Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lake Altimetry
2.2. DInSAR Processing of Envisat ASAR and Sentinel-1 Data
2.3. Atmospheric Correction
2.3.1. Tropospheric Delays from Numerical Weather Models
2.3.2. Phase-Based Tropospheric Delays
2.4. Deformation Decomposition of Sentinel-1 Data
2.5. Modelling of Elastic Surface Deformations
3. Results
3.1. Atmospheric Corrections
3.2. Ground Deformation
4. Discussion
4.1. Atmospheric Corrections
4.2. Ground Deformation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simpson, D.W.; Leith, W.; Scholz, C. Two types of reservoir-induced seismicity. Bull. Seismol. Soc. Am. 1988, 78, 2025–2040. [Google Scholar]
- Kaufmann, G.; Amelung, F. Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada. J. Geophys. Res.-Solid Earth 2000, 105, 16341–16358. [Google Scholar] [CrossRef]
- Bevis, M.; Kendrick, E.; Cser, A.; Smalley, R. Geodetic measurement of the local elastic response to the changing mass of water in Lago Laja, Chile. Phys. Earth Planet. Inter. 2004, 141, 71–78. [Google Scholar] [CrossRef]
- Wahr, J.; Khan, S.A.; van Dam, T.; Liu, L.; van Angelen, J.H.; van den Broeke, M.R.; Meertens, C.M. The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. J. Geophys. Res.-Solid Earth 2013, 118, 1795–1806. [Google Scholar] [CrossRef]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. 2007, 112, B03403. [Google Scholar] [CrossRef]
- Nof, R.N.; Ziv, A.; Doin, M.P.; Baer, G.; Fialko, Y.; Wdowinski, S.; Eyal, Y.; Bock, Y. Rising of the lowest place on Earth due to Dead Sea water-level drop: Evidence from SAR interferometry and GPS. J. Geophys. Res.-Solid Earth 2012, 117, B05412. [Google Scholar] [CrossRef]
- Zhao, W.; Amelung, F.; Doin, M.P.; Dixon, T.H.; Wdowinski, S.; Lin, G. InSAR observations of lake loading at Yangzhuoyong Lake, Tibet: Constraints on crustal elasticity. Earth Planet. Sci. Lett. 2016, 449, 240–245. [Google Scholar] [CrossRef]
- Furuya, M.; Wahr, J.M. Water level changes at an ice-dammed lake in west Greenland inferred from InSAR data. Geophys. Res. Lett. 2005, 32, L14501. [Google Scholar] [CrossRef]
- Doin, M.P.; Twardzik, C.; Ducret, G.; Lasserre, C.; Guillaso, S.; Jianbao, S. InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in central Tibet. J. Geophys. Res.-Solid Earth 2015, 120, 5290–5310. [Google Scholar] [CrossRef]
- Gahalaut, V.; Yadav, R.K.; Sreejith, K.M.; Gahalaut, K.; Bürgmann, R.; Agrawal, R.; Sati, S.; Kumar, A. InSAR and GPS measurements of crustal deformation due to seasonal loading of Tehri reservoir in Garhwal Himalaya, India. Geophys. J. Int. 2017, 209, 425–433. [Google Scholar] [CrossRef]
- Simpson, D.W.; Hamburger, M.W.; Pavlov, V.D.; Nersesov, I.L. Tectonics and seismicity of the Toktogul Reservoir Region, Kirgizia, USSR. J. Geophys. Res. 1981, 86, 345–358. [Google Scholar] [CrossRef]
- Tibaldi, A.; Corazzato, C.; Rust, D.; Bonali, F.; Pasquarè Mariotto, F.; Korzhenkov, A.; Oppizzi, P.; Bonzanigo, L. Tectonic and gravity-induced deformation along the active Talas–Fergana Fault, Tien Shan, Kyrgyzstan. Tectonophysics 2015, 657, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Savoskul, O.; Chevnina, E.; Perziger, F.; Vasilina, L.; Baburin, V.; Danshin, A.I.; Matyakubov, B.; Murakaev, R. Water, climate, food, and environment in the Syr Darya Basin. In Contribution to the Project ADAPT; Savoskul, O.S., Ed.; The Pennsylvania State University: State College, PA, USA, 2003. [Google Scholar]
- Keith, J.E.; McKinney, D.C. Options Analysis of the Operation of the Toktogul Reservoir. Available online: http://www.ce.utexas.edu/prof/mckinney/papers/aral/Issue7.html (accessed on 15 December 2017).
