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Abstract: Vegetation phenology plays a key role in terrestrial ecosystem nutrient and carbon cycles
and is sensitive to global climate change. Compared with spring phenology, which has been well
studied, autumn phenology is still poorly understood. In this study, we estimated the date of the end
of the growing season (EOS) across the Greater Khingan Mountains, China, from 1982 to 2015 based
on the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation
index third-generation (NDVI3g) dataset. The temporal correlations between EOS and climatic factors
(e.g., preseason temperature, preseason precipitation), as well as the correlation between autumn and
spring phenology, were investigated using partial correlation analysis. Results showed that more than
94% of the pixels in the Greater Khingan Mountains exhibited a delayed EOS trend, with an average
rate of 0.23 days/y. Increased preseason temperature resulted in earlier EOS in most of our study
area, except for the semi-arid grassland region in the south, where preseason warming generally
delayed EOS. Similarly, EOS in most of the mountain deciduous coniferous forest, forest grassland,
and mountain grassland forest regions was earlier associated with increased preseason precipitation,
but for the semi-arid grassland region, increased precipitation during the preseason mainly led to
delayed EOS. However, the effect of preseason precipitation on EOS in most of the Greater Khingan
Mountains was stronger than that of preseason temperature. In addition to the climatic effects on
EOS, we also found an influence of spring phenology on EOS. An earlier SOS led to a delayed EOS
in most of the study area, while in the southern of mountain deciduous coniferous forest region
and northern of semi-arid grassland region, an earlier SOS was often followed by an earlier EOS.
These findings suggest that both climatic factors and spring phenology should be incorporated into
autumn phenology models in order to improve prediction accuracy under present and future climate
change scenarios.

Keywords: autumn phenology; Greater Khingan Mountains; ecogeographical region; GIMMS NDVI3g;
climate change; spring phenology

1. Introduction

Vegetation plays an important role in the land–atmosphere interface [1]. Vegetation phenology,
which refers to the growth cycle of flora in a particular region, can be seriously affected by climatic
changes and is an important component of land surface process models and terrestrial carbon cycle
models [2]. Since it can serve as an indicator of global climate change, studies on vegetation phenology
have become increasingly important.
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Key vegetation phenological metrics, such as the start of the growing season (SOS) and the end of
the growing season (EOS), are particularly sensitive to climatic changes [3]. However, previous studies
mainly focused on spring phenology and have reported an earlier SOS in temperate and cold regions
under warming climate conditions [4]. In comparison, there is a paucity of studies investigating
the dynamics of autumn phenology and its control factors, particularly at regional and continental
scales [5], possibly due to the complexity of vegetation phenological processes during autumn [6].
Recent studies, however, have shown that EOS is a critical determinant of growing season duration,
and that delayed EOS contributed more than advanced SOS to increased growing season duration
in mid and high latitudes [7,8], which can impact carbon, water, and nutrient cycling in terrestrial
ecosystems [6]. Liu et al. [9] revealed substantially delaying trends in EOS in the Northern Hemisphere
over the past three decades and found that the EOS delay in the northern middle and high latitudes
was associated mainly with increasing preseason temperature. Similarly, Liu et al. [10] observed
a delayed EOS across China’s temperate biomes from 1982 to 2011 and found that, apart from
temperature, the sum of precipitation and insolation during the preseason was also associated with
EOS. Cong et al. [11] investigated the relationships between EOS and its potential drivers on the
Tibetan Plateau over 1982–2011, finding that preseason warming delayed EOS mainly in most area of
the plateau. Xie et al. [12] focused on autumn phenology from the beginning of leaf coloration through
the end of leaf drop for 12 dominant deciduous tree species of northeastern USA and found that warm
temperatures, drought, and heavy rainfall during the growing season could significantly affect the
inter-annual variation of autumn phenology. All these findings suggest that a thorough investigation
of EOS and its control factors is essential for improving autumn phenology modeling and enhancing
the understanding of the impact of global climate change on the carbon cycle.

Temperature and precipitation regimes are the primary driving factors affecting autumn
phenology [13]. Compared to the SOS [4], the relationship between the EOS and these climatic
factors remain unclear. Recent studies have indicated that warming during summer and autumn
can significantly delay autumn phenophases, but the effect of warming on timing of leaf senescence
differed among species [14]. Precipitation was also reported to contribute to autumn phenological
regulation [6], particularly in areas with dry climates [9]. In addition, previous studies based on
field experiments [15] and remote sensing data [9] demonstrated that spring phenology also affected
autumn phenology; for example, an earlier SOS may lead to an earlier EOS. However, the impact
mechanism of climatic factors and spring phenology on autumn phenology at larger spatial and
temporal scales has not been fully studied.

Ground observations and satellite remote sensing are the two main approaches used to
monitor phenology changes. Although ground observations can provide detailed and highly accurate
phenological information for individual species, it has high costs, low efficiency, and a limited
observation range and time [7]. Earth observation (EO) datasets derived from satellite remote sensing
can capture vegetation information at broad spatial coverage and long temporal scales not attainable by
conventional techniques and also provide supplementary support for ground-based observation [16].
Various EO datasets are known for their differences in spectral, spatial, temporal and radioactive
characteristics [17]. Thus, when using them to map vegetation phenology parameters, the mapping
results always have differences [17,18]. It is critical to select suitable EO datasets for different purposes.
The purpose of our study is to detect the long-term vegetation phenology dynamics in the Greater
Khingan Mountains. The Normalized Difference Vegetation Index (NDVI) has long been used to
monitor terrestrial vegetation dynamics because it is directly related to the photosynthetic capacity and
energy absorption of plant canopies [19]. The NDVI time series based on images collected by satellite
sensors including the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution
Imaging Spectroradiometer (MODIS), and Système Pour l’Observation de la Terre (SPOT) VEGETATION
have been widely used to study vegetation phenology [20]. Especially the NDVI derived from the
AVHRR sensor is often used as a proxy for terrestrial vegetation productivity and is the most commonly
used tool for detecting long-term vegetation change at global, continental, and regional scales [21].
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The third-generation Normalized Difference Vegetation Index (NDVI3g) dataset released by the NASA’s
Global Inventory Modeling and Mapping Studies (GIMMS) group was the longest NDVI time series to
date and has been proved to have good ability for the long-term monitoring of vegetation phenology
variability. Additionally, the dataset has been normalized to account for issues such as sensor calibration
loss, orbital drift, and atmospheric effects such as volcanic eruptions, so it can provide higher quality
data for regions in mid to high latitudes [22]. Although the spatial resolution (8 km) of the GIMMS
NDVI3g dataset is relatively coarse, for our study area (3.35 × 107 ha), it is sufficient to detect long-term
changes in vegetation phenology.

