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Abstract: It is important to detect floating oil slicks after spill accidents, and hyperspectral remote
sensing technology is capable of achieving this task. Traditional methods mainly utilize the spectral
indices of hydrocarbons to detect floating oil slicks, but are poor at distinguishing the thickness of
oil slicks and cannot detect sheens. Since the spectra of oil slicks should be affected by seawater
as well as oil, this paper investigated the use of spectral indices of hydrocarbons and seawater to
identify different thicknesses of oil slicks. In this research, a measurement, called index separability
(IS), was proposed for quantitatively evaluating the identification ability of these spectral indices.
Based on the evaluation results, experiments were conducted to validate the applicability of these
spectral indices. The results show that the spectral indices of hydrocarbons are more suitable for
detecting continuous true color oil slicks and emulsions and that spectral indices of seawater are
more suitable for sheens and seawater. In addition, the spectral indices of hydrocarbons and seawater
are complementary for detecting oil slicks. Finally, combining the spectral indices of hydrocarbons
and seawater is conducive to achieving more accurate oil slick recognition results.
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1. Introduction

A large amount of oil is rapidly leaked in an oil spill accident. Oil slicks created by an accident
float on the sea surface and seriously damage the marine environment [1–5]. Mapping oil spills is vital
for evaluating the damage and making decisions to avoid secondary disasters. Hyperspectral remote
sensing imaging involves hundreds of bands whose wavelengths range from visible to shortwave
infrared, which allows for precise mapping of the oil spills [6–8]. However, restricted by sun-glint and
the weakness of spectral signals of sheens [9], traditional hyperspectral oil spill mapping methods
mainly focus on detecting true color oil slicks and emulsions, and the surrounding sheens are not
detected by the oil spill mapping products.

In 2010, the Gulf of Mexico (GoM) oil spill was monitored by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS). Numerous studies were proposed based on hyperspectral images
captured in that accident. Clark et al. [6] mapped oil slicks through the near-infrared absorption
spectral characteristics of hydrocarbons. In the results, different water-to-oil ratios and thicknesses
of oil slicks were identified accurately, but only true color oil slicks were included in the results.
The least contaminated seawater or sheens around the true color oil slicks and emulsions were not
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detected by this method. Alam and Sidike proposed a method to detect oil slicks using dimensionality
reduction and target detection with hyperspectral image data [10]. Although the method gave excellent
detection results for continuous and discontinuous true color oil slicks, it could not distinguish
different thicknesses of oil slicks nor identify sheens. An oil slope index (OSI) was put forward by
Li et al. [11] for detecting oil slicks, but only emulsions were detected via this method. Liu et al. [12]
used density-based clustering to select a specific spectral signature from a hyperspectral image for
oil spill detection, but again, only emulsions were detected in the results. Traditional hyperspectral
oil-slick identification methods focus on detecting thick oil slicks because they contain abundant
hydrocarbons, whereas sheens contain much less. Thus, thick oil slicks show greater hydrocarbon
spectral characteristics than the surrounding sheens [13,14]. The spectral curves of sheens are very
similar to that of seawater. Thus, using traditional methods, it is difficult to differentiate sheens from
seawater using the spectral indices of hydrocarbon substances.

The purpose of this research is to find new ways to identify different thicknesses of oil slicks,
including sheens or less contaminated seawater. The basis of this research is that oil slicks on the sea
surface are somewhat influenced by seawater. The transparency of thick oil slicks is weak [15–18],
and their spectra are weakly influenced by seawater. However, sheens are nearly translucent,
so the spectra of sheens are greatly influenced by seawater. Thus, this paper proposes a hypothesis:
the spectral indices of hydrocarbons and seawater can be used together to identify oil slicks with
different thicknesses. Based on this hypothesis, a measurement called the index separability (IS)
was proposed to quantitatively evaluate the feasibility of using spectral characteristics to identify oil
slicks of different thicknesses. An oil slick identification method was established according to the
evaluation results.

AVIRIS hyperspectral images captured at the Deep Water Horizon (DWH) oil spill accident in
GoM 2010 [19] were used to conduct experiments to validate the hypothesis and the proposed IS
measurement. Details of the methods, experiments, and conclusions are provided in Sections 2–5.

2. Materials and Methods

2.1. Study Area

During the DWH oil spill in 2010, a large amount of crude oil leaked into the GoM. Many
high-quality aerial hyperspectral images were collected to monitor the oil spill pollution. These images
have been used in numerous studies of oil spills, because this oil spill was typical and the images are
of high quality [6,7,10,12,16]. The experimental hyperspectral image adopted in this paper is one of the
collected images. The experimental data were obtained via an AVIRIS imager with a spatial resolution
of 7.6 m on 17 May 2010. The flight name of the data, on the official website, is f100517t01p00r11.
The image has 19,736 lines and 886 samples, and every pixel has 192 bands after removal of some
noise bands. The wavelengths of the pixels range from 365.9 nm to 2466.5 nm. The scope of the
image latitude and longitude are 28.428239◦N to 28.853579◦N and 87.964761◦W to 89.459463◦W,
respectively. The scale of the original image is too large to be shown clearly here, so the thumbnail of
the experimental data and the scope of the study area are displayed in Figure 1.

The original image data are over 10 GB in size and too large for the software to process.
Thus, three training areas, shown in Figure 2, were extracted from the study area to validate the
hypotheses received from the training results. Training image (a) contains emulsions and sheens; it is
appropriate for evaluating the applicability of the spectral indices for identifying thicker oil slicks.
Training image (b) is the boundary of the oil spill. It can be used to evaluate the applicability of the
spectral indices to identify sheens and seawater. Training image (c) consists of different thicknesses of
oil slicks, and can be used to assess the ability of the spectral indices to differentiate diverse thicknesses
of oil slicks. In addition to these test images, three test areas of the study area were extracted to explore
the performance of the oil slick identification model established by the evaluation results. The test areas
are shown in Figure 3. They are portions of the original image captured along the airline, so there are
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black borders in the test areas. To validate the hypothesis correctly, the training areas are not portions of
the test areas.