- Kyrgyzstan Disaster Risk Data Platform. Available online: http://geonode.mes.kg (accessed on 10 March 2017).
- Ghose, S.; Mellors, R.J.; Korjenkov, A.M.; Hamburger, M.W.; Pavlis, T.L.; Pavlis, G.L.; Omuraliev, M.; Mamyrov, E.; Muraliev, A.R. The MS = 7.3 1992 Suusamyr, Kyrgyzstan, Earthquake in the Tien Shan: 2. Aftershock Focal Mechanisms and Surface Deformation. Bull. Seismol. Soc. Am. 1997, 87, 23–38. [Google Scholar]
- Dovgan, V. Seismometric Monitoring of Toktogul Hydroelectric Power Station. In Proceedings of the IV International Conference “Problems of Cybernetics and Informatics” (PCI’2012), Baku, Azerbaijan, 12–14 September 2012; pp. 81–84. [Google Scholar]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res.-Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 2006, 441, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Puysségur, B.; Michel, R.; Avouac, J.P. Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery. J. Geophys. Res. 2007, 112, B05419. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Hooper, A.; Wright, T.J. A spatially variable power law tropospheric correction technique for InSAR data. J. Geophys. Res.-Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Birkett, C.M. Radar altimetry: A new concept in monitoring lake level changes. Eos Trans. Am. Geophys. Union 1994, 75, 273–275. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Abarca-del Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef]
- Schöne, T.; Dusik, E.; Illigner, J.; Klein, I. Water in Central Asia: Reservoir Monitoring with Radar Altimetry Along the Naryn and Syr Darya Rivers. In Proceedings of the International Symposium on Earth and Environmental Sciences for Future Generations, Prague, Czech Republic, 22 June–2 July 2015; Springer: Cham, Switzerland, 2017; Volume 147, pp. 349–357. [Google Scholar]
- CA WATER Info. Available online: www.cawater-info.net (accessed on 31 January 2017).
- JSC “Electric Stations”. Available online: www.energo-es.kg (accessed on 31 January 2017).
- Förste, C.; Bruinsma, S.; Abrykosov, O.; Flechtner, F.; Dahle, C.; Neumayer, K.H.; Barthelmes, F.; König, R.; Marty, J.-C.; Lemoine, J.M.; et al. EIGEN-6C3—The newest high resolution global combined gravity field model based on the 4th release of the GOCE Direct Approach. In Proceedings of the 2013 IAG Scientific Assembly, 150th Anniversary of the IAG, Potsdam, Germany, 1–6 September 2013. [Google Scholar]
- Werner, C.L.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and Interferometric Processing Software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Prats, P.; Marotti, L.; Wollstadt, S.; Scheiber, R. Investigations on TOPS interferometry with TerraSAR-X. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, 25–30 July 2010; pp. 2629–2632. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry With TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef] [Green Version]
- Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2179–2191. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 IWS mode support in the GAMMA software. Procedia Comput. Sci. 2016, 100, 431–436. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE T. Geosci. Remote 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A.J.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Hooper, A.J.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Marinković, P.; Larsen, Y. On Resolving the Local Oscillator Drift Induced Phase Ramps in ASAR and ERS1/2 Interferometric Data—The Final Solution. In Proceedings of the Fringe 2015 workshop (ESA SP-731), Frascati, Italy, 23–27 March 2015. [Google Scholar]
- Bekaert, D.; Walters, R.; Wright, T.; Hooper, A.; Parker, D. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef]