Most previously conducted studies of autumn phenology in China have been conducted over
short time periods (10~20 years). For example, Chen et al. [23] calculated leaf senescence dates for
deciduous species in temperate eastern China from 1982 to 1993, and Piao et al. [24] provided a more
detailed analysis on autumn phenology over the entire temperate zone of China from 1982 to 1999.
Recent studies, however, have shown that warming and greening trends may have slowed during the
first decade of the 21st century compared to those observed during the 1980s and 1990s [25]. Therefore,
an evaluation of autumn phenology covering the entire period of the past three decades is necessary
for providing more detailed insights into the relationship between climatic changes and vegetation
phenological variation.

The Greater Khingan Mountains, China, span the mid-temperate and cold temperate zones of
mid–high latitudes, the climatic change of which may precede that in low latitudes. Additionally,
it is located in a climatic and topographic transition zone between the humid forest biome and the
semiarid grassland biome. The transitional nature of the physical conditions makes the vegetation of
this region sensitive to climatic change. Therefore, study on the phenology variability in this region
can be used as an indicator for the phenology variability of vegetation distributed in regions at low
latitudes and is necessary for understanding the response of regional ecosystem to the climatic change
in the future. The primary objectives of this study were to (i) explore the EOS trends across different
ecogeographical regions in the Greater Khingan Mountains; (ii) investigate the effects of climatic
factors (e.g., temperature, precipitation) on the spatial and interannual variation of the EOS; and (iii)
reveal the linkage between EOS and SOS.

2. Materials and Methods

2.1. Study Area

The Greater Khingan Mountains (40◦59′–53◦33′N, 115◦05′–125◦16′E), China, are located in
the eastern portion of the Inner Mongolia Autonomous Region, north of Heilongjiang Province,
with a northeast–southwest orientation (Figure 1). The eastern and western slopes of this region are
asymmetric; the terrain of the east facing slopes is steep, quickly incising to the Songliao Plain, whereas
the terrain of the west facing slopes is relatively gentle, gradually transiting into the Mongolian Plateau.
The Greater Khingan Mountains are an important climate demarcation line in China, with a decreasing
temperature gradient (mid-temperate to cold temperate) from north to south and a decreasing humidity
gradient (humid to semi-arid) from east to west. The summer marine monsoon is blocked by the east
slope of the mountains, thus forming a precipitation contrast between the wetter eastern slopes and
the arid western slopes. The variety of vegetation types in this region is abundant, with significant
differences in vegetation composition among different regions. Cold–temperate coniferous forest
cover is prevalent in the high-latitude regions, gradually transitioning to mid-temperate grassland
landscapes with decreasing latitude.

The Greater Khingan Mountains are divided into four ecogeographical regions [26] according
to the ecogeographical regionalization system of China, which reflects the regional differences of
natural elements such as temperature, moisture, and vegetation cover (Figures 1 and 2, Table 1): (i) the
mountain deciduous coniferous forest region in the north (MFN); (ii) the forest grassland region in the
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northwest (FGN); (iii) the centrally located mountain grassland forest (CMF); (iv) and the grassland
region in the south (GLS).Remote Sens. 2018, 13, x FOR PEER REVIEW  4 of 21 
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Figure 1. Location of the study area.

Table 1. Natural conditions and major vegetation composition of each ecogeographical region in the
Greater Khingan Mountains. Stable snow indicates the seasonal snow that has a relatively continuous
spatial distribution and snow cover time (more than 60 days); unstable snow indicates seasonal snow
that has discontinuous spatial distribution (mostly speckled distribution), with intermittent and relative
short snow cover time (10–60 days) [27].

Region Temperature Regime Dry–Wet Condition Snow Cover Main Vegetation Composition

MFN cold temperate zone humid stable snow

Larix gmelini
Pinus pumila
Pinus sylvestris var. mongolica
Ledum palustre
Vaccinium uliginosum
Rhododendron dauricum

FGN mid-temperate zone semi-humid stable snow

Populus davidiana
Stipa baicalensis
Leymus chinensis
Filifolium sibiricum

CMF mid- temperate zone semi-humid stable snow

Betula platyphylla
Populus davidiana
Quercus mongolica
Rhododendron dauricum

GLS mid-temperate zone semi-arid stable snow

Stipa grandis
S. krylovii
Leymus chinensis
Filifolium sibiricum
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region; (c) Betula platyphylla–Rhododendron dauricum ecosystem in the CMF region; (d) Stipa grandis–
Leymus chinensis–Filifolium sibiricum ecosystem in the GLS region. 
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group [21]. It contains over 30 years of observations of 15-day maximum value compositions (MVC) 
at a spatial resolution of 8 km, and can be acquired from the NASA Ames Ecological Forecasting Lab 
(http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/). Multiple corrections have been applied to 
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factors [22]. So, compared to the older versions, this dataset can provide higher quality data for 
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2.3. Climate Data 
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Service System (http://cdc.cma.gov.cn). The daily climate data were compiled into monthly data, and 
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precipitation data with spatial resolution 8 km × 8 km of the Greater Khingan Mountains from 1982 
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Figure 2. Images of typical ecosystems in four ecogeographical regions. (a) Larix gmelini–Rhododendron
dauricum ecosystem in the MFN region; (b) Populus davidiana–Leymus chinensis ecosystem in the FGN
region; (c) Betula platyphylla–Rhododendron dauricum ecosystem in the CMF region; (d) Stipa grandis–Leymus
chinensis–Filifolium sibiricum ecosystem in the GLS region.

2.2. GIMMS NDVI3g Dataset

Since it can accurately represent vegetation growth status from different remote sensing
information sources, NDVI is a commonly used indicator for monitoring vegetation phenology [28].
The third-generation NDVI (NDVI3g) used in this study is the latest and longest production of
satellite NDVI records released by the Global Inventory Modeling and Mapping Studies (GIMMS)
group [21]. It contains over 30 years of observations of 15-day maximum value compositions (MVC) at
a spatial resolution of 8 km, and can be acquired from the NASA Ames Ecological Forecasting Lab
(http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/). Multiple corrections have been applied to
eliminate errors and noise caused by satellite sensors, radiation, geometry, atmosphere, and other
factors [22]. So, compared to the older versions, this dataset can provide higher quality data for
regions in mid to high latitudes. In this study, we extracted the GIMMS NDVI3g pixels covering
complete 34 years (January 1982–December 2015) to produce the NDVI time-series curve and derive
phenological metrics.

