17 88.33 87.74 87.62
Trento→Toronto 55.63 89.48 91.04 91.46 91.46 91.56

Trento→Vaihingen 75.83 97.7 97.19 97.5 98.75 98.75
Trento→Postdam 73.45 81.67 88.81 90.36 87.74 87.86

AA [%] 71.47 84.50 90.50 91.13 89.90 90.34
Time [minutes] 15.82 8.57 4.83 3.71 3.05 2.84

Table 5. Comparison with several state-of-the-art methods. Results are expressed in terms of OA [%]
and AA [%] over the 12 scenarios.

Datasets DAN CORAL MIDA ADDA Siamese-GAN

Toronto→Vaihingen 90.00 74.25 70.00 68.51 82.69
Toronto→Potsdam 79.89 72.81 70.83 73.22 84.27

Toronto→Trento 88.12 83.12 66.77 72.08 91.46
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Table 5. Cont.

Datasets DAN CORAL MIDA ADDA Siamese-GAN

Vaihingen→Toronto 77.59 79.35 77.50 77.87 88.98
Vaihingen→Potsdam 91.14 81.66 81.04 76.04 88.33
Vaihingen→Trento 82.08 77.50 75.10 69.27 91.46
Potsdam→Toronto 88.54 72.70 76.14 75.41 92.71

Potsdam→Vaihingen 84.06 86.00 88.43 82.49 98.44
Potsdam→Trento 87.14 84.28 86.04 86.91 87.62
Trento→Toronto 86.77 82.39 72.91 79.68 91.56

Trento→Vaihingen 84.68 80.41 81.56 79.58 98.75
Trento→Potsdam 85.83 82.26 79.76 75.71 87.86

AA [%] 85.48 79.72 77.17 76.39 90.34
Time [minutes] 7.18 2.54 1.77 3.03 2.84

6. Conclusions

In this work, we have proposed a GAN-based method for cross-domain categorization in aerial
vehicle images. This method learns invariant feature representations by training two competing
networks. The first network aims to reduce the discrepancy between source and target distributions,
while the second one seeks to distinguish between them. The experimental results conducted on
several datasets acquired by different MAV/UAV platforms and over different locations of the earth
surface have shown the effectiveness of our model.
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