- Doin, M.P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z. Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res.-Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Lohman, R.B. Characterizing and estimating noise in InSAR and InSAR time series with MODIS. Geochem. Geophys. 2013, 14, 4121–4132. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38, L17311. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 M W 7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Motagh, M.; Shamshiri, R.; Haghshenas Haghighi, M.; Wetzel, H.U.; Akbari, B.; Nahavandchi, H.; Roessner, S.; Arabi, S. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 2017, 218, 134–151. [Google Scholar] [CrossRef]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Dill, R.; Klemann, V.; Martinec, Z.; Tesauro, M. Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. J. Geodyn. 2015, 88, 14–22. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Tesauro, M.; Audet, P.; Kaban, M.K.; Bürgmann, R.; Cloetingh, S. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochem. Geophys. Geosys. 2012, 13, Q09001. [Google Scholar] [CrossRef]
- Haiden, T.; Janousek, M.; Bauer, P.; Bidlot, J.; Dahoui, M.; Ferranti, L.; Prates, F.; Richardson, D.; Vitart, F. Evaluation of ECMWF forecasts, including 2014–2015 upgrades. In ECMWF Technical Memoranda; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2015; Volume 765, pp. 1–51. [Google Scholar]
- Havenith, H.B.; Torgoev, I.; Torgoev, A.; Strom, A.; Xu, Y.; Fernandez-Steeger, T. The Kambarata 2 blast-fill dam, Kyrgyz Republic: Blast event, geophysical monitoring and dam structure modelling. Geoenviron. Disasters 2015, 2, 11. [Google Scholar] [CrossRef]
- Abdrakhmatov, K.; Havenith, H.B.; Delvaux, D.; Jongmans, D.; Trefois, P. Probabilistic PGA and Arias Intensity maps of Kyrgyzstan (Central Asia). J. Seismol. 2003, 7, 203–220. [Google Scholar] [CrossRef]
- Bindi, D.; Abdrakhmatov, K.; Parolai, S.; Mucciarelli, M.; Grünthal, G.; Ischuk, A.; Mikhailova, N.; Zschau, J. Seismic hazard assessment in Central Asia: Outcomes from a site approach. Soil Dyn. Earthq. Eng. 2012, 37, 84–91. [Google Scholar] [CrossRef]
Satellite | Orbit | Path | Acquisition Time (UTC) | Mean Angle of Incidence | Heading Angle | Amount of Scenes | Amount of Interferograms |
---|---|---|---|---|---|---|---|
Envisat | desc. | 277 | 05:23 | 23.4° | −167.8° | 22 | 53 |
Sentinel 1 | desc. | 5 | 01:13 | 39.7° | −170.1° | 20 | 49 |
Sentinel 1 | asc. | 100 | 13:06 | 43.3° | 9.4° | 28 | 96 |
Model | Spatial Resolution | Temporal Resolution | Pressure Levels |
---|---|---|---|
opECMWF | 0.1° | 6 h | 25 |
ERA5 1 h | 0.1° | 1 h | 37 |
ERA5 6 h | 0.1° | 6 h | 37 |
ERA-I | 0.75° | 6 h | 37 |
Band [km]: | 2–4 | 2–8 | 2–16 | 4–8 | 4–16 | 4–32 | 8–16 | 8–32 | 8–64 | 16–32 | 16–64 | 32–64 | 32–128 | 64–128 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Envisat RMSE [mm]: | 8.5 | 8.2 | 8.1 | 8.3 | 8.1 | 8.2 | 8.2 | 8.1 | 8.0 | 9.0 | 8.1 | 8.2 | 8.2 | 9.3 |
S1d RMSE [mm]: | 7.1 | 7.3 | 7.3 | 7.2 | 7.2 | 7.0 | 7.5 | 7.1 | 7.0 | 7.5 | 7.3 | 7.6 | 7.2 | 7.6 |
S1a RMSE [mm]: | 10.7 | 10.6 | 10.8 | 10.6 | 10.8 | 10.8 | 10.9 | 10.9 | 11.1 | 11.1 | 11.2 | 11.4 | 11.2 | 11.6 |
Atmospheric Correction: | None | Best Power-Law | Linear | opECMWF | ERA-I | ERA-5 1 h | ERA-5 6 h |
---|---|---|---|---|---|---|---|
Envisat RMSE [mm]: | 8.8 | 8.0 | 8.0 | 13.1 | 11.5 | - | - |
S1d RMSE [mm]: | 9.9 | 7.0 | 7.5 | 10.1 | 10.7 | 12.0 | 11.3 |
S1a RMSE [mm]: | 12.6 | 10.6 | 11.0 | 12.9 | 13.4 | 13.8 | 14.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neelmeijer, J.; Schöne, T.; Dill, R.; Klemann, V.; Motagh, M. Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series. Remote Sens. 2018, 10, 462. https://doi.org/10.3390/rs10030462
Neelmeijer J, Schöne T, Dill R, Klemann V, Motagh M. Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series. Remote Sensing. 2018; 10(3):462. https://doi.org/10.3390/rs10030462
Chicago/Turabian StyleNeelmeijer, Julia, Tilo Schöne, Robert Dill, Volker Klemann, and Mahdi Motagh. 2018. "Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series" Remote Sensing 10, no. 3: 462. https://doi.org/10.3390/rs10030462
APA StyleNeelmeijer, J., Schöne, T., Dill, R., Klemann, V., & Motagh, M. (2018). Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series. Remote Sensing, 10(3), 462. https://doi.org/10.3390/rs10030462