2.3. Climate Data

Daily mean temperature and cumulative precipitation at 839 meteorological stations distributed
throughout China from 1982 to 2015 were acquired from the China Meteorological Data Sharing
Service System (http://cdc.cma.gov.cn). The daily climate data were compiled into monthly data,
and then the stations based monthly climate data were interpolated into 8 km × 8 km grids to match
the GIMMS NDVI3g dataset using ANUSPLIN 4.3. Finally, the gridded monthly temperature and
precipitation data with spatial resolution 8 km × 8 km of the Greater Khingan Mountains from 1982 to
2015 were extracted by mask analysis.

The ANUSPLIN 4.3 algorithm applies a thin-plate spline function for interpolating meteorological
data. Using this approach, a number of impact factors are used as covariates for spatially interpolating
meteorological elements, greatly improving interpolation precision, and multiple surfaces can be

http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/
http://cdc.cma.gov.cn
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interpolated simultaneously [29]. The program is particularly suited to interpolating time series
meteorological data and has been widely applied in recent phenological research [30]. The measures
of interpolation accuracy generated in the log file include the root of the generalized cross-validation
(RTGCV), the root of the mean square error (RTMSE), the root of the mean square residual (RTMSR),
and signal value. The signal value gives an indication of the degrees of freedom of the fitted spline.
The best model judgment criteria [29] are the values of RTGCV, RTMSE, RTMSR, which are minimal,
and the signal value, which is less than half the number of meteorological stations. In this study,
we used the latitude, longitude, and monthly temperature or precipitation of each meteorological
station as independent variables. Elevation, which is known to have a strong influence on climate [31],
was a covariate incorporated into the interpolation process. Then, by comparing three test schemes
(the number of splines was two, three, and four, respectively) based on the best model judgment
criteria, we finally determined the second scheme as optimal to interpolate climate data. Elevations
for this study were based on a resampled 8 km grid derived from a 90 m resolution digital elevation
model (DEM) from the NASA and National Imagery and Mapping Agency (NIMA) Shuttle Radar
Topography Mission (SRTM) (http://glcf.umd.edu/data/srtm/).

2.4. SOS and EOS Extraction

There is usually snow cover on the Greater Khingan Mountains from late autumn to the following
late spring [32]. Snow cover would reduce the NDVI value of the land surface and misrepresent
the photosynthetic capacity of vegetation during the non-growing season, which can lead to errors
in extraction of phenological parameters [33]. Therefore, snow-covered NDVI during non-growing
season should be eliminated first. According to the preprocessing method that has been validated in
precious studies [20], we replaced the NDVI values of the pixels covered by snow with the median
value of the snow-free winter NDVI values between November and the following March. Subsequently,
we smoothed and reconstructed the NDVI time series by removing abnormal (extreme high/low)
values, which were present due to atmospheric interference and sensor errors. Three time series
reconstruction algorithms in the TIMESAT software [34] were tested to smooth and reconstruct the
NDVI time series. These were Savitzky–Golay filtering (S–G), the double logistic function (DL),
and the asymmetrical Gaussian function (AG). Since each of these aforementioned methods presents
unique advantages and disadvantages, each was tested for the study area in order to choose the most
appropriate algorithm. We randomly selected the samples in the study area, and the NDVI time series
were fitted by the S–G, DL, and AG methods.

A comparison of the original and fitted curves of the GIMMS NDVI3g data at 15-day intervals
(Figure 3) indicated that the S–G filtering approach yielded the closest match to the original data.
However, the fitted curve of S–G had great volatility and was not smooth enough compared to the other
two methods. A smoothed curve is more desirable as it prevents NDVI values from varying directionally
over short intervals, and is thus more representative of actual annual vegetation growth. The DL and
AG methods both produced smoothed curves with considerable noise reduction, while the performance
of the two methods was similar and it was difficult to judge which was better. Therefore, we used three
statistical indicators to evaluate the performance of DL and AG methods: (1) the root mean square
error (RMSE); (2) Akaike’s Information Criterion (AIC); and (3) Bayesian Information Criterion (BIC).
The number of free parameters of each method was the same as Atkinson et al. [35]. For the DL and AG
methods, six and seven parameters were needed, respectively. The RMSE and AIC of AG method were
both smaller than the values of DL method (Table 2). Thus, the AG method performed better than DL
method. In addition, the AG function can generate a reconstructed NDVI curve that better describes
subtle changes in the NDVI sequence data [36], more accurately reflects the characteristics of vegetation
growth, and reduces the influence of outside interference factors (e.g., fire and pests). Therefore, the AG
method was chosen as the time series reconstruction function to be used in this study.

http://glcf.umd.edu/data/srtm/
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Figure 3. Time series reconstruction for NDVI using three functions. Displayed SOS and EOS estimates
were calculated by combining the asymmetrical Gaussian function with dynamic threshold method.

Table 2. Root mean square error (RMSE), Akaike Information Criterion (AIC), and Bayesian Information
Criterion (BIC) based assessment of the DL and AG fitting methods (best-fitting method shown in bold).

Evaluation Index
Method

DL AG

RMSE 0.2419 0.2412
AIC −79.04 −82.15
BIC −59.81 −59.07

After reconstructing the NDVI time series, the next step is to extract specific phenological
parameters such as SOS and EOS. The most common methods for this step include the maximum
slope method, the inflection-based method, and the dynamic threshold method. The maximum slope
method defined SOS or EOS as the day of year (DOY) when NDVI begins to either rapidly increase
(SOS) or decrease (EOS) [37], identified based on the maximum absolute slope of the fitted NDVI curve
during growth or senescence [38]. The inflection-based method is an algorithm detecting points where
maximum curvature occurs in a fitted NDVI time series [39]. SOS was defined as a valley point at the
beginning of a growing cycle, and EOS was defined as a valley point at the decaying end of a phenology
cycle [39]. The dynamic threshold method defines SOS and EOS as the DOY when the NDVIratio reaches
a predefined threshold of the vegetation growth amplitude during the NDVI rising stage and decline
stage, respectively [38]. However, the setting of thresholds is based on the characteristics of the NDVI
curve, and these characteristics vary among vegetation types [40]. In addition, the extent of the study
area is large and the type of vegetation is abundant. Therefore, in this study, different NDVI thresholds
(e.g., 20%, 30%, 35%, 40%, 45%, or 50%) of multiple sampling sites in the study area were repeatedly
tested. By comparison, we found that the extracted phenological parameters at the threshold of 30%
were most consistent with the results of previous studies in similar areas [41,42]. Finally, we applied
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30% as the dynamic threshold, which was also widely used for satellite-based phenology detection in
previous studies [41,43] to extract EOS. The NDVIratio is defined as:

NDVIratio =
NDVIt − NDVImin

NDVImax − NDVImin
, (1)

where NDVIt is the NDVI value at time t; NDVImax represents the annual maximum NDVI value;
for SOS, NDVImin represents the annual minimum NDVI value during the growth period; and for EOS,
NDVImin represents the annual minimum NDVI value during the senescence period.

We applied the above three methods to extract the multiyear averaged EOS in the Greater Khingan
Mountains. By comparison, we found the spatial patterns of the average EOS varied with different
methods (Figure 4). The average EOS based on maximum slope method was earliest, ranging from
Julian day 252 to 291. The average EOS based on dynamic threshold method occurred between
Julian days 284 and 331, while the average EOS based on the inflection-based method was the latest,
ranging from Julian day 288 to 354. The above results were similar to those of previous studies.
You et al. [40] founded that the maximum slope method tended to estimate the EOS date earlier
by comparing with the threshold and curvature change rate methods; Shang et al. [44] revealed
that the inflection-based approach would overestimate the EOS when the vegetation was affected
by disturbances, whereas the dynamic threshold approach can estimate it correctly. Additionally,
the slope of vegetation NDVI curve was easily affected by external conditions, so the vegetation growth
period could not be determined correctly based on the slope, which rendered the maximum slope
method unsuitable for the extraction of phenological parameters of long time series [43]. Studies also
showed that if some vegetation growth trajectories cannot be fitted well with a logistic function, it will
prevent an inflection point from being determined correctly [45]. The vegetation growth curve of this
study was fitted well by an AG function rather than a DL function, so the inflection-based method is
not suitable for extracting the phenological parameters in our study area. Comparative studies [46]
concluded that the dynamic threshold method is one of the simplest and most effective methods to
extract phenological parameters, as it generally keeps dates within a reasonable range based on the
threshold conditions and could achieve relatively high accuracy [40]. Moreover, compared with the
other two methods, the range of the multiyear averaged EOS extracted from the threshold method was
the most reasonable referring to the results of previous studies in similar areas. Thus, we finally used
the dynamic threshold method to estimate the SOS and EOS over the Greater Khingan Mountains.
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2.5. Investigating Trends in EOS, SOS, and Climatic Factors

We used Sen’s slope estimator to investigate temporal trends in EOS, SOS, and preseason climatic
factors across the Greater Khingan Mountains from 1982 to 2015 at the pixel level, along with the
Mann–Kendall trend test to determine their significance at each pixel. Compared with the linear trend
based on the least squares method, Sen’s slope estimator can help diminish the influence of missing
time series observations and non-normally distributed data on the analysis results, as well as reduce
the interference of abnormal values in a time series [47]. Thus, this method is often used to analyze
long-term sequence datasets to detect the magnitude of the trend:

Q = median
( xj − xi

j− i

)
1 ≤ i < j ≤ n, (2)

where Q is the Sen’s slope; xj and xi represent the sequence value at time j and i, respectively;
and median is calculated from all pairs of observations in the time series.

The Mann–Kendall trend test is one of the most common methods used for testing time series
trends [48]. It does not require samples to follow a certain distribution, is not subject to the interference
of a few extreme values, is suitable for hydrological, meteorological, and other non-normally distributed
data, and has been widely used in the analysis of remotely-sensed data [47]. The combined use of Sen’s
slope estimator and the Mann–Kendall trend test has become an important method for analyzing time
series vegetation data [49].

2.6. Detecting the Correlation between EOS and SOS as Well as Climatic Factors

During multivariate correlation analysis, the influence of each variable is mutual. Therefore,
the correlation between variables will not be truly reflected when correlation analysis is conducted using
only two variables [15]. So, when analyzing the correlation between the two variables, the influence of
other variables must be considered. To address this problem, we applied a temporal partial correlation
analysis between EOS and SOS, and the preseason climatic factors. This approach was aimed at
statistically investigating the relationship between EOS and a single driving factor while controlling the
influence of the two remaining factors. This method has been commonly applied in climate change and
ecological studies [3]. The partial correlation coefficients were also calculated for each ecogeographical
region as well as the entire study area.

2.7. Determination of the Preseason

The preseason was defined as the period (with a one-month time-step) before the EOS date for
which the correlation between EOS and climatic factors (e.g., temperature and precipitation) was
highest during 1982–2015. Following previous studies, the maximum range of this period was set from
May to the multiyear average date of EOS [50]. The average onset date of vegetation dormancy in the
Greater Khingan Mountains over all pixels and years is around late October (as shown in Section 3),
so the preseason in this study was defined as May through October.

3. Results

3.1. Spatial Pattern of Autumn Phenology

The average EOS dates during the study period (1982–2015) ranged from Julian day 284 to 331,
with an average date of Julian day 292 (late October) for the study area (Figure 5). EOS dates at more
than 90% of pixels occurred in October, from Julian day 285 through 305. Both the earliest and latest
EOS dates were observed in the MFN region, with a difference of 47 days between them. The CMF
region had the earliest EOS date, which occurred on Julian day 290 on average. The average EOS
dates for the GLS and FGN regions were Julian days 291 and 292, respectively, slightly later than that
observed in the CMF region.



Remote Sens. 2018, 10, 449 10 of 22

Remote Sens. 2018, 13, x FOR PEER REVIEW  10 of 21 

 

climate change and ecological studies [3]. The partial correlation coefficients were also calculated for 
each ecogeographical region as well as the entire study area. 

2.7. Determination of the Preseason 

The preseason was defined as the period (with a one-month time-step) before the EOS date for 
which the correlation between EOS and climatic factors (e.g., temperature and precipitation) was 
highest during 1982–2015. Following previous studies, the maximum range of this period was set 
from May to the multiyear average date of EOS [50]. The average onset date of vegetation dormancy 
in the Greater Khingan Mountains over all pixels and years is around late October (as shown in 
Section 3), so the preseason in this study was defined as May through October. 

3. Results 

3.1. Spatial Pattern of Autumn Phenology 

The average EOS dates during the study period (1982–2015) ranged from Julian day 284 to 331, 
with an average date of Julian day 292 (late October) for the study area (Figure 5). EOS dates at more 
than 90% of pixels occurred in October, from Julian day 285 through 305. Both the earliest and latest 
EOS dates were observed in the MFN region, with a difference of 47 days between them. The CMF 
region had the earliest EOS date, which occurred on Julian day 290 on average. The average EOS 
dates for the GLS and FGN regions were Julian days 291 and 292, respectively, slightly later than that 
observed in the CMF region. 

 
Figure 5. Spatial distribution of EOS in the Greater Khingan Mountains during the period 1982–2015. Figure 5. Spatial distribution of EOS in the Greater Khingan Mountains during the period 1982–2015.

3.2. Trends in Autumn Phenology and Climatic Factors

The trends of the EOS, SOS, preseason temperature, and preseason precipitation were calculated
at the 95% confidence level (Figure 6).The mean EOS date in the whole Greater Khingan Mountains
had been delayed by 7.82 days over the past 34 years (an average rate of 0.23 days/y). More than
94% of the study area exhibited delayed trends of EOS, with roughly 72% showing significant delays
(p < 0.05) (Figure 6a). The other ~6% of pixels showed earlier EOS, mainly in the southeastern of the
study area, but only 12% were significant (p < 0.05). The mean EOS date of all the ecogeographical
regions uniformly exhibited delayed trends. In the semi-arid GLS region, the mean EOS date exhibited
a minimum delay of 3.06 days (0.09 days/y), while the mean EOS date of FGN region exhibited
a maximum delay of 11.56 days (0.34 days/y) (Figure 7a).



Remote Sens. 2018, 10, 449 11 of 22

Remote Sens. 2018, 13, x FOR PEER REVIEW  11 of 21 

 

3.2. Trends in Autumn Phenology and Climatic Factors 

The trends of the EOS, SOS, preseason temperature, and preseason precipitation were calculated 
at the 95% confidence level (Figure 6).The mean EOS date in the whole Greater Khingan Mountains 
had been delayed by 7.82 days over the past 34 years (an average rate of 0.23 days/y). More than 94% 
of the study area exhibited delayed trends of EOS, with roughly 72% showing significant delays (p < 
0.05) (Figure 6a). The other ~6% of pixels showed earlier EOS, mainly in the southeastern of the study 
area, but only 12% were significant (p < 0.05). The mean EOS date of all the ecogeographical regions 
uniformly exhibited delayed trends. In the semi-arid GLS region, the mean EOS date exhibited a 
minimum delay of 3.06 days (0.09 days/y), while the mean EOS date of FGN region exhibited a 
maximum delay of 11.56 days (0.34 days/y) (Figure 7a). 

 
Figure 6. Spatial pattern of interannual temporal trends in EOS (a); SOS (b); preseason temperature 
(c); and preseason precipitation (d) in the Greater Khingan Mountains over 1982–2015. The pink pixels 
in the top-left inset indicate that the detected trends were significant at p < 0.05. 

Figure 6. Spatial pattern of interannual temporal trends in EOS (a); SOS (b); preseason temperature (c);
and preseason precipitation (d) in the Greater Khingan Mountains over 1982–2015. The pink pixels in
the top-left inset indicate that the detected trends were significant at p < 0.05.

During 1982–2015, a preseason temperature increase was observed in more than 88% of the
study area (around 61% was statistically significant at p < 0.05), and occurred mainly in the FGN
and CMF regions (Figure 6c). The preseason temperature in all of the ecogeographical regions
(MFN, FGN, CMF, and GLS) exhibited a clear increasing trend (+0.02 ◦C/y, +0.05 ◦C/y, +0.04 ◦C/y,
and +0.03 ◦C/y, respectively) (Figure 7c). For the spatial distribution of preseason precipitation
variation, neither negative nor positive trends (both nearly 50%) dominated the entire study area
(Figure 6d). In addition, the variation trends of preseason precipitation in all the ecogeographical
regions were different. In the MFN and FGN regions, the preseason precipitation exhibited decreasing
trends (−0.33mm/y and −2.6 mm/y, respectively), while in the CMF and GLS regions, the preseason
precipitation exhibited increasing trends (+0.29 mm/y and +0.15 mm/y, respectively) (Figure 7d).



Remote Sens. 2018, 10, 449 12 of 22

Remote Sens. 2018, 13, x FOR PEER REVIEW  12 of 21 

 

During 1982–2015, a preseason temperature increase was observed in more than 88% of the 
study area (around 61% was statistically significant at p < 0.05), and occurred mainly in the FGN and 
CMF regions (Figure 6c). The preseason temperature in all of the ecogeographical regions (MFN, 
FGN, CMF, and GLS) exhibited a clear increasing trend (+0.02 °C/y, +0.05 °C/y, +0.04 °C/y, and +0.03 
°C/y, respectively) (Figure 7c). For the spatial distribution of preseason precipitation variation, 
neither negative nor positive trends (both nearly 50%) dominated the entire study area (Figure 6d). 
In addition, the variation trends of preseason precipitation in all the ecogeographical regions were 
different. In the MFN and FGN regions, the preseason precipitation exhibited decreasing trends 
(−0.33mm/y and −2.6 mm/y, respectively), while in the CMF and GLS regions, the preseason 
precipitation exhibited increasing trends (+0.29 mm/y and +0.15 mm/y, respectively) (Figure 7d). 

 
Figure 7. Average trend and standard deviation of EOS (a); SOS (b); preseason temperature (c); and 
preseason precipitation (d) across four ecogeographical regions in the Greater Khingan Mountains 
from 1982 to 2015. 

3.3. Effects of Climatic Factors on Autumn Phenology 

The partial correlation coefficients between EOS and preseason temperature, preseason 
precipitation, SOS were also calculated at 95% confidence level (Figure 8). Over 61% of the entire 
study area showed negative partial correlations between preseason temperature and EOS (about 6% 
of the relationships were significant at p < 0.05), the remaining ~38% of the study area showed positive 
partial correlations (Figure 8a). In the humid and semi-humid regions (MFN, FGN, and CMF), more 
than 60% of each presented negative partial correlations between preseason temperature and EOS 
(Figure 9), suggesting that higher temperature during the preseason led to an earlier EOS in most of 
these areas. In most of the semi-arid GLS region, however, increased preseason temperature played 
a role in delaying the EOS date (about 72% of this region exhibited positive partial correlations) 
(Figure 9). 

Figure 7. Average trend and standard deviation of EOS (a); SOS (b); preseason temperature (c);
and preseason precipitation (d) across four ecogeographical regions in the Greater Khingan Mountains
from 1982 to 2015.

3.3. Effects of Climatic Factors on Autumn Phenology

The partial correlation coefficients between EOS and preseason temperature, preseason precipitation,
SOS were also calculated at 95% confidence level (Figure 8). Over 61% of the entire study area
showed negative partial correlations between preseason temperature and EOS (about 6% of the
relationships were significant at p < 0.05), the remaining ~38% of the study area showed positive
partial correlations (Figure 8a). In the humid and semi-humid regions (MFN, FGN, and CMF), more than
60% of each presented negative partial correlations between preseason temperature and EOS (Figure 9),
suggesting that higher temperature during the preseason led to an earlier EOS in most of these areas.
In most of the semi-arid GLS region, however, increased preseason temperature played a role in delaying
the EOS date (about 72% of this region exhibited positive partial correlations) (Figure 9).
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Figure 8. Spatial distribution of partial correlation coefficients between EOS and preseason temperature
(a); preseason precipitation (b); SOS (c) in the Greater Khingan Mountains during 1982–2015. The pink
pixels in the top-left inset indicate a significant correlations at p < 0.05. (d) The spatial distribution of
major controls on the EOS over the Greater Khingan Mountains during 1982–2015. The grey pixels
indicated none of the three factors was significantly (p < 0.05 level) correlated with EOS.
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precipitation, and SOS of each ecogeographical region in the Greater Khingan Mountains from 1982
to 2015. Bars above 0 and below 0 represent the percentage of positive and negative correlations,
respectively. Colored sections show the percentage of significant correlations at p < 0.05.

Negative partial correlations between preseason precipitation and EOS dominated about 71% of
the study area, and about 34% of them were significant (p < 0.05), indicating that increased precipitation
during preseason would advance the EOS date (Figure 8b). Interestingly, in each of all the four
ecogeographical regions, the relationships between preseason precipitation and EOS were same as
that between preseason temperature and EOS (Figure 9). In the humid and semi-humid regions
(MFN, FGN, and CMF), most of each region (94%, 98%, and 78%, respectively) experienced negative
partial correlations between preseason precipitation and EOS. While in 74% of semi-arid GLS region,
the partial correlations were positive, suggesting that increasing precipitation during the preseason
could contribute to the extension of EOS.

3.4. Relationship between Spring Phenology and Autumn Phenology

Contrary to the delayed trend observed for EOS change, the mean date of the SOS in the Greater
Khingan Mountains advanced an average of 0.20 days/y from 1982 to 2015. More than 94% of the
pixels exhibited earlier trends of SOS, with more than 65% significant (p < 0.05) (Figure 6b). In addition,
in each of the four ecogeographical regions, the mean SOS date all exhibited an earlier trend over the
past 34 years (Figure 7b).

Negative partial correlations between EOS and SOS dominated the whole study area (more than
85%), with more than 22% of pixels having statistically significant relationships between the two
variables (p < 0.05). Positive partial correlations were observed primarily in the southern MFN and
northern GLS regions (Figure 8c). In each of the four ecogeographical regions, SOS was negatively
associated with EOS. This was especially true in the FGN region, over 93% of which was absolutely
dominated by negative relationships, with more than 45% statistically significant (p < 0.05) (Figure 9).
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3.5. Spatial Pattern of the Dominant Factors Affecting Autumn Phenology

Preseason precipitation was the main driver of interannual EOS variations for 26% of all
pixels, followed by SOS (17%), and preseason temperature (3%) (Figure 8d). The remaining pixels
were not statistically significant at the p < 0.05 level. Preseason precipitation was the primary
determinant of the EOS changes in the southwestern MFN, northeastern FGN, and western CMF
regions. Preseason temperature sporadically controlled the EOS changes of a small number of pixels,
however, indicating that precipitation was the main climatic driver of EOS changes in most of the
Greater Khingan Mountains during the preseason. Additionally, SOS showed a certain driving effect on
the EOS changes.

4. Discussion

4.1. Relationship between Autumn Phenology and Climatic Factors

Our results indicated that the average EOS date in the Greater Khingan Mountains, northeastern
China during 1982–2015 had a delayed trend of 0.23 days/y, generally consistent with the results
of previous studies also showing a delayed EOS trend in the Northern Hemisphere [9], Europe [51],
North America [52], and temperate China [50]. Zhao et al. [41] estimated the EOS across the entire
Northeast China from 1982 to 2013 and found a delay of 0.13 days/y. Tang et al. [42] reported EOS
changes in the Hulunber of northeastern China during 1982–2012, with an average delay of 0.29 days/y.
Compared to the two above studies investigating the similar study area (northeastern China) and using
the same data source (GIMMS NDVI3g), the delayed rate of EOS observed in this study was slightly
different from the results of these studies, possibly because the specific location of study area and the
phenology extraction method were different. However, the comparison showed that the results of our
study could explain well the change of autumn phenology in the Greater Khingan Mountains.

The terrain of the Greater Khingan Mountains is complex and climatic conditions vary across the
region. Thus, the response of the EOS to climatic changes varied by latitude. We found that preseason
temperature was generally negatively correlated with the EOS date in the MFN, FGN, and CMF
regions. For the MFN and CMF regions, which are mainly covered in deciduous trees, this finding
may be due to warming-induced enhancement of tree canopy transpiration, in which the roots of
trees lacked moisture, thus reducing water utilization [53] and subsequently leading to earlier EOS.
In addition, because permafrost is present in portions of these two regions, trees growth, especially the
formation and development of Larix gmelini forest, was closely related to the alpine and permafrost
environment [54]. Permafrost could provide the needed moisture for tree growth, whereas high
temperature would decrease the soil freezing depth and the protection of the aquifers, weaken the soil
water retention, and thus in the dry season prevent adequate water for trees growth, accelerating leaf
senescence [55]. Another reason may be that leaves of deciduous trees need a certain accumulated
temperature from growth to senescence, and preseason temperature increase makes the tree leaves
obtain the required accumulated temperature in a short period of time, thus leading to earlier wilting
dates [56]. For the FGN region, which is dominated by herbaceous plants (Stipa baicalensis meadow
steppe, Filifolium sibiricum meadow steppe), warmer temperatures during the preseason would also
accelerate the end of the growing season. This may be because the preseason temperature in this region
exhibited the most significant increasing trend (Figure 7c). Thus, an excessive increase in preseason
temperature will limit vegetation growth in this region [57]. Similarly, preseason precipitation was also
negatively correlated with the EOS in most of the MFN, FGN, and CMF regions. The reason may be
that the MFN, FGN, and CMF regions are located in humid and semi-humid areas with rain and heat
over the same period and abundant rainfall. Soil moisture will rapidly increase with the increasing
precipitation during the preseason, and then enhance the vegetation photosynthesis by affecting the
vegetation carboxylation. The vegetation will accelerate growth and complete the entire growing
season ahead of schedule [58]. Additionally, due to the impact of permafrost, high soil moisture in
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these colder areas may limit the availability of nutrients for vegetation growth [59], thus prematurely
ending vegetation growth.

In most of the grassland semi-arid region (GLS), which is mainly covered in herbaceous plants,
a warming preseason temperature delayed the EOS date, which was consistent with findings in
previous studies based on satellite data and field experiments [60]. This result is probably because
warming in summer and autumn can enhance the activities of photosynthetic enzymes [61], reduce the
rate of chlorophyll degradation during leaf senescence in autumn, and thus delay the time of leaf
senescence [62]. Furthermore, herbaceous plants are more sensitive to chilling injury compared to
deciduous trees, so the warmer preseason may increase the number of days available for vegetation
growth and photosynthesis [63], reduce the probability of frost damage [64], and thereby postpone the
autumn phenology of herbaceous plants in the GLS region. Positive effects of preseason precipitation
on the EOS date of GLS region were also revealed in this study. Possibly due to shallow roots,
herbaceous plants in semi-arid region are often subjected to water stress, and their growth is bound
to respond rapidly to water. Increasing precipitation during the preseason can effectively alleviate
water stress, thus delaying the EOS date and prolonging the growing season [65]. In summary,
preseason precipitation had a greater impact than temperature on the EOS in most of the Greater
Khingan Mountains. Climate change has a direct impact on vegetation phenology and also indirectly
affects ecological processes such as species competitive balance, which may alter forest composition
(e.g., proportions of coniferous vs. deciduous), which ultimately affects phenological change [66].
Previous studies [67] showed that temperature increase may result in the area of coniferous species
contracted and broadleaf species expanded, with potential to replace coniferous forest completely.
However, tree species migration usually lags behind warming for decades or even a century [68].
Therefore, we believe over the past 34 years the impact of climate change on ecological processes may
not greatly change forest composition and consequently may not alter our results on the phenological
change in the Greater Khingan Mountains. Overall, the relationship between autumn phenology of
different vegetation and climatic factors is complex and the impact mechanisms affecting delayed
autumn phenology need to be further explored.

4.2. The Influence of Spring Phenology on Autumn Phenology

Our results showed that there was a strong positive correlation between SOS and EOS at the pixel
level in the southwestern MFN and the northeastern GLS regions, suggesting that an earlier spring
phenology would lead to an earlier autumn phenology. Many mechanistic studies have been conducted
to explain this phenomenon. First, as the influencing factor of leaf traits, programmed cell death [69]
and leaf longevity [70] were reported to constrain the timing of leaf senescence. Second, earlier springs
may result in soil water losses via increases in snow sublimation and evapotranspiration in the early
part of the growing season; thus, summer and autumn drought duration may increase, leading to
earlier EOS dates [71]. Third, earlier spring budburst can increase the risk of vegetation suffering
damage such as spring frost [72] and insect disease [73], thereby inducing earlier leaf senescence.
Finally, the size of the vegetation carbon sink was also found to restrict the correlation between spring
and autumn phenology because the accumulation of unstructured carbohydrates in earlier spring may
contribute to an earlier peak in autumn carbon content [15]. Negative partial correlations between
the SOS and EOS also occurred in the Greater Khingan Mountains; specifically, an earlier SOS was
followed by a delayed EOS. This special situation may not be explained by the internal mechanism of
vegetation alone. The SOS is also significantly affected by climatic factors, showing an earlier trend in
other regions under the context of climate warming [4,28], which is consistent with our results.

4.3. Uncertainty

In general, there are six methods to reconstruct NDVI time series [18,35]. These are (1) Savitzky–
Golay filter (S–G); (2) double logistic function (DL); (3) the asymmetric Gaussian function (AG); (4) the
harmonic analysis of time series (HANTS); (5) the Fourier transform (FT); and (6) the innovative
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Whittaker smoother (WS). Each method has advantages and disadvantages, and there is no universal
method suitable for all vegetation types of specific study areas [35]. The choice of the method depends
on the purpose of the study. TIMESAT is a free software package for processing satellite time series
data. The software can adapt to the upper envelope of the data, taking missing data and quality flags
into account, and has been widely used in a large number of applied studies for data smoothing and
phenology parameter extraction [34]. TIMESAT only has three models (S–G, DL, AG), so we only
tested the S–G, DL, and AG models in this study. The parameter settings of S–G might be off the norm,
and we adopted the settings from Zhao et al. [41] (an adaptation strength of 2.0, no spike filtering,
a seasonal parameter of 0.5, a seasonal parameter of 0.5, a window size of 2). In this study, we did not
take the other common smooth methods (e.g., HANTS, FT, WS) into account, especially the innovative
Whittaker smoother, which fits a discrete series to discrete data and penalizes the roughness of the
smooth curve, balances reliability of the data, and roughness of the fitted data and may produce
a better resulting curve [74]. Thus, the finally selected AG method in this study may not be optimal,
and a comprehensive comparison of these methods needs to be conducted.

The spatial resolution of GIMMS NDVI3g dataset used in our study was 8 km. Coarse spatial
resolution (8 km) that caused mixed vegetation types was the main source of uncertainties. Each pixel
value is the mean reflectance of several land cover types over an area of 64 km2. Consequently,
the processed value approximated the phenology of the dominant vegetation type and overlooked
the minor cover types, leading to uncertainties in capturing the phenology of all vegetation types [41].
However, our study was based on a regional scale, and researchers have used the NDVI3g dataset with
8 km spatial resolution for phenology study at regional to continental scales [9,42,50], which provided
effective information on seasonal variation of vegetation phenology over a long time period and
with continuous spatial coverage. Moreover, higher resolutions may not necessarily lead to more
accurate results [75]. Studies showed that fusing multi-source remote sensing data with different
spatial resolutions is considered a feasible way to reduce this uncertainty [76].

The curve of long time series remote sensing data (e.g., NDVI) reflected vegetation dynamics.
When the vegetation is affected by disturbances (e.g., wind, pests, fire, and human activities) [77],
aberrations would be found in the curve. Disturbances affect phenology in a stochastic manner,
leading to another source of uncertainties. When large-scale phenological parameters are extracted,
it is difficult to remove the influences of all disturbances during all the study years, thus the results of
this study could also potentially be affected.

In addition, solar radiation [9], atmospheric CO2 concentrations [78], nutrient availability [6],
and other factors could also affect autumn phenology. Especially solar radiation, as another important
climate factor and a combination of both photoperiod and solar intensity, would trigger autumn
phenology in mid–high latitudes [9]. Specifically, increased insolation can retard the accumulation of
abscisic acid and subsequently slow down leaf senescence [79]. Furthermore, the chlorophyll levels of
leaves will increase due to the enhanced photosynthetic capacity and CO2 sequestration caused by the
increased insolation, and result in a delayed EOS date [80]. However, it is difficult to take all of these
factors into consideration in a large-scale remote sensing application. The phenological remote sensing
models used in the present studies only make use of time series remote sensing data (e.g., NDVI,
EVI) to extract phenological parameters without incorporating other potential phenological restriction
factors [9,41]. In addition, we only analyzed the effects of temperature and precipitation on autumn
phenology in this study. Therefore, we should consider these factors as much as possible in follow-up
studies to reduce uncertainties in the results.

5. Conclusions

In this study, we extracted phenological parameters for the Greater Khingan Mountains from
1982 to 2015 based on the GIMMS NDVI3g dataset and an asymmetric Gaussian fitting function.
We analyzed the interannual variation and the influence of major environmental controls on the EOS.
Results showed that the EOS in the entire Greater Khingan Mountains and each of its ecogeographical
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regions all exhibited a delayed trend over the past 34 years. Furthermore, the driving factor of
the EOS varied among the different ecogeographical regions (MFN, FGN, CMF, and GLS regions).
Both increasing temperature and precipitation during the preseason (May through October) accelerated
leaf senescence in autumn at mid–high latitudes (MFN, FGN, and CMF regions), with the exception
of the semi-arid region (GLS), where the warming temperature and increased precipitation in
summer/autumn delayed the EOS. Importantly, the preseason precipitation was a stronger driver
of EOS changes relative to preseason temperature. Apart from climatic factors, we found that the
SOS also had effects on the EOS, with mainly negative correlations across most of the study area.
However, in the southwestern MFN and northeastern GLS regions, an earlier SOS resulted in an
earlier EOS. In addition, compared with climatic factors, SOS played a more significant role than
preseason temperature. The results of our study provide a useful reference for understanding the
interannual variation of autumn phenology in mid–high latitudes and its response to climate change.
In addition, given the important role of autumn phenology in regulating the global carbon budget,
our study suggests that both climatic factors and SOS should be assembled into the EOS models to
more accurately simulate changes in autumn phenology.
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75. Kern, A.; Marjanović, H.; Barcza, Z. Evaluation of the quality of ndvi3g dataset against collection 6 modis
ndvi in central europe between 2000 and 2013. Remote Sens. 2016, 8, 955. [CrossRef]

76. Jia, K.; Liang, S.; Zhang, N.; Wei, X.; Gu, X.; Zhao, X.; Yao, Y.; Xie, X. Land cover classification of finer
resolution remote sensing data integrating temporal features from time series coarser resolution data.
ISPRS J. Photogramm. Remote Sens. 2014, 93, 49–55. [CrossRef]

77. Wang, J.; Zhang, X. Impacts of wildfires on interannual trends in land surface phenology: An investigation
of the hayman fire. Environ. Res. Lett. 2017, 12, 054008. [CrossRef]

78. Reyesfox, M.; Steltzer, H.; Trlica, M.J.; Mcmaster, G.S.; Andales, A.A.; Lecain, D.R.; Morgan, J.A. Elevated CO2

further lengthens growing season under warming conditions. Nature 2014, 510, 259. [CrossRef] [PubMed]
79. Gepstein, S.; Thimann, K.V. Changes in the abscisic acid content of oat leaves during senescence. Proc. Natl.

Acad. Sci. USA 1980, 77, 2050–2053. [CrossRef] [PubMed]
80. Kim, J.-H.; Moon, Y.R.; Wi, S.G.; Kim, J.-S.; Lee, M.H.; Chung, B.Y. Differential radiation sensitivities

of arabidopsis plants at various developmental stages. In Photosynthesis. Energy from the Sun; Springer:
Dordrecht, The Netherlands, 2008; pp. 1491–1495.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs8110955
http://dx.doi.org/10.1016/j.isprsjprs.2014.04.004
http://dx.doi.org/10.1088/1748-9326/aa6ad9
http://dx.doi.org/10.1038/nature13207
http://www.ncbi.nlm.nih.gov/pubmed/24759322
http://dx.doi.org/10.1073/pnas.77.4.2050
http://www.ncbi.nlm.nih.gov/pubmed/16592805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	GIMMS NDVI3g Dataset 
	Climate Data 
	SOS and EOS Extraction 
	Investigating Trends in EOS, SOS, and Climatic Factors 
	Detecting the Correlation between EOS and SOS as Well as Climatic Factors 
	Determination of the Preseason 

	Results 
	Spatial Pattern of Autumn Phenology 
	Trends in Autumn Phenology and Climatic Factors 
	Effects of Climatic Factors on Autumn Phenology 
	Relationship between Spring Phenology and Autumn Phenology 
	Spatial Pattern of the Dominant Factors Affecting Autumn Phenology 

	Discussion 
	Relationship between Autumn Phenology and Climatic Factors 
	The Influence of Spring Phenology on Autumn Phenology 
	Uncertainty 

	Conclusions 
	References