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 23 

 

captured along the airline, so there are black borders in the test areas. To validate the hypothesis 
correctly, the training areas are not portions of the test areas. 

 
Figure 1. Picture (a) is the experimental data image, false-color composite with bands R: 678 nm, G: 
540 nm, and B: 443 nm. Picture (b) is study area scope was obtained via ENVI and Google Earth 
software. 

 
Figure 2. Three training images used to evaluate the ability of spectral indices to identify diverse 
thicknesses of oil slicks. Pictures (a–c) are false-color composited training images (a–c). 

 
Figure 3. Three test areas extracted from the original hyperspectral image to validate the conclusion. 
Training areas are distinct from these test areas. Pictures (a–c) are false-color composited test images 
(a–c). 

2.2. Data Preprocessing 

Figure 1. Picture (a) is the experimental data image, false-color composite with bands R: 678 nm, G:
540 nm, and B: 443 nm. Picture (b) is study area scope was obtained via ENVI and Google Earth software.

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 23 

 

captured along the airline, so there are black borders in the test areas. To validate the hypothesis 
correctly, the training areas are not portions of the test areas. 

 
Figure 1. Picture (a) is the experimental data image, false-color composite with bands R: 678 nm, G: 
540 nm, and B: 443 nm. Picture (b) is study area scope was obtained via ENVI and Google Earth 
software. 

 
Figure 2. Three training images used to evaluate the ability of spectral indices to identify diverse 
thicknesses of oil slicks. Pictures (a–c) are false-color composited training images (a–c). 

 
Figure 3. Three test areas extracted from the original hyperspectral image to validate the conclusion. 
Training areas are distinct from these test areas. Pictures (a–c) are false-color composited test images 
(a–c). 

2.2. Data Preprocessing 

Figure 2. Three training images used to evaluate the ability of spectral indices to identify diverse
thicknesses of oil slicks. Pictures (a–c) are false-color composited training images (a–c).

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 23 

 

captured along the airline, so there are black borders in the test areas. To validate the hypothesis 
correctly, the training areas are not portions of the test areas. 

 
Figure 1. Picture (a) is the experimental data image, false-color composite with bands R: 678 nm, G: 
540 nm, and B: 443 nm. Picture (b) is study area scope was obtained via ENVI and Google Earth 
software. 

 
Figure 2. Three training images used to evaluate the ability of spectral indices to identify diverse 
thicknesses of oil slicks. Pictures (a–c) are false-color composited training images (a–c). 

 
Figure 3. Three test areas extracted from the original hyperspectral image to validate the conclusion. 
Training areas are distinct from these test areas. Pictures (a–c) are false-color composited test images 
(a–c). 

2.2. Data Preprocessing 

Figure 3. Three test areas extracted from the original hyperspectral image to validate the conclusion.
Training areas are distinct from these test areas. Pictures (a–c) are false-color composited test images (a–c).



Remote Sens. 2018, 10, 421 4 of 23

2.2. Data Preprocessing

Atmospheric correction is an important preprocessing step for remote-sensing data. The original
experimental data were processed through fast line-of-sight atmospheric analysis of a spectral
hypercubes (FLAASH) model using ENVI. For the correction process, the atmospheric model was
tropical, the aerosol model was maritime, and the atmospheric correction result showed an average
water amount of 3.8067 cm. During the investigation, software for training, testing, and oil spill
mapping was programmed using visual C++.

2.3. Oil Slick Properties

In 2004, the useful Bonn Agreement Oil Appearance Code was adopted as a standard method to
assess the volume of oil on water. According to the handbook, the oil slick thickness is coded from 1–5
for sheens (silver/gray), rainbow, metallic, discontinuous true oil color, and continuous true oil color
(Table 1). The code should not be used to quantify areas of emulsion [20]. In 2016, NOAA and the
U.S. Coast Guard released the Open Water Oil Identification Job Aid (OWOIJA) to describe oil slicks
(Table 1). This Job Aid is designed to describe oil slicks. There is little difference between these two
ways of describing oil slick thickness. This paper adopts the Bonn Agreement Oil Appearance Code to
describe the oil slicks. Because thin oil slicks evaporate quickly [21–24], it is hard to observe or detect
silver, rainbow, and metallic respectively in the experimental image, which is captured weeks after
the oil spill accident. Thus, silver, rainbow, and metallic are collectively referred to as sheens. In this
research, the thickness of oil slicks is classified from the thinnest to the thickest into four types: sheens
(code 1–3), discontinuous true color oil (code 4), continuous true color oil (code 5), and emulsion (E).
The thickness classification is showed in Figure 4.

Table 1. Two methods to code oil slick thickness.

Thickness Code Bonn Agreement Oil Appearance Code Open Water Oil Identification Job Aid

Thinner 1 Sheen (silver/gray) Silver
2 Rainbow Rainbow
3 Metallic Metallic
4 Discontinuous true oil color Transitional dark
5 Continuous true oil color Dark

Thicker No code Emulsion Emulsion

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 23 

 

Atmospheric correction is an important preprocessing step for remote-sensing data. The 
original experimental data were processed through fast line-of-sight atmospheric analysis of a 
spectral hypercubes (FLAASH) model using ENVI. For the correction process, the atmospheric 
model was tropical, the aerosol model was maritime, and the atmospheric correction result showed 
an average water amount of 3.8067 cm. During the investigation, software for training, testing, and 
oil spill mapping was programmed using visual C++. 

2.3. Oil Slick Properties 

In 2004, the useful Bonn Agreement Oil Appearance Code was adopted as a standard method 
to assess the volume of oil on water. According to the handbook, the oil slick thickness is coded 
from 1–5 for sheens (silver/gray), rainbow, metallic, discontinuous true oil color, and continuous 
true oil color (Table 1). The code should not be used to quantify areas of emulsion [20]. In 2016, 
NOAA and the U.S. Coast Guard released the Open Water Oil Identification Job Aid (OWOIJA) to 
describe oil slicks (Table 1). This Job Aid is designed to describe oil slicks. There is little difference 
between these two ways of describing oil slick thickness. This paper adopts the Bonn Agreement 
Oil Appearance Code to describe the oil slicks. Because thin oil slicks evaporate quickly [21–24], it is 
hard to observe or detect silver, rainbow, and metallic respectively in the experimental image, 
which is captured weeks after the oil spill accident. Thus, silver, rainbow, and metallic are 
collectively referred to as sheens. In this research, the thickness of oil slicks is classified from the 
thinnest to the thickest into four types: sheens (code 1–3), discontinuous true color oil (code 4), 
continuous true color oil (code 5), and emulsion (E). The thickness classification is showed in Figure 
4. 

Table 1. Two methods to code oil slick thickness. 

Thickness Code Bonn Agreement Oil Appearance Code Open Water Oil Identification Job Aid
Thinner 1 Sheen (silver/gray) Silver 

 2 Rainbow Rainbow 
 3 Metallic Metallic 
 4 Discontinuous true oil color Transitional dark 
 5 Continuous true oil color Dark 

Thicker No code Emulsion Emulsion 

 
Figure 4. Oil slick thickness descriptions. 

After atmospheric correction, training samples of seawater and different thicknesses of oil 
slicks were selected according to the oil film properties proposed and proven in former studies. The 
color of sheens varied from almost transparent to silver/gray, rainbow and metallic. There is a high 
reflectance in the ultraviolet bands for the sheens [8,16], which is mainly formed through the 

Figure 4. Oil slick thickness descriptions.

After atmospheric correction, training samples of seawater and different thicknesses of oil slicks
were selected according to the oil film properties proposed and proven in former studies. The color
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of sheens varied from almost transparent to silver/gray, rainbow and metallic. There is a high
reflectance in the ultraviolet bands for the sheens [8,16], which is mainly formed through the diffusion
of thicker oils, so that sheens always surround thicker oils [20]. Discontinuous true color oil slicks
look orange; some thin oil slicks of code 4 appear patchy. Discontinuous true color oil slicks of
50–150 microns have a lower temperature than seawater, while those thicker than 150 microns have
a higher temperature. Continuous true color oil slicks appear continuous and represent the true color
of crude oil: dark brown or black. Because the thickness of continuous true color oil slick is over
200 microns, they have a higher absorption of solar heat input and distinct reflectance signals in
the infrared bands [16]. Emulsions are water-to-oil mixtures that appear orange, brown, and/or red.
The thickness of emulsions exceeds that of true color oil slicks, but it is difficult to accurately describe an
emulsion’s thickness, and thus, the Bonn agreement and OWOIJA do not encode emulsions. Emulsions
are distributed in the convergence zones, which are narrow long bands of oils [24]. Since the thickness
of emulsions exceeds 500 microns, they have a high reflectance in the infrared bands [6]. The typical
color, shape, and spectral characteristics of oil slicks are listed above. Figure 5 shows the photos and
spectra of seawater and oil slicks of different thicknesses.
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2.4. Spectral Indices of Hydrocarbons and Seawater

A variety of spectral indices can be used to describe oil slicks and seawater. This paper used
several spectral indices to monitor floating oil slicks and seawater compositions (Table 2). Although
some methods are based on empirical methods that are critical for the parameters, they can qualitatively
assess oil slicks and seawater.

The fluorescence index (FI) and the rotation absorption index (RAI) exhibit the fluorescence
characteristics of oil slicks [25]. They highlight the fluorescence behavior of surface oil slicks and
the increased red reflectance of surface oil. Loos used these indices to detect oil slicks in the GoM
accident based on multispectral images. For the experimental AVIRIS data, RB, RR, and RIR are
the reflectance values for the hyperspectral data at 433 nm, 648 nm, 889 nm, respectively, and bi
is the reflectance of band i. The FI and RAI are practical indices for oil slick detection, so they are
utilized in research to describe the spectral characteristics of hydrocarbons in oil slicks. It has been
shown that the spectral response, an absorption feature at 1600 nm and 1800 nm, is caused by the
overtone absorption of carbon-hydrogen bonds and can be used to identify oil slicks. Using this
feature, Kühn et al. [26] proposed the Hydrocarbon Index (HI), which comprises the hydrocarbons
absorption features at 1730 nm to identify substances containing hydrocarbons. For the formula of
HI, RA, RB, and RC are the reflectance values to the left of 1730 nm, at 1730 nm, and to the right of
1730 nm, respectively, and λ is the wavelength. For the AVIRIS data, the λ of A, B, and C are 1721 nm,
1731 nm, and 1741 nm, respectively. The value of HI is higher if a detected site contains hydrocarbon
substances. Sun et al. (2013) suggested that the spectral signals in green and red bands are related to the
thickness of oil slicks [27], and thus, this paper used RG to represent the oil slick spectral characteristics
in the green bands and RR to represent the oil slick spectral characteristics in the red bands. For the
experimental data in this research, the wavelength ranges of green and red bands were 511–579 nm
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and 618–714 nm, respectively. This research used these two spectral features of oil slicks because they
are spectral characteristics in the visible bands and have been proven to be useful.

In addition to hydrocarbon substances, seawater should also influence the spectra of oil slicks.
This research investigated several spectral indices of seawater composition to determine how to
identify oil slicks using the spectral indices of seawater. The Water Absorption Feature (WAF) is
the absorption feature of water caused by H-O at 1440 nm [28]. It has been validated as correct and
sensitive for water detection. In the equation, RA, RB, and RC are the reflectance values at 1343 nm,
1453 nm, and 1563 nm of the hyperspectral data, respectively. Models evaluating chlorophyll (CHL)
and Colored Dissolved Organic Matter (CDOM) are involved in this research because CHL and CDOM
are important components of seawater. They can be used to demonstrate how to detect oil slicks using
the spectral indices of seawater. Although the models evaluating CHL and CDOM concentrations
are empirical and may not be suitable for the studied sea area, they can qualitatively assess the
concentrations of seawater composition. In this research, CHL is calculated using the classical OC4
model. In this paper, the values of a0, a1, a2, a3, and a4 refer to the paper by Hu et al. [29]: 0.3272,
−2.9940, 2.7218, −1.2259, and −0.5683, respectively. CDOM is calculated using the method proposed
by Kutser et al. [30,31]. Since AVIRIS data do not have bands of 565 nm and 660 nm, R565 was replaced
by the average of R560 and R570, and R660 was replaced by the average of R656 and R666.

2.5. Evaluation Measurement

Eight spectral indices are studied in this paper. According to the original hypothesis, different
indices might possess different abilities to identify different thickness of oil slicks. For example,
the spectral indices of hydrocarbons might be more sensitive for thicker oil slicks but may not be able to
distinguish between sheens and seawater. To assess spectral indices quantitatively, the IS measurement
was proposed in this paper. The main idea of the IS measurement is to evaluate a spectral index’s
applicability to identify oil slicks by calculating the interclass distance of training samples.

ISI
i,j =

MinIDI
i,j

AvgIDI (1)

AvgIDI =
max(MaxIDI

i,j)

4
(2)

The calculation of IS is based on the spectral index distance (ID) of the training samples. I is
a member of the spectral indices in Table 2, and i and j are elements of {seawater, code 1–3, code 4,
code 5, and emulsions}. MinID is the minimum ID of the training results between i and j. MaxID is the
maximum ID of the training results between i and j. AvgID is the average gap of I for training samples i
and j. Since five elements are discussed for the research, the gap is a quarter of maximum gap. IS is
similar to the concept of interclass distance between two classes in statistics. The measurement of
IS is constructed to evaluate an index’s ability to distinguish diverse thicknesses of oil slicks via the
distances between the training results. A larger IS indicates a stronger ability to identify the thickness
of oil slick.
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Table 2. The spectral indices involved in this study.

Representation Characteristic Formula Reference

Hydrocarbons Fluorescence Index, FI FI = RB−RR
RB+RR

[25]

Hydrocarbons Rotation-Absorption
Index, RAI RAI = RB−RIR

RB+RIR

√
∑ b2

i [25]

Hydrocarbons Hydrocarbon Index, HI HI = (λB − λA)
RC−RA
λC−λA

+ RA − RB [26]

Hydrocarbons Reflectance of Green, RG RG = max(RGreen) [27]

Hydrocarbons Reflectance of Red, RR RR = min(RRed) [27]

Seawater Water Absorption Feature,
WAF WAF = RA+RC

2 − RB [28]

Seawater Chlorophyll, CHL
CHL = 10yy = a0 + a1x + a2x2 + a3x3 + a4x4x

= log (max(R433,490,510)
R555

)
[29]

Seawater Colored Dissolved Organic
Matter, CDOM CDOM = 5.2x−2.76x = R565

R660
[30]

The IS measurement was proposed to evaluate the spectral indices, but it was not the only method
of evaluation used. During the experiments, the abilities of the spectral indices to identify oil slicks
were evaluated in three ways:

1. Differential line graphs based on the training samples.
2. The proposed IS measurement.
3. Test experiments.

Differential line graphs are summarized from the training results, and the training samples’
spectral indices variation ranges are exhibited in the graphs. These graphs can qualitatively assess
a spectral index’s ability to identify oil slicks. The IS measurement also evaluates the identification
ability of spectral indices using training results. However, the calculated IS value quantifies the ability.
Unlike the aforementioned two methods, testing experiments can evaluate the spectral indices more
practically and accurately.

2.6. Experimental Process

To explain the experimental process clearly, a flow chart (Figure 6) is provided in this section.
The study area hyperspectral image (HSI) is the atmospheric corrected HIS. The first step of the
experiment is extracting training samples, training images, and test areas. Because of the limitation of
the oil slick distribution, extracting samples on a large scale would likely introduce error, which may
have detrimental effects on the research. Instead, selecting typical samples can ensure the validity of
the evaluation. In this research, approximately 10 training samples were selected for each thickness of
oil slick or seawater. The training images and test areas must contain different thicknesses of oil slicks
and be different from each other. Since the function of the training images is to evaluate spectral indices
and select thresholds, their size is smaller than that of the test areas. Numerous hydrocarbon spectral
indices have been used to identify oil slicks, and various models have been proposed to assess seawater
composition. However, it is not clear which spectral indices are best for detecting thicker oil slicks or
sheens. Thus, before the identification model is established, the applicability of the spectral indices
of hydrocarbons and seawater must be evaluated qualitatively and quantitatively. After evaluation,
the identification model will be established according to the evaluation results to detect oil slicks.
The initial thresholds are the median of the training sample distances. To select the proper spectral
indices and thresholds, training images are used to optimize the model iteratively. If the model can
identify different thicknesses of oil slicks well, the test areas can be used to test the model again to
ensure applicability. Finally, the ability of the studied spectral indices can be determined from the
evaluation and identification results. At this point, identifying oil slick types will become easier.
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3. Results

3.1. Evaluation Results

The differential line graph (Figure 7) consists of the fluctuation ranges of the samples’ spectral
indices and is used for their qualitative evaluation. Greater sample distance indicates a stronger ability
to distinguish the samples. The graphs show that the samples’ fluctuation ranges are limited, except for
HI. In addition, emulsions represent a larger range of positive/negative error than true color oil slicks,
sheens, and seawater. The limited ranges of the fluctuation indicate that the studied spectral indices
are convergent and are thus necessary and important for oil slick identification. The identification
ability of HI is unstable because HI is sensitive to the influence of seawater. HI is calculated based
on a hydrocarbon substance’s absorption feature, which relies on oil volume. This calculation shows
a weak identification ability for sheens, oil slicks of code 4, oil slicks of code 5, and emulsions because
they are greatly influenced by seawater. HI is convergent for oil slicks of code 5 oils because they
contain a large amount of oil and are seldom influenced by seawater due to the low rate of light
transmission. Emulsions had a large positive and negative error because they are mixed substances
formed by oil and seawater. The water-to-oil ratio, associated with the degree of emulsification, greatly
influences the spectral features. Although the emulsions appeared red or orange, the water-to-oil ratio
of the slick is difficult to determine [6], which leads to instability in detecting emulsions.

Based on the differential line graphs, spectral indices can be assessed qualitatively, but it is
time-consuming to judge the ability of the spectral indices to identify oil slicks with different thickness
using the differential line graphs. To evaluate the spectral indices conveniently and quantitatively,
IS values were calculated to assess the ability of the characteristics to differentiate oil slicks. IS values
calculated via the training samples are provided in the IS value matrixes (Table 3).
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The rows and columns of the matrix are seawater and oil slicks. The IS values constitute the
elements of the IS matrix and are calculated using samples of the corresponding row and column.
The matrix is symmetrical, and the diagonal elements of the matrix are all zeros. If the non-diagonal
elements were larger than zero, it means that the spectral index could distinguish the row and column.
Higher values of the elements indicate a stronger discrimination ability. From the IS matrixes of the
spectral indices, it could be observed that:

1. The values of ISFI
Emulsion,∗, ISRR

Emulsion,∗, and ISCDOM
Emulsion,∗ are larger than zero, which means that FI,

RR (hydrocarbons), and CDOM can be used to distinguish emulsions from seawater and other
oil slicks. The “*” means the other categories of the element set {seawater, sheens, oil slicks of
code 4, oil slicks of code 5, emulsions}.

2. The values of ISFI
Seawater,∗, ISRR

Seawater,∗, and ISCHL
Seawater,∗ are larger than zero, which means that FI,

RR, and CHL may be able to distinguish seawater from oil-contaminated areas. Although the
values of ISCDOM

Seawater,∗ are nonzero, ISCDOM
Seawater,Sheens is 0.0043 which is too close to zero, so CDOM

was not considered during test experiments.
3. RR is the only spectral characteristic for which all the non-diagonal elements larger than zero,

which means that RR may be able to identify seawater and all thicknesses of oil slicks.
4. There is an obvious complementarity of spectral indices of hydrocarbon substance and spectral

indices of seawater.
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Table 3. Index separability (IS) values calculated by the training results.

Characteristics IS Matrixes

FI

Seawater Sheens Code 4 Code 5 Emulsions
Seawater 0 0.3368 1.2121 1.1313 1.697
Sheens 0.3368 0 0.4848 0.404 0.9697
Code4 1.2121 0.4848 0 0 0.3232
Code5 1.1313 0.404 0 0 0.4848

Emulsions 1.697 0.9697 0.3232 0.4848 0

RAI

Seawater 0 0 0 0 0.1347
Sheens 0 0 0.0278 0.0589 0.2443
Code4 0 0.0278 0 0 0.1746
Code5 0 0.0589 0 0 0

Emulsions 0.1347 0.2443 0.1746 0 0

HI

Seawater 0 0 0 1.2683 0
Sheens 0 0 0 0 1.3415
Code4 0 0 0 0 1.3182
Code5 1.2683 0 0 0 0

Emulsions 0 1.3415 1.3182 0 0

RG

Seawater 0 2.3793 2.9655 0 1.3448
Sheens 2.3793 0 0 2.1379 0
Code4 2.9655 0 0 2.7241 0
Code5 0 2.1379 2.7241 0 1.1034

Emulsions 1.3448 0 0 1.1034 0

RR

Seawater 0 0.1038 0.5557 0.2504 1.0443
Sheens 0.1038 0 0.3603 0.005 0.8489
Code4 0.5557 0.3603 0 0.2443 0.4031
Code5 0.2504 0.005 0.2443 0 0.7328

Emulsions 1.0443 0.8489 0.4031 0.7328 0

WAF

Seawater 0 0 0 1.9371 0.53
Sheens 0 0 0 1.5485 0.1413
Code4 0 0 0 1.9247 0.5175
Code5 1.9371 1.5485 1.9247 0 0

Emulsions 0.53 0.1413 0.5175 0 0

CHL

Seawater 0 0.6809 0.8298 0.5532 0.7872
Sheens 0.6809 0 0.1064 0.1064 0.0638
Code4 0.8298 0.1064 0 0.2553 0
Code5 0.5532 0.1064 0.2553 0 0.2128

Emulsions 0.7872 0.0638 0 0.2128 0

CDOM

Seawater 0 0.0043 0.0991 0.115 0.376
Sheens 0.0043 0 0.0842 0.1001 0.3611
Code4 0.0991 0.0842 0 0 0.2503
Code5 0.115 0.1001 0 0 0.245

Emulsions 0.376 0.3611 0.2503 0.245 0

3.2. Identification Results

3.2.1. Results of Detecting Emulsions

Test experiments were conducted to verify the aforementioned evaluation results. Since there
was a clear band of emulsion surrounded by sheens, training image (a) was used to validate FI,
RR, and CDOM’s ability to detect emulsions. Notably, the thresholds selected to identify oil slicks
are the central values of the minimum characteristic distance. During identification experiments,
several iterations may be conducted to optimize the thresholds. The identification results for detecting
emulsions are shown in Figure 8. In the identification results, FI showed the best identification
performance. The emulsion band in training image (a) was accurately extracted by FI, and sheens
were rarely misidentified. In the results for RR and CDOM, many emulsions were wrongly identified.
According to the results of training image (a), FI can better identify emulsions.



Remote Sens. 2018, 10, 421 11 of 23

FI can detect emulsions because it can detect the spectral characteristics of oil florescence,
and thicker oil slicks show stronger florescence than sheens. It is apparent from the spectral curves
(Figure 9) that although the bands used by FI exhibit minute differences for distinguishing emulsions
from sheens, the trends of spectral curves of sheens and emulsions are entirely different. The normalized
ratio method identifies emulsions well. For RR, although emulsions have higher emissivity, which will
lead to stronger spectral signals in the longer wavelength bands [16], emulsions exhibit no stable
reflectance in red bands due to the unstable water-to-oil ratio. Thus, RR is not effective for detecting
emulsions among sheens. CDOM is proposed to evaluate seawater composition. Clean seawater and
oil-covered/contaminated seawater should have different CDOM values. CDOM uses green and red
bands to establish an exponential model. However, in the results, CDOM indicates that the exponential
method weakens the ability to detect emulsions. Numerous sheens were misidentified as emulsions,
and thus, CDOM cannot effectively detect emulsions section.
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Figure 8. Images (b–d) are identification results for emulsions and sheens; red pixels represent identified
emulsions, and cyan pixels represent sheens. Photo (a) is the original training image, and (b–d) are the
identification results of FI (fluorescence index), RR (hydrocarbons), and CDOM (Colored Dissolved
Organic Matter), respectively.
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Figure 9. Spectral curve analysis identifying emulsions (red) and sheens (cyan) using FI, RR, and CDOM.
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3.2.2. Results of Detecting Sheens

In handling oil spill accidents, it is important to determine the scope of an oil-contaminated area.
The core task is accurately distinguishing between sheens (or the least contaminated seawater) and
seawater. However, the spectra of sheens are very similar to seawater. Based on the evaluation results,
training image (b) was used to validate the ability of FI, RR, and CHL to discriminate seawater and
sheens. The test results are shown in Figure 10. CHL identifies sheens from seawater best; compared
to FI and RR, there is a rough boundary line of seawater and sheens in the test result of CHL. The FI
results are not accurate because the identified sheens are dispersed, whereas the sheens in training
image (b) are integrated. RR only poorly identified oil slicks.
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Figure 10. Images (b–d) are identification results for seawater and sheens; cyan pixels represent identified
sheens and blue pixels represent seawater. Photo (a) is the original training image, and (b–d) are
identification results for FI, RR, and CHL, respectively.

FI can be used to discriminate sheens from clean seawater because sheens contain hydrocarbon
substances. Sheens can be detected via the spectral characteristics of fluorescence. However, the spectral
characteristics of fluorescence for sheens are weak. In Figure 11, the bands of blue and red, representing
curves for sheens and seawater, are nearly parallel, meaning that FI can only barely distinguish sheens
from seawater. The spectra of sheens and seawater show tiny differences in the red bands. Sheens at
the frontier of a spill are extremely thin. They contain less oil and have higher transmittance, thus it
is difficult to identify them using visible bands. However, CHL is sensitive to subtle changes in the
composition of seawater and can monitor the changes in the spectral curve caused by the covering
sheens. Thus, CHL is the best spectral indices for detecting sheens.
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3.2.3. Detection of Oil Slicks by Hydrocarbons (RR)

The IS matrix of RR indicated that RR can identify different thicknesses of oil slicks. Training
image (c) was used to validate its performance. This training image contains sheens, true color oil
slicks, and emulsions—thus, it is appropriate for verifying the ability of spectral features to identify oil
slicks. The identification result is shown in Figure 12; there are several misidentified oil slicks of code 5
and sheens, especially in the red boxes.
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and cyan pixels are sheens.

The identification results of RR show the opposite conclusion to that of the evaluation result using
the IS matrix for the following three reasons:

1. In the differential line graph of RR (Figure 7), the ranges of sheens and continuous true color oil
slicks are small, making it very likely that RR will misidentify sheens and oil slicks of code 5.

2. In the spectral curves of seawater and oil slicks in red bands (Figure 13), the curves of sheens and
oil slicks of code 5 are nearly coincident, indicating that it is not possible to distinguish sheens
and continuous true color oil slicks using RR. In addition, it is difficult for RR to distinguish oil
slicks of code 5 from oil slicks of code 4 and sheens according to the spectral analysis.
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3. In the IS matrix of RR, the IS values of oil slicks of code 5 and sheens are 0.005, which is too
close to 0 meaning that RR cannot reliably distinguish between oil slicks of code 5 and sheens.
This result is also consistent with the actual recognition results.

Thus, RR identification results were poor, and RR alone cannot accurately identify oil slicks.
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3.2.4. Detection of Oil Slicks by Complementary Spectral Indices

As seen in the IS matrixes, the studied spectral indices of hydrocarbons and seawater may have
a kind of complementarity. For example, the values of ISRR

Emulsion,∗ are 1.0443, 0.8489, 0.4031, and 0.732,
and the values of ISWAF

Emulsions,∗ are 0.53, 0.1413, 0.5175, and 0. Thus, if RR and WAF are combined to
identify emulsions, the characteristic separability will be at least 1.0443, 0.8489, 0.5175, and 0.732,
and emulsions can be identified more correctly. By analyzing the IS matrixes, it is apparent that RG
and WAF are complementary for identifying emulsions and oil slicks of code 5, and CHL and FI
are complementary for identifying sheens and oil slicks of code 4. Thus, a model was established to
identify different thicknesses of oil slicks. In the model, CHL is used to distinguish oil-contaminated
water from seawater. Training image (c) was used to conduct the experiment. However, some areas
were also emulsions misidentified as oil slicks of code 5. Since the IS value of RR to distinguish
between oil slicks of code 5 and emulsions was 0.7328, RR was added to detect continuous true color
oil slicks. The identification result is shown in Figure 14. This result is substantially better than RR’s
identification result.
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In Figure 15, emulsions and oil slicks of code 5 show absolute differences in WAF from seawater
and thinner oil slicks. However, WAF is not appropriate for distinguishing oil slicks of code 5 and
emulsions. However, the spectral curve of emulsions and oil slicks of code 5 show differences in the
green to red bands. WAF and RR are complementary for identifying emulsions because WAF can be
used to distinguish emulsions from oil slicks of code 4 and sheens and RR can be used to distinguish
emulsions from oil slicks of code 5. The strategy of combining complementary spectral indices shows
excellent performance in detecting emulsions. In addition, WAF can distinguish oil slicks of code 5
from oil slicks of code 4and sheens, and RG and RR can distinguish oil slicks of code 5 from emulsions.
Combining WAF, RG, and RR results in good detectability of the oil slicks of code 5 in the training
image (c). There are few sheens misidentified as continuous true color oil slicks compared with the
result by RR, which indicates that a model using complementary spectral indices can precisely identify
different thicknesses of oil slicks.
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4. Discussion

4.1. Applicability of Hydrocarbon Spectral Indices

Hydrocarbon spectral indices involved in this research include FI, RAI, HI, RG, and RR.
As indicated in Figure 16, all studied hydrocarbon spectral indices showed an apparent ability to
identify emulsions and oil slicks of code 5 from sheens or seawater. Thicker oil slicks contain much
more hydrocarbons, and therefore, they possess totally different visual and physical properties from
sheens. Thus, emulsions and oil slicks of code 5 show obvious spectral differences in the green, red,
and infrared bands. Florescence features and C-H absorption features are shown using these spectra,
and the studied spectral indices of hydrocarbons are appropriate for detecting thicker oil slicks.
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The results detail the analysis of the hydrocarbon spectral indices. It is apparent from the
differential line graphs of the hydrocarbon spectral indices (Figure 7a–d) that although the spectral
indices of emulsions show violent volatility, emulsions and oil slicks of code 5 can be distinguished
from oil slicks of code 4, sheens, and seawater in general. In addition, IS matrixes of hydrocarbon
spectral indices can be used to detect emulsions and oil slicks of code 5, as indicated by values of
the ISFI

Emulsion,∗, which are 1.6970, 0.9697, 0.3232, and 0.4848; which means that emulsions can be
detected by their florescence spectral characteristics. The values of ISRR

Emulsions,∗ are 1.0443, 0.8489,
0.4031, and 0.7328, which indicate the possibility of detecting emulsions by spectral reflectance in the
red bands. The IS values of RG used to distinguish oil slicks of code 5 from sheens and oil slicks of
code 4are 2.1379 and 2.7241, which means that RG has an excellent ability to distinguish oil slicks of
code 5 from oil slicks of code 4 and sheens. According to the test experiment results, the hydrocarbon
spectral indices of the FI can precisely identify emulsions (Figure 10), and RG can be used to identify
oil slicks of code 5 (Figure 14). Meanwhile, the only seawater spectral index considered for its ability
to detect emulsions shows a weaker identification result than the FI (Figure 10). The evaluation results
are consistent with the aforementioned analysis. It can be concluded that hydrocarbon spectral indices
are more suitable for detecting emulsions and oil slicks of code 5.

4.2. Applicability of Seawater Spectral Indices

Seawater spectral indices involved in this research include WAF, CHL, and CDOM. From Figure 17,
it can be seen that the calculation of CHL uses the visible bands of the spectra. Seawater and oil slicks
have no obvious difference in these bands. The identification ability cannot be judged intuitively,
but CDOM appears suitable to detect emulsions, as indicated by the IS matrix. However, in the test
results (Figure 8), the ability of CDOM to detect emulsions is weaker than that of the spectral indices
of hydrocarbons. It can be observed from Figure 17 that the bands used by WAF exhibit minute
differences between seawater, sheens, oil slicks of code 4, and oil slicks of code 5, but they show
a strong ability to identify emulsions.
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Figure 17. Bands used for seawater spectral indices. Red, black, yellow, cyan, and blue lines represent
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The applicability of WAF for identification is shown in the differential line graph (Figure 7h).
This ability may be connected to the high reflectance of thicker oil slicks. Influenced by the sea
environment, thicker oil slicks also present water absorption features. Their high reflectance strengthens
WAF values. As evidenced by the IS matrix of WAF, the elements of WAF used to distinguish between
seawater, sheens, and transitional oil slicks of code 5 are zero, and the elements of WAF to identify
emulsions and oil slicks of code 5 are nonzero. The identification model took advantage of this property
and precisely recognized oil slicks of code 5 and emulsions (Figure 14). Figure 7h suggests that CHL may
possess an excellent ability to distinguish seawater from sheens. CHL is calculated with a complicated
regression model, using the blue to red bands to assess the concentration of chlorophyll. It is sensitive
to tiny spectral changes in seawater. According to the IS matrix of CHL, the elements of CHL used
to distinguish sheens from seawater are 0.6809, 0.8298, 0.5532, and 0.7872, which indicates a strong
separability for sheens and seawater. The test result also proves the identification ability of CHL
(Figure 10). Compared to the hydrocarbon spectral indices (FI and RR), CHL is more suitable for
detecting sheens. In summary, seawater spectral indexes help identify thicker oil slicks but are more
useful in the identification of sheens and seawater.

4.3. Complementarity

From the aforementioned discussions, it can be surmised that hydrocarbon spectral indices
are more suitable for detecting emulsions and oil slicks of code 5, and seawater spectral indices
are more suitable for detecting seawater and sheens. However, it is not realistic to detect different
thicknesses of oil slicks using only one spectral index, since the spectra change significantly when
the oil slick has different thicknesses or degrees of emulsification. Test experiments prove this point
(Figure 12). Notably, the spectral indices of seawater and hydrocarbons have a kind of complementarity,
as validated by training image (c) (Figure 14). To further prove the correctness and applicability
of this conclusion, three test areas of the original image were used to conduct the experiment.
The identification results are shown in Figure 18.

In the identification results of test areas, emulsions, oil slicks of code 5, oil slicks of code 4, sheens,
and seawater were well identified. Even sheens at the frontier of the spill were identified correctly
(Figure 18e,f). The identification model uses the spectral indices of seawater (WAF) and hydrocarbons
(RR) to detect emulsions. The results of test areas (Figure 18a–d) indicate that this method exhibits
excellent performance for detecting emulsions. Since emulsions and oil slicks of code 5 are both thicker
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oil slicks, the model uses WAF, RR, and RG to identify oil slicks of code 5. In the identification result,
oil slicks of code 5 are also identified correctly (Figure 18a,b). Finally, oil slicks of code 4 and sheens
are identified precisely by FI and CHL.

During the identification experiment, the result of test area (a) (Figure 19c) is compared to the
thickness inversion results (Figure 19a,b) produced by USGS 2010. Figure 19a is the conservative
evaluation result and Figure 19b is the aggressive evaluation result. The thickness is 0–2 millimeters,
linear stretched. From the comparison, it is clear that the method proposed by this research can identify
different thicknesses of oil slicks. The result from USGS focuses on only thicker oil slicks. The contrast
experiment shows the advantage of this research: correct identification of different thicknesses of oil
slicks and even sheens.
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These experimental results validate the complementarity of seawater and hydrocarbon spectral
indices. The complementarity may be caused by two aspects: the sea environment and oil compositions
(mainly hydrocarbons). The spectral curves of oil slicks are determined by oil compositions. However,
oil slicks are ineluctably influenced by the sea environment via weathering processes and the light
transmittance of the floating oil slicks. For thicker oil slicks that contain plenty of oil and have
low light transmittance, hydrocarbons greatly influence the spectral curves. If the oil slicks contain
little oil and have high light transmittance, the spectral curves of oil slicks will be more similar to
seawater. For specific oil slicks, it is difficult to determine which aspect plays the dominant role in the
spectral curves of emulsions. However, evaluation and identification results indicate that combining
complementary spectral indices can accurately identify oil slicks of different thickness.

4.4. Accuracy and Applicability

It is important to validate the accuracy of the identification results. Due to the clear visual and
shape features of oil slicks of code 4, 5, the accuracy of them can be assessed by visual interpretation.
A MODIS image (Figure 20) captured on 17 May 2010 and an ASAR image (Figure 21) captured on May
18 2010 were used to validate the accuracy of the sheens produced by the proposed method. It can be
found from Figures 20 and 21 that the identified boundary of sheens is near to the oil slick boundaries
detected by MODIS and ASAR image. The tiny inconsistence may be caused by two aspects:

(1) The experimental AVIRIS image was captured at UTC 20:46 17 May 2010, which was later than the
MODIS image (UTC 16:40 May 17) and earlier than the ASAR image (UTC 03:48 May 18). The oil
slicks in the earlier captured MODIS image do not reach the boundary identified by AVIRIS,
but the oil slicks in the later captured ASAR image cover the identified boundary, which means
oil slicks drifted during the interval time.

(2) Sheens at the boundary between oil slicks and seawater cannot be observed from the MODIS and
ASAR backscattering images.

Although the research lacked field observations, the AVIRIS, MODIS, and ASAR image can verify
the accuracy of the results.

This method can be used to AVIRIS hyperspectral images which are not strongly contaminated by
sun glint because it changes the spectral features of oil slicks in a great extent, and spectral indices
cannot evaluate the oil slicks and seawater. The image captured on May 17 was used to conduct
experiments mainly because it was not influenced by sun glint strongly, and had been proven to be
a proper experimental image to validate oil slick identification methods by other researchers [6,8,10].
In order to check the applicability of the conclusions obtained from the research, the proposed method
was used to identify oil slicks in another AVIRIS image captured on May 06. The results are shown
in Figure 22. It should be noted that the green pixels in Figure 22b are clouds. There are no oil
slicks of code 5 in this image, since the oil slicks are influenced by westerly winds (Figure 23) for the
experimental image. The oil slicks converge at the west side and spread at the east side. The identified
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oil slicks with different thicknesses are adjacent and the phenomenon of the thicknesses gradually
becoming smaller is well identified by the method.

The accuracy and applicability of the proposed method indicate that the conclusions obtained
through the research are accurate and robust.
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5. Conclusions

Oil spill accidents are disasters for marine and coastal ecosystems. It is vital to map oil spills when
the accidents occur. Hyperspectral images contain abundant spectral information, which is sufficient
to identify different thicknesses of oil slicks on the sea surface. However, traditional hyperspectral
oil spill mapping methods tend to detect oil slicks using only hydrocarbon spectral indices, and only
thicker oil slicks can be identified, as they contain large amounts of oil and have strong hydrocarbon
spectral indices. Since the spectral curves of floating oil slicks should be influenced by seawater, based
on hyperspectral images, this paper evaluated the spectral indices of both hydrocarbons and seawater.
The purpose of the research is to demonstrate the applicability of spectral indices in identifying
different thicknesses of oil slicks. In the research, a measurement named IS was proposed to evaluate
the ability of the spectral indices to identify oil slicks. Furthermore, the hyperspectral images of the
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GoM oil spill accident were used to validate the research hypotheses. It can be concluded from the
evaluation and identification results that: (1) the spectral indices of hydrocarbons are more suitable
for detecting emulsions and continuous true color oil slicks (oil slicks of code 5); (2) the spectral
indices of seawater are more suitable for detecting seawater and sheens; and (3) the spectral indices
of hydrocarbons and seawater have a kind of complementarity for identifying oil slicks. Combining
complementary spectral indices can accurately identify oil slicks with different thicknesses and even
identify sheens.
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