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Abstract: Partially occluded object detection (POOD) has been an important task for both civil
and military applications that use high-resolution remote sensing images (HR-RSIs). This topic
is very challenging due to the limited object evidence for detection. Recent partial configuration
model (PCM) based methods deal with occlusion yet suffer from the problems of massive manual
annotation, separate parameter learning, and low training and detection efficiency. To tackle this,
a unified PCM framework (UniPCM) is proposed in this paper. The proposed UniPCM adopts a part
sharing mechanism which directly shares the root and part filters of a deformable part-based model
(DPM) among different partial configurations. It largely reduces the convolution overhead during
both training and detection. In UniPCM, a novel DPM deformation deviation method is proposed
for spatial interrelationship estimation of PCM, and a unified weights learning method is presented
to simultaneously obtain the weights of elements within each partial configuration and the weights
between partial configurations. Experiments on three HR-RSI datasets show that the proposed
UniPCM method achieves a much higher training and detection efficiency for POOD compared with
state-of-the-art PCM-based methods, while maintaining a comparable detection accuracy. UniPCM
obtains a training speedup of maximal 10× and 2.5× for airplane and ship, and a detection speedup
of maximal 7.2×, 4.1× and 2.5× on three test sets, respectively.

Keywords: high-resolution remote sensing images; