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Abstract: With the large number of high-resolution images now being acquired, high spatial
resolution (HSR) remote sensing imagery scene classification has drawn great attention but is still
a challenging task due to the complex arrangements of the ground objects in HSR imagery, which
leads to the semantic gap between low-level features and high-level semantic concepts. As a feature
representation method for automatically learning essential features from image data, convolutional
neural networks (CNNs) have been introduced for HSR remote sensing image scene classification
due to their excellent performance in natural image classification. However, some scene classes
of remote sensing images are object-centered, i.e., the scene class of an image is decided by the
objects it contains. Although previous methods based on CNNs have achieved comparatively
high classification accuracies compared with the traditional methods with handcrafted features,
they do not consider the scale variation of the objects in the scenes. This makes it difficult to
directly utilize CNNs on those remote sensing images belonging to object-centered classes to extract
features that are robust to scale variation, leading to wrongly classified scene images. To solve this
problem, scene classification based on a deep random-scale stretched convolutional neural network
(SRSCNN) for HSR remote sensing imagery is proposed in this paper. In the proposed method,
patches with a random scale are cropped from the image and stretched to the specified scale as the
input to train the CNN. This forces the CNN to extract features that are robust to the scale variation.
Furthermore, to further improve the performance of the CNN, a robust scene classification strategy is
adopted, i.e., multi-perspective fusion. The experimental results obtained using three datasets—the
UC Merced dataset, the Google dataset of SIRI-WHU, and the Wuhan IKONOS dataset—confirm
that the proposed method performs better than the traditional scene classification methods.

Keywords: convolutional neural network; scene classification; deep random-scale stretched convolutional
neural network; multi-perspective fusion

1. Introduction

Remote sensing image scene classification, which involves dividing images into different
categories without semantic overlap [1], has recently drawn great attention due to the increasing
availability of high-resolution remote sensing data. However, it is difficult to achieve satisfactory
results in scene classification directly based on low-level features, such as the spectral, textural,
and geometrical attributes, because of the so-called “semantic gap” between low-level features and
high-level semantic concepts, which is caused by the object category diversity and the distribution
complexity in the scene.

To overcome the semantic gap, many different scene classification techniques have been proposed.
The bag-of-visual-words (BoVW) model, which is derived from document classification in text analysis,
is one of the most popular methods in scene classification. In consideration of the spatial information
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loss, many BoVW extensions have been proposed [2–8]. Spatial pyramid co-occurrence [2] was
proposed to compute the co-occurrences of visual words with respect to “spatial predicates” over
a hierarchical spatial partitioning of an image, to capture both the absolute and relative spatial
arrangement of the words. The topic model [9–16], as used for document modeling, text classification,
and collaborative filtering, is another popular model for scene classification. P-LDA and F-LDA [9]
were proposed based on the latent Dirichlet allocation (LDA) model for scene classification. Because of
the weak representative power of a single feature, multifeature fusion has also been adopted in recent
years. The semantic allocation level (SAL) multifeature fusion strategy based on the probabilistic topic
model (PTM) (SAL-PTM) [10] was proposed to combine three complementary features, i.e., the spectral,
texture, and scale-invariant feature transform (SIFT) features. However, in the traditional methods,
feature representation plays a big role and involves low-level feature selection and middle-level feature
design. As a lot of prior information is required, this limits the application of these methods in other
datasets or other fields.

To automatically learn features from the data directly, without low-level feature selection and
middle-level feature design, a number of methods based on deep learning have recently been proposed.
A new branch of machine learning theory—deep learning—has been widely studied and applied to
facial recognition [17–20], scene recognition [21,22], image super-resolution [23], video analysis [24],
and drug discovery [25]. Differing from the traditional feature extraction methods, deep learning,
as a feature representation learning method, can directly learn features from raw data without prior
information. In the remote sensing field, deep learning has also been studied for hyperspectral pixel
classification [26–29], object detection [30–32] and scene classification [33–41]. The auto-encoder [37]
was the first deep learning method introduced to remote sensing image scene classification, combining
a sample selection strategy based on saliency with the auto-encoder to extract features from the
raw data, achieving a better classification accuracy than the traditional remote sensing image scene
classification methods such as BoVW and LDA. The highly efficient “enforcing lifetime and population
sparsity” (EPLS) algorithm, another sparse strategy, was introduced into the auto-encoder to ensure
two types of feature sparsity: population and lifetime sparsity [38]. Zou et al. [39] translated the
feature selection problem into a feature reconstruction problem based on a deep belief network
(DBN) and proposed a deep learning-based method, where the features learned by the DBN are
eliminated once their reconstruction errors exceed the threshold. Although the auto-encoder-based
algorithms can acquire excellent classification accuracies when compared with the traditional methods,
they do need pre-training, and can be regarded as convolutional neural networks (CNNs) in practice.
Zhang et al. [40] combined multiple CNN models based on boosting theory, achieving a better accuracy
than the auto-encoder methods.

However, most previous methods based on deep learning model such as CNN took images with
single scale for training, by cropping the fixed scale patches from image or resizing the image to fixed
single and did not consider the object scale variation problem in image caused by the altitude or
angle change of the sensor, etc. The features extracted by these methods are not robust to the object
scale, leading to unsatisfactory remote sensing image scene classification results. An example of scale
variation of object is given in Figure 1, where the scale of the storage tank and airplane changed a lot
which may be caused by the altitude or angle change of the sensor.

In order to solve the object scale variation problem, scene classification based on a deep random-
scale stretched convolutional neural network (SRSCNN) is proposed in this paper. In SRSCNN, patches
with a random scale are cropped from the image, and patch stretching is applied, which simulates the
object scale variation to ensure that the CNN learns robust features from the remote sensing images.
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then stretched to a fixed scale to be classified by the trained CNN model. Finally, the whole image’s 
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scene classification methods and methods based on deep learning. Three datasets—the 21-class UC 
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obtain a better classification accuracy than the other methods, which demonstrates the superiority of 
the proposed method. 

The remainder of this paper is organized as follows. Section 2 makes a brief introduction to 
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provided. The discussion is given in Section 5. Finally, the conclusion is given in Section 6. 

2. Convolutional Neural Networks 
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Figure 1. An example of object scale variation that may be caused by sensor altitude or angle variation.

The major contributions of this paper are as follows:
(1) The random spatial scale stretching strategy. In SRSCNN, random spatial scale stretching is

proposed to solve the problem of the dramatic scale variation of objects in the scene. Some objects
such as airplanes and storage tanks are very important in remote sensing image scene classification.
However, the object scale variation can lead to weak feature representation for some scenes, which in
turn leads to wrong classification. In order to solve this problem, the assumption that the object scale
variation satisfies a uniform or a Gaussian distribution is adopted in this paper, and the strategy of
cropping patches with a random scale following a certain distribution is applied to simulate the object
variation in the scene, forcing the model to extract features that are robust to scale variation.

(2) The robust scene classification strategy. To fuse the information from different-scale patches
with different locations in the image, thereby further improving the performance, SRSCNN applies
multiple views of one image and conducts fusion of the multiple views. The image is thus classified
multiple times and its label decided by voting. According to VGGNet [42] and GoogLeNet [43],
using a large set of crops of multiple scales can improve classification accuracy. However, unlike
GoogLeNet, where only four scales are applied in the test phase, more continuous scales are adopted
in the proposed method. In this paper, patches with a random position and scale are cropped and then
stretched to a fixed scale to be classified by the trained CNN model. Finally, the whole image’s label is
decided by selecting the label that occurs the most.

The proposed SRSCNN was evaluated and compared with conventional remote sensing image
scene classification methods and methods based on deep learning. Three datasets—the 21-class UC
Merced (UCM) dataset, the 12-class Google dataset of SIRI-WHU, and the 8-class Wuhan IKONOS
dataset—were used in the testing. The experimental results show that the proposed method can obtain
a better classification accuracy than the other methods, which demonstrates the superiority of the
proposed method.

The remainder of this paper is organized as follows. Section 2 makes a brief introduction to CNNs.
Section 3 presents the proposed scene classification method based on a deep random-scale stretched
convolutional neural network, namely SRSCNN. In Section 4, the experimental results are provided.
The discussion is given in Section 5. Finally, the conclusion is given in Section 6.

2. Convolutional Neural Networks

CNNs are a popular type of deep learning model consisting of convolutional layers, pooling
layers, fully connected layers, and a softmax layer, as shown in Figure 2, which is described in Section 3.
CNNs are appropriate for large-scale image processing because of the sparse interactions and weight
sharing resulting from the convolution computation. In CNNs, the sparse interaction means that
the units in a higher layer are connected with units with a limited scale, i.e., the receptive field in
the lower layer. Weight sharing means that the units in the same layer share the same connection
weights, i.e., the convolution filters, decreasing the number of parameters in the CNN. The convolution
computation makes it possible for the response of the units of the deepest layer of the network to
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be dependent only upon the shape of the stimulus pattern, and they are not affected by the position
where the pattern is presented. Given a convolutional layer, its output can be obtained as follows:

Xt = Conv(Xt−1, Wt) (1)

where Xt denotes the output of layer t, Xt−1 is the input of layer t, and Wt is the convolution filters of
layer t.

In recent years, more complex structures and deeper networks have been developed. Lin et al. [44]
proposed a “network in network” structure to enforce the abstract ability of the convolutional layer.
Based on the method proposed by Lin et al. [44], Szegedy et al. [43] designed a more complex network
structure by applying an inception module. In AlexNet [45], there are eight layers, in addition to the
pooling and contrast normalization layers; however, in VGGNet and GoogLeNet, the depths are 19
and 22, respectively. More recently, much deeper networks have been proposed [46,47].
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Due to the excellent performance of CNNs in image classification, a number of methods based on
CNNs for remote sensing scene classification have been proposed, significantly improving classification
accuracy. However, these methods do not consider the object scale variation problem in the remote
sensing data, which means that the extracted features lack robustness to the object scale change, leading
to misclassification of the scene image. The objects contained in the scene image play an important
role in scene classification [48,49]. However, the same objects in remote sensing images can have
different scales, as shown in Figure 3, resulting in them being difficult to capture. It is easy to classify a
scene image containing objects with a common scale; however, those images containing objects with a
changed scale can easily be wrongly classified. Taking the two images of storage tanks and airplanes
in Figure 3 as examples, the right images are easy to classify, but it is almost impossible to recognize
the left images as storage tanks/airplanes because of the different scales of the images.
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3. Scene Classification for HSR Imagery Based on a Deep Random-Scale Stretched Convolutional
Neural Network

To solve this object scale problem, the main idea in this paper is to generate multiple-scale samples
to train the CNN model, forcing the trained CNN model to correctly classify the same image with
different scales. To help make things easier, the scale variation is modeled as follows in this paper:

S = Lα (2)

where L is the true scale; α denotes the scale variation factor, obeying a normal or uniform distribution,
i.e., α ∼ N

(
1, σ2) or α ∼ U(in f , sup); and S represents the changed scale. Once S and α are known,

L can be obtained by L = S/α, and given an image I with scale S× S, image I′ is obtained by stretching
I into L× L and then feeding it into the CNN to extract the features. According to this assumption,
the goal of making the features extracted by the CNN robust to scale has been transformed into making
the features robust to α, i.e., the trained CNN can correctly recognize image I′ with various values
of α. To achieve this, for each image, multiple samples α are sampled, and multiple corresponding
stretched images I′ are obtained to force the CNN to be robust to α in the training phase. Meanwhile,
in the CNN, in order to increase the number of image samples, the patches cropped from the image
are fed into the CNN, instead of the whole image. Assuming that the scale of the patches is R× R,
the patches should be cropped from the stretched image with scale L× L. Finally, there are three steps
to generating the patches that are fed into the CNN, as follows:

(1) Sample α from α ∼ N
(
1, σ2) or α ∼ U(in f , sup);

(2) Stretch an image of S× S to L× L, where L = S/α;
(3) Crop a patch with scale R× R from the stretched image obtained in step 2.
However, in practice, due to the linearity of Equation (2), the above steps can be translated into

the following steps to save memory:
(1) Sample α from α ∼ N

(
1, σ2) or α ∼ U(in f , sup);

(2) Compute the cropping scale PS = Rα and crop a patch with scale PS × PS from image I. In this
step, the upper-left corner (w, h) of the cropped patch in image I is determined by randomly selecting
an element from D = {(w, h)|0 ≤ w ≤ S− Ps + 1, 0 ≤ h ≤ S− Ps + 1} where S is the samples and
lines of the whole image I.

(3) Stretch the cropped patch obtained in step 2 into R× R.
For every image in the dataset, we repeat the above three steps and finally obtain multiple-scale

samples from the images, as shown in Figure 4. In this paper, the two kinds of distribution for α

are respectively tested, and the results are discussed in Section 5. The parameter sup is set to 1.2
by experience, and bilinear interpolation is adopted in the random-scale stretching as a trade-off
between computational efficiency and classification accuracy. In the proposed method, there will
be many patches cropped from every image. However, the number of patches is not determined
explicitly. Instead, we determine the number of patches by determining the number of training
iterations. Assuming that the number of training samples is m, for training, the number of iterations is
set as N, where N is 70 K in this paper, and for each iteration, there are n patches cropped from the n
(set as 60 in this paper) images and fed into the CNN model. Therefore, for the training, the number
of patches required is N × n, which means that the number of patches from every training image is
N × n/m. In testing, the cropped patch number is set by experience.

On the one hand, this can be regarded as a data augmentation strategy for remote sensing
image scene classification, which could be combined with other data augmentation methods such as
occlusion, rotation, mirroring, etc. On the other hand, the random-scale stretching is a process which
adds structure noise to the input. Differing from the denoising auto-encoders, which add value noise
to the input to force the model to learn robust features, SRSCNN focuses on structure noise, i.e., the
scale change of the objects. Similar to the denoising auto-encoders, the input of the model is corrupted
with random noise following a definite statistical distribution, i.e., a uniform or normal distribution.
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3.1. SRSCNN

The proposed SRSCNN method integrates random-scale stretching and a CNN, and can be
divided into three parts: (1) data pre-processing; (2) random-scale stretching; and (3) CNN model
training. In this paper, the image I is represented as a tensor with dimensions of H ×W × 3, where H
and W represent the height and width of the image, respectively.

Data pre-processing: To accelerate the learning convergence of the CNN, normalization is
required. This is usually followed by the z-score to centralize the data distribution. However, to
keep things simple, in this paper, pixels are normalized to [0, 1] by dividing them by the maximum
pixel value:

In =
I

Max
(3)

where In is the normalized image, and Max is the maximum pixel value in the image.
Random-scale stretching: In the proposed method, random-scale stretching is integrated with

random rotation, which are common data augmentation methods in CNN training. Given a normalized
image In, the image output p of the random-scale stretching is obtained as follows:

p = Rss(In) (4)

p = Rot(p) (5)

where Rss stands for the random-scale stretching, and Rot denotes the random rotation of d degrees,
where d is 0, 90, 180, or 270.

CNN model training: After the random-scale stretching, the image p is fed into the CNN model,
which consists of convolutional layers, pooling layers, a fully connected layer, and a softmax layer.

Convolutional layers: Differing from the traditional features utilized in scene classification, where
spectral features such as the spectral mean and standard deviation, and spatial features such as
SIFT, are selected and extracted artificially, the convolutional layers can automatically extract features
from the data. There are multiple convolution filters in each layer, and every convolution filter
corresponds to a feature detector. For convolutional layer t (t ≥ 1), given the input Xt−1, the output Xt

of convolutional layer t can be obtained by Equations (6) and (7):

Ci
t =

K

∑
k

wik
t ∗ xk

t−1 + bi
t (6)

xi
t = f (Ci

t) (7)
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where wik
t represents the kth convolutional filter corresponding to the ith output feature map, xk

t−1
denotes the kth feature map of Xt−1, bi

t is the bias corresponding to the ith output feature map, ∗
is the convolution computation, and f is the activation function, xi

t is ith output feature map of Xt.
As Equation (6) shows, the convolution is a linear mapping, and is always followed by a non-linear
activation function f such as sigmoid, tanh, SoftPlus, ReLU, etc. In this paper, ReLU is adopted as the
activation f due to its superiority in convergence and its sparsity compared with the other activation
functions [50–52]. ReLU is a piecewise function:

y =

{
c c ≥ 0
0 c < 0

(8)

Pooling layers: Following the convolutional layers, the pooling layers expect to achieve a more
compact representation by aggregating the local features, which is an approach that is more robust to
noise and clutter and invariant to image transformation [53]. The popular pooling methods include
average pooling and max pooling. Max pooling is adopted in this paper:

Yk = max(Xk
[1,ker]×[1,ker]) (9)

where ker is the scale of the pooling kernel.
Fully connected layer: The fully connected layer can be viewed as a special convolutional layer

whose output height and width are 1, i.e., the output is a vector. In addition, in this paper, the fully
connected layer is followed by dropout [54], which is a regularizer to prevent co-adaptation since a
unit cannot rely on the presence of other particular units because of the random presence of them in
the training phase.

Softmax layer: In this paper, softmax is added to classify the features extracted by the CNN. As a
generalization of logistic regression for a multi-class problem, softmax outputs a vector whose every
element represents the possibility of a sample belonging to each class, as shown in Equation (10):

h(x) =



p(yi = 1
∣∣x, θ)

p(yi = 2
∣∣x, θ)

.

.

.
p(yi = C

∣∣x, θ)


=

1
C
∑

j=1
eθT

j x



eθT
1 x

eθT
2 x

.

.

.
eθT

c x


(10)

where p(yi = t
∣∣x, θ) represents the possibility of sample i’s label being t. Based on maximum-

likelihood theory, loss function of softmax can be obtained as follows:

J(θ) =
−1
m

[
m

∑
i=1

k

∑
j=1

1{yi = j} log
eθT

j xi

∑k
l=1 eθT

l xi ] +
λ

2

k

∑
j=1

∣∣∣∣θj
∣∣∣∣2 (11)

where m is the number of samples, and the second term is the regularization term, which is always the
L2-norm, to avoid overfitting. λ is the coefficient to balance these two terms. The chain rule is applied
in the back-propagation for computing the gradient to update the parameters, i.e., the weight W and
bias b in CNN. Take the layer t as an example. To determine the values of Wt and bias bt in layer t,
the stochastic gradient descent method is performed:

(1) Compute the objective loss function J in Equation (11);
(2) Based on the chain rule, compute the partial derivative of Wt and bias bt:

∇Wt =
∂J

∂Xt+n

∂Xt+n

∂Ct+n

∂Ct+n

∂Xt+n−1
. . .

∂Xt+1

∂Ct+1

∂Ct+1

∂Xt

∂Xt

∂Ct

∂Ct

∂Wt
(12)
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∇bt =
∂J

∂Xt+n

∂Xt+n

∂Ct+n

∂Ct+n

∂Xt+n−1
. . .

∂Xt+1

∂Ct+1

∂Ct+1

∂Xt

∂Xt

∂Ct
(13)

(3) Update the values of Wt and bias bt:

Wt = Wt − lr · ∇Wt (14)

bt = bt − lr · ∇bt (15)

where lr is the learning rate. In the training phase, the above three steps are repeated until the required
number of iterations (set as 70 K in this paper) is reached. The procedure of SRSCNN is presented in
Algorithm 1, where random rotation is integrated with random-scale stretching.

Algorithm 1. The SRSCNN procedure

Input:
-input dataset D = {(I, y) | I∈RH×W×3, y∈{1, 2, 3, . . . C}
-scale of patch R
-batch size m
-scale variation factor α obeying distribution d
-defined CNN structure Net
-maximum iteration times L
Output:
-Trained CNN model
Algorithm:
1. randomly initialize Net
2. for l = 1 to L do
3. generate a small dataset P with |P| = m from D
4. for I = 1 to m do
5. normalize Ii∈P to [0, 1] by dividing by the maximum pixel value to obtain the normalized image Iin.
6. generate a random-scale stretched patch pi from Iin.
7. P = P − {Ii}, P = P∪{pi}
8. end for
9. Feed P to Net, update parameters W and b in Net
10. end for

According to recent deep learning theory [42,43], representation depth is beneficial for
classification accuracy. However, the structure like GoogLeNet and VGGNet cannot be directly
used because of the small size of remote sensing datasets compared with the ImageNet dataset with
millions of images. Therefore, in this paper, a network structure similar to VGGNet is adopted, making
a trade-off between the depth and the number of images in the dataset, where every two convolutional
layers are stacked. The main structure configuration adopted in this paper is shown in Table 1.
In Table 1, the convolutional layer is denoted as “ConvN–K”, where N denotes the convolutional
kernel size and K denotes the number of convolutional kernels. The fully connected layer is denoted
as “FC–L”, where L denotes the number of units in the fully connected layer. The effect of L on the
scene classification accuracy is analyzed in Section 5.
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Table 1. The main CNN structure configuration adopted in SRSCNN.

Input (181 × 181 RGB image)

Conv3–32
Conv3–64

Maxpooling

Conv3–96
Conv2–128
Maxpooling

Conv3–160
Maxpooling

FC-600

Softmax

3.2. Remote Sensing Scene Classification

In the proposed method, the different patches from the same image contain different information,
so every feature extracted from a patch can be viewed as a perspective of the scene label of the image
where the patch is cropped from. To further improve the scene classification performance, a robust
scene classification strategy is adopted, i.e., multi-perspective fusion. SRSCNN randomly crops a
patch with a random scale from the image and predicts its label using the trained CNN model, under
the assumption that the patch’s label is identical to the image’s label. For simplicity, in this paper,
the perspectives have identical weights, and voting is finally adopted, which means that SRSCNN
classifies a sample multiple times and decides its label by selecting the class for which it is classified the
most times. In Figure 5, multiple patches with different scales and different locations are cropped from
the image, and these patches are then stretched to a specific scale as the input of the trained model to
predict its label. Finally, the labels belonging to these patches are counted and the label occurring the
most times is selected as the label of the whole image (Class 2 is selected in the example in Figure 5).
To demonstrate the effectiveness of the multi-perspective fusion, three tests were performed on three
datasets, which are described in Section 4.
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4. Experiments and Results

The UCM dataset, the Google dataset of SIRI-WHU, and the Wuhan IKONOS dataset were used to
test the proposed method. The traditional methods of BoVW, LDA, the spatial pyramid co-occurrence
kernel++ (SPCK++) [2], the efficient spectral-structural bag-of-features scene classifier (SSBFC) [7],
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locality-constrained linear coding (LLC) [7], SPM+SIFT [7], SAL-PTM [10], the Dirichlet-derived
multiple topic model (DMTM) [14], , SIFT+SC [55], the local Fisher kernel-linear (LFK-Linear),
the Fisher kernel-linear (FK-Linear), the Fisher kernel incorporating spatial information (FK-S) [56],
and methods based on deep learning, i.e., saliency-guided unsupervised feature learning (S-UFL) [37],
the radient boosting random convolutional network (GBRCN) [40], the large patch convolutional
neural network (LPCNN) [41], and the multiview deep convolutional neural network (M-DCNN) [36],
were compared. In the experiments, 80% of the samples were randomly selected from the dataset as
the training samples, and the rest were used as the test samples. The experiments were performed on
a personal computer equipped with dual Intel Xeon E5-2650 v2 processors, a single Tesla K20m GPU,
and 64 GB of RAM, running Centos 6.6 with the CUDA 6.5 release. For each experiment, the training
was stopped after 70 K iterations, taking about 2.5 h. Each experiment on each dataset was repeated
five times, and the average classification accuracy was recorded. To keep things simple, CCNN denotes
the common CNN without random-scale stretching and multi-perspective fusion, CNNV denotes the
common CNN with multi-perspective fusion but not random-scale stretching, SRSCNN-NV denotes
the CNN with random-scale stretching but not multi-perspective fusion.

4.1. Experiment 1: The UCM Dataset

To demonstrate the effectiveness of the proposed SRSCNN, the 21-class UCM land-use dataset
collected from large optical images of the U.S. Geological Survey was used. The UCM dataset covers
various regions of the United States, and includes 21 scene categories, with 100 scene images per
category. Each scene image consists of 256 × 256 pixels, with a spatial resolution of one foot per pixel.
Figure 6 shows representative images of each class, i.e., agriculture, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium
residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks,
and tennis court.
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Figure 6. Class representatives of the UCM dataset: (a) agriculture, (b) airplane, (c) baseball diamond,
(d) beach, (e) buildings, (f) chaparral, (g) dense residential, (h) forest, (i) freeway, (j) golf course,
(k) harbor, (l) intersection, (m) medium residential, (n) mobile home park, (o) overpass, (p) parking lot,
(q) river, (r) runway, (s) sparse residential, (t) storage tanks, and (u) tennis court.

From Table 2, it can be seen that SRSCNN performs well and achieves the best classification
accuracy. The main reason for the comparatively high accuracy achieved by SRSCNN when compared
with the non-deep learning methods such as BoVW, LDA, and LLC is that SRSCNN, as a deep learning
method, can extract the essential features from the data directly, without prior information, and is a joint
learning method which combines feature extraction and scene classification into a whole, leading to the
interaction between feature extraction and scene classification during the training phase. Compared
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with the methods based on deep learning, i.e., S-UFL, GBRCN, LPCNN, and M-DCNN, SRSCNN
again achieves a comparatively high classification accuracy. The reason SRSCNN achieves a better
accuracy is that the objects in scene classification make a big difference; however, the previous methods
based on deep learning do not consider the scale variation of the objects, resulting in a challenge for
the scene classification. In contrast, in order to solve this problem, random-scale stretching is adopted
in SRSCNN during the training phase to ensure that the extracted features are robust to scale variation.
In order to further demonstrate the effectiveness of the random-scale stretching, two experiments
were conducted based on CCNN and SRSCNN-NV, respectively. From Table 2, it can be seen that
SRSCNN-NV outperforms CCNN by 1.02%, which demonstrates the effectiveness of the random-scale
stretching for remote sensing images. Meanwhile, compared with SRSCNN-NV, SRSCNN is 2.99%
better, which shows the power of the multi-perspective fusion. According to the above comparison and
analysis, it can be seen that the random-scale stretching and multi-perspective fusion enable SRSCNN
to obtain the best results in remote sensing image scene classification. The Kappa of SRSCNN for the
UCM is 0.95.

Table 2. Comparison with the previous reported accuracies with the UCM dataset.

Classification Method Classification Accuracy (%)

Non-deep learning methods

BoVW 72.05
PLSA 80.71
LDA 81.92

SPCK++ [2] 76.05
LLC [7] 82.85

SPM+SIFT [7] 82.30
SSBFC [7] 91.67

SAL-PTM [10] 88.33
DMTM [14] 92.92

SIFT+SC [55] 81.67
FK-S [56] 91.63

Deep learning methods

M-DCNN [36] 93.48
S-UFL [37] 82.72

GBRCN [40] 94.53
LPCNN [41] 89.90

CCNN 91.56
SRSCNN-NV 92.58

CNNV 93.92
SRSCNN 95.57

From Figure 7a, it can be seen that the 21 classes can be recognized with an accuracy of at least
85%, and most categories are recognized with an accuracy of 100%, i.e., agriculture, airplane, baseball
diamond, beach, etc. From Figure 7b, it can be seen that some representative scene images on the
left are recognized correctly by SRSCNN and CNNV. It can also be seen that when the scale of the
objects varies, CNNV cannot correctly recognize them, but SRSCNN does, due to its ability to extract
features that are robust to scale variation. Taking the airplane scenes as an example, the two images on
the left are easy to classify, because the scales of the airplanes in these images are normal; however,
the airplanes in the right images are very difficult to recognize, because of their different scale, leading
to misclassification by CNNV. However, the proposed SRSCNN can still recognize them correctly due
to its ability to extract features that are robust to scale change.
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4.2. The Google Dataset of SIRI-WHU

The Google dataset of SIRI-WHU designed by the Intelligent Data Extraction and Analysis of
Remote Sensing (RSIDEA) Group of Wuhan University contains 12 scene classes, with 200 scene
images per category, and each scene image consists of 200 × 200 pixels, with a spatial resolution of 2 m
per pixel. Figure 8 shows representative images of each class, i.e., meadow, pond, harbor, industrial,
park, river, residential, overpass, agriculture, commercial, water, and idle land.
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Figure 8. Class representatives of the Google dataset of SIRI-WHU: (a) meadow, (b) pond, (c) harbor,
(d) industrial, (e) park, (f) river, (g) residential, (h) overpass, (i) agriculture, (j) commercial, (k) water,
and (l) idle land.

From Table 3, it can be seen that SRSCNN performs well and achieves the best classification
accuracy. The main reason for the comparatively high accuracy achieved by SRSCNN when compared
with the traditional scene classification methods such as BoVW, LDA, and LLC is that SRSCNN,
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as a deep learning method, can extract the essential features from the data directly, without prior
information, and combines feature extraction and scene classification into a whole, leading to the
interaction between feature learning and scene classification. Compared with the deep learning
methods, S-UFL and LPCNN, SRSCNN performs 19.92% and 4.88% better, respectively. The reason
SRSCNN achieves a better accuracy is that S-UFL and LPCNN do not consider the scale variation
of objects, resulting in a challenge for the scene classification. In contrast, in order to meet this
challenge, random-scale stretching is adopted in SRSCNN during the training phase to ensure
that the extracted features are robust to scale variation. Compared with SSBFC, DMTM, and FK-S,
with only 50% of the samples randomly selected from the dataset as the training samples, the proposed
method still performs the best, which is shown in Table 4. In order to further demonstrate the
effectiveness of the random-scale stretching, two experiments were conducted based on CCNN and
SRSCNN-NV, respectively. From Table 3, it can be seen that SRSCNN-NV outperforms CCNN by 2.80%,
demonstrating the effectiveness of the random-scale stretching for remote sensing images. Meanwhile,
compared with SRSCNN-NV, SRSCNN is 3.70% better, showing the power of the multi-perspective
fusion. According to the above comparison and analysis, it can be seen that the random-scale stretching
and multi-perspective fusion enable SRSCNN to obtain the best results in remote sensing image scene
classification. The Kappa of SRSCNN for the Google dataset of SIRI-WHU is 0.9364 when 80% training
samples selected.

Table 3. Comparison between the previous reported accuracies with the Google dataset of SIRI-WHU,
with 80% training samples selected.

Classification Method Classification Accuracy (%)

Non-deep learning methods

BoVW 73.93
SPM-SIFT 80.26

LLC 70.89
LDA 66.85

Deep learning methods

S-UFL [37] 74.84
LPCNN [41] 89.88

CCNN 88.26
SRSCNN-NV 91.06

CNNV 90.69
SRSCNN 94.76

Table 4. Comparison between the published accuracies with the Google dataset of SIRI-WHU, with 50%
training samples selected.

Classification Method Classification Accuracy (%)

SSBFC [7] 90.86
DMTM [14] 91.52
LFK-Linear 88.42
FK-Linear 87.53
FK-S [56] 90.40
SRSCNN 93.44

From Figure 9a, it can be seen that most of the classes can be recognized with an accuracy of
at least 92.5%, except for river, overpass, and water. Meadow, harbor, and idle land are recognized
with an accuracy of 100%. From Figure 9b, it can be seen that some representative scene images on
the left are recognized correctly by SRSCNN and CNNV, i.e., CNN with voting but not random-scale
stretching. It can also be seen that when the object scale varies, CNNV cannot correctly recognize the
objects, but SRSCNN correctly recognizes them due to its ability to extract features that are robust to
scale variation.
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the classification results of CNNV and SRSCNN with the Google dataset of SIRI-WHU. Right: correctly
recognized images for both strategies. Left: images correctly recognized by SRSCNN, but incorrectly
classified by CNNV.

4.3. Experiment 3: The Wuhan IKONOS Dataset

The HSR images in the Wuhan IKONOS dataset were acquired over the city of Wuhan in China
by the IKONOS sensor in June 2009. The spatial resolutions of the panchromatic images and the
multispectral images are 1 m and 4 m, respectively. In this paper, all the images in the Wuhan IKONOS
dataset were obtained by Gram–Schmidt pan-sharpening with ENVI 4.7 software. The Wuhan IKONOS
dataset contains eight scene classes, with 30 scene images per category, and each scene image consists
of 150 × 150 pixels, with a spatial resolution of 1 m per pixel. These images were cropped from a large
image obtained over the city of Wuhan in China by the IKONOS sensor in June 2009, with a size of
6150 × 8250 pixels. Figure 10 shows representative images of each class, i.e., dense residential, idle,
industrial, medium residential, parking lot, commercial, vegetation, and water.
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From Table 5, it can be seen that SRSCNN performs well and achieves a better classification
accuracy than BoVW, LDA, P-LDA, FK-Linear, and LFK-Linear. However, compared with BoVW and
P-LDA, the methods based on CNN such as CCNN and SRSCNN-NV perform worse, and accuracy
improvement is limited in SRSCNN. The reason is that the large dataset is usually required to train the
CNN model, but there are only about 200 images for training. In Table 5, there is no big difference in
accuracy between CCNN and SRSCNN-NV. The main reason for this is that this dataset is cropped
from the same image, and the effect of the scale change problem is small. However, compared with
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SRSCNN-NV, SRSCNN performs 10.03% better, and still performs the best. The Kappa of SRSCNN for
the Wuhan IKONOS dataset is 0.8333.

Table 5. Comparison between the previous reported accuracies with the Wuhan IKONOS dataset.

Classification Method Classification Accuracy (%)

BoVW 80.75
LDA 77.34

P-LDA 84.69
FK-Linear 78.23

LFK-Linear 79.69
CCNN 74.45

SRSCNN-NV 74.97
CNNV 79.60

SRSCNN 85.00

An annotation experiment on the large IKONOS image was conducted with the trained model.
During the annotation of the large image, the large image was split into a set of scene images where
the image size and spacing are set to 150 × 150 pixel and 100 × 100 pixels, respectively. The set
of scene images is denoted as Ds. Then the images in Ds were classified by the trained model.
Finally, the annotation result can be obtained by assembling the images in Ds. In addition, for the
overlapping pixels between adjacent images, their class labels were determined by the majority voting
rule. The annotation result is shown in Figure 11.
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5. Discussion

To avoid overfitting, dropout technology is applied in the proposed method. Four different
dropout rates p were tested to analyze how this affects classification accuracy. After feature extraction,
the number of units in the last fully connected layer decides the length of the feature, which plays an
important role in the classification results. In Section 4, we analyzed the classification results when
the length of the feature L (i.e., the number of units in the fully connected layer of the adopted CNN
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model in Table 1) was equal to 600. In this section, the sensitivity analysis between length of feature
and classification accuracy is described. In SRSCNN, we add random-scale stretching to the CNN to
improve the remote sensing image scene classification. To investigate the effect of the distribution of
the scale variation factor α, a sensitivity analysis of different distributions is undertaken. In addition,
for a scene image with a fixed scale, the crop rate Cr decides the approximate crop scale, so three
different crop rates are analyzed. In SRSCNN, the random spatial scale stretching (Rss) and random
rotation (Rot) are adopted, the analysis about effectiveness of random spatial scale stretching and
random rotation is described. To test the influence of the spatial resolution, a sensitivity analysis of
different resolution is undertaken. In training phase, the number of training samples cropped from
each image is decided by the iteration times, so the different iterations are analyzed.

5.1. Sensitivity Analysis in Relation to the Dropout Rate

According to dropout theory, breaking the co-adaptation helps to make each hidden unit more
robust, i.e., decreasing the reliance on other units and forcing the units to create useful features.
Dropout is adopted in the proposed method, which involves the parameter dropout rate p. In the
training process, a unit is deleted with probability p, and in order to make sure that the expectation of
the hidden unit is unchanged, the output of the hidden unit is multiplied by (1− p) in the testing. To
study the sensitivity of SRSCNN in relation to the dropout rate, experiments were undertaken with the
UCM and Google datasets, respectively, and the other parameters were kept the same. From Figure 12,
when the dropout rate increases from 0.35 to 0.5, classification accuracy of UCM improves; however, it
begins to decrease when the dropout rate continues to increase, achieving the best classification result
with a dropout rate of 0.5. For the Google dataset, although the change trend is not as obvious as for
UCM, because of the slight decline at 0.5, it can be seen that when the dropout rate increases from 0.35
to 0.65, classification accuracy for the Google dataset improves, and it begins to decrease when the
dropout rate continues to increase, achieving the best classification result with a dropout rate of 0.65.
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5.2. Sensitivity Analysis in Relation to the Length of the Feature

To investigate the effect of the length of the feature L on classification accuracy, the other
parameters were again kept the same. The value of the length of feature L was varied as follows:
L = {200, 600, 1000, and 1400}. From Figure 13, as the length increases from 200 to 600, classification
accuracy with the UCM dataset increases, and it then decreases when length L > 600. However,
accuracy at 1000 is still better than at 200. The reason for this may be that a feature with L = 1000
has a more powerful representation ability with the 21-class UCM dataset. The optimal value of L is
around 600 for UCM. For the Google dataset, it has the same change trend as UCM, achieving the best
accuracy at L = 600.



Remote Sens. 2018, 10, 444 17 of 23
Remote Sens. 2017, 9, x FOR PEER REVIEW  17 of 23 

 

 
Figure 13. The relationship between feature length L and classification accuracy. 

5.3. Sensitivity Analysis in Relation to the Distribution of the Scale Variation Factor α 

The distribution of α makes a great difference in HSR remote sensing image scene classification. 
When α obeys a normal distribution, i.e., ( )2 ~  1,  Nα σ , the standard deviation σ  plays an 

important role in the classification results, and when α obeys a uniform distribution, i.e., 
( )~  ,  1.2U infα , inf  greatly affects classification accuracy. We tested the UCM and Google 

datasets with the two kinds of distribution, with the other parameters kept the same. From Figure 14a, in 
general, with the improvement of inf of the uniform distribution, classification accuracy with the 
UCM dataset decreases, but then leaps on some points, which is the same for the Google dataset. Both 
the UCM and Google datasets obtain their worst classification accuracy at 0.8. However, the UCM 
dataset obtains its best result at 0.7, and the Google dataset at 0.55. When α  satisfies a Gaussian 
distribution, the broad trend of remote sensing classification accuracy with the UCM dataset is 
slightly upwards in most places, although leaps do exist. Compared with the UCM dataset, 
classification accuracy with the Google dataset fluctuates significantly, but the trend is upwards in 
Figure 14b. In this paper, when ( )~  ,  1.2U infα , the smaller the value of inf , the bigger the stretch 

range. When ( )2 ~  1,  Nα σ , the bigger the value of σ , the bigger the stretch range. Therefore, from 

Figure 14, the conclusion can be made that a large stretch range helps to improve classification 
accuracy. 

(a) (b) 

Figure 14. (a) The relationship between inf of the uniform distribution and classification accuracy. (b) 
The relationship between the standard deviation α of the Gaussian distribution and classification 
accuracy. 

  

0.935

0.94

0.945

0.95

0.955

0.96

200 600 1000 1400

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Feature Length L

UCM

Google

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.5 0.55 0.6 0.65 0.7 0.75 0.8

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Inf of Uniform Distribution

UCM

Google

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Standard Deviation σ of Gaussian

UCM

Google

Figure 13. The relationship between feature length L and classification accuracy.

5.3. Sensitivity Analysis in Relation to the Distribution of the Scale Variation Factor α

The distribution of α makes a great difference in HSR remote sensing image scene classification.
When α obeys a normal distribution, i.e., α ∼ N

(
1, σ2), the standard deviation σ plays an important

role in the classification results, and when α obeys a uniform distribution, i.e., α ∼ U (in f , 1.2),
in f greatly affects classification accuracy. We tested the UCM and Google datasets with the two
kinds of distribution, with the other parameters kept the same. From Figure 14a, in general, with the
improvement of in f of the uniform distribution, classification accuracy with the UCM dataset decreases,
but then leaps on some points, which is the same for the Google dataset. Both the UCM and Google
datasets obtain their worst classification accuracy at 0.8. However, the UCM dataset obtains its best
result at 0.7, and the Google dataset at 0.55. When α satisfies a Gaussian distribution, the broad
trend of remote sensing classification accuracy with the UCM dataset is slightly upwards in most
places, although leaps do exist. Compared with the UCM dataset, classification accuracy with the
Google dataset fluctuates significantly, but the trend is upwards in Figure 14b. In this paper, when
α ∼ U (in f , 1.2), the smaller the value of in f , the bigger the stretch range. When α ∼ N

(
1, σ2),

the bigger the value of σ, the bigger the stretch range. Therefore, from Figure 14, the conclusion can be
made that a large stretch range helps to improve classification accuracy.
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Figure 14. (a) The relationship between inf of the uniform distribution and classification
accuracy. (b) The relationship between the standard deviation α of the Gaussian distribution and
classification accuracy.
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5.4. Sensitivity Analysis in Relation to the Crop Rate Cr

In this paper, the ratio between the specified scale and the original image scale S is defined as
the crop rate Cr, i.e., Cr = R/S, where S is 256 for the UCM dataset and 200 for the Google dataset.
Different crop rates Cr lead to different basic scales of patches cropped from an image, and patches
with different scales may contain different information. We therefore analyzed how the crop rate affects
classification accuracy, and the results are shown in Table 6. The other parameters were again kept the
same. For the UCM and Google datasets, when Cr ranges between 50–70%, classification accuracy
fluctuates within a narrow range and get the optimal or suboptimal result. In addition, when Cr
reaches around 90%, it begins to rapidly fall.

Table 6. Sensitivity analysis in relation to the crop rate Cr.

Dataset Cr = 50% Cr = 70% Cr = 90%

UCM 0.9486 0.9557 0.9398
Google 0.9476 0.9468 0.933

5.5. Sensitivity Analysis in Relation to the Rss and Rot

In this paper, the random spatial scale stretching (Rss) and random rotation (Rot) are adopted,
and we analyzed how the Rss and Rot affect classification accuracy. First, the CNN with only with
random spatial scale stretching or random rotation were denoted as RssCNN and RotCNN respectively
and the CNN without random spatial scale stretching and random rotation was denoted as NrrCNN.
The result is shown in Figure 15. From Figure 15, it can be seen that there is no difference between the
RSSCNN, RotCNN and NrrCNN for some scene classes such as agricultural, chaparral and overpass,
which means that these scene classes are largely unaffected by the random spatial scale stretching and
random rotation. However, for the scene classes such as airplane and storage tank, the spatial scale
stretching and random rotation had a relatively large impact. The main reason is that the scene classes
such as airplane, storage tank, are object-centered, i.e., the scene class of an image is decided by the
object it contains and the random spatial scale stretching or random rotation can help make the CNN
to capture the objects for the object-centered scene.
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5.6. Sensitivity Analysis in Relation to the Spatial Resolution

To test the effectives of the proposed method, three datasets with different spatial resolution, i.e.,
the UCM with spatial resolution 0.3 m, the Google dataset of SIRI-WHU with 2 m and the Wuhan
IKONOS with 1m, are tested. From the experiment in Section 4, it can be seen that the proposed
method can work well on these three different spatial resolution images. In addition, to test the
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influence of the spatial resolution in accuracy, four lower spatial resolution datasets are derived from
the UCM and the Google dataset of SIRI-WHU by factor of 4 and 8 down-sampling. We denote the
original data as OD, and the data obtained by factor of 4 and 8 down-sampling are denoted as OD-4
and OD-8. The accuracy comparison is shown in Table 7.

Table 7. Sensitivity analysis in relation to the spatial resolution.

Dataset OD OD-4 OD-8

UCM 0.9557 0.9500 0.9071
Google 0.9476 0.9396 0.8958

From the Table 7, it can be seen that accuracy fell when the spatial resolution decreases and
accuracy falls rapidly with factor 8 down-sampling. To explore how the scene classes are affected by
the spatial resolution, we compare the class accuracy of OD and OD-8 in Figure 16. From Figure 16,
it can be seen that the accuracy of most scene classes falls when the spatial resolution decreased,
particularly for the object-center scene classes such as airplane, storage tank. The main reason is that
when the resolution decreases, it will be difficult to capture the key objects such as airplane, storage
tank for the object-center scene.
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5.7. Sensitivity Analysis in Relation to the Training Iteration

In SRSCNN, the training samples are cropped from each image and the training samples within
each image may be different. Given the total training sample number n, the batch size m, the number
of training samples extracted from each image is determined by:

NumS = N ×m/n (16)

where NumS denotes the number of training samples extracted from each image. From Equation
(16), it can be seen that the NumS is proportional to the iteration N. To explore how the number of
iteration affects accuracy, the accuracy comparison between different training iteration times is shown
in Figure 17. From Figure 17, it can be seen that accuracy increases with iteration times before 60000
and the standard deviation falls as the iteration times get larger. When the iteration times is equal to
70,000, there will be about 2200 training sample extracted from each image for training, and it can get
the optimal or suboptimal result and the standard deviation become smaller. The main reason the
standard deviation falls as the iteration times get larger is the NumS will become larger, which means
there will be more training samples extracted from each image.
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scene classification. In addition, it is still a challenge for the proposed method when only the small 
dataset is available for training. Semi-supervised learning, as one of the popular techniques for 
training with the labeled data and unlabeled data, should be considered to meet this challenge. In 
practical use, multiple spatial resolution scenes, where the spatial resolution may be 0.3 m for some 
scene classes such as tennis court, and 30 m for a scene class such as island, are often processed 
together. Hence, in our future work, we plan to explore multiple spatial resolution scene 
classification, based on the semi-supervised CNN model. 
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Figure 17. The overall accuracy of the SRSCNN on the UCM and Google dataset of SIRI-WHU with
different iterations.

6. Conclusions

In this paper, SRSCNN, a novel algorithm based on a deep convolutional neural network, has
been proposed and implemented to solve the object scale change problem in remote sensing scene
classification. In the proposed algorithm, random-scale stretching is proposed to force the CNN model
to learn a feature representation that is robust to object scale variation. During the course of the
training, a patch with a random scale and location is cropped and then stretched into a fixed scale
to train the CNN model. In the testing stage, multiple patches with a random scale and location are
cropped from each image to be the inputs of the trained CNN. Finally, under the assumption that
the patches have the same label as the image, multi-perspective fusion is adopted to combine the
prediction of every patch to decide the final label of the image.

To test the performance of the SRSCNN, three datasets, mainly covering the urban regions of the
United States and China, i.e., the 21-class UCM dataset, the 12-class Google dataset of SIRI-WHU, and
the Wuhan IKONOS dataset, are used. The results of the experiments consistently showed that the
proposed method can obtain a high classification accuracy. When compared with the traditional
methods such as BoVW and LDA, and other methods based on deep learning, such as S-UFL
and GBRCN, SRSCNN obtains the best classification accuracy, demonstrating the effectiveness of
random-scale stretching for remote sensing image scene classification.

Nevertheless, the large dataset is required when the CNN model is trained for remote sensing
scene classification. In addition, it is still a challenge for the proposed method when only the small
dataset is available for training. Semi-supervised learning, as one of the popular techniques for training
with the labeled data and unlabeled data, should be considered to meet this challenge. In practical use,
multiple spatial resolution scenes, where the spatial resolution may be 0.3 m for some scene classes
such as tennis court, and 30 m for a scene class such as island, are often processed together. Hence,
in our future work, we plan to explore multiple spatial resolution scene classification, based on the
semi-supervised CNN model.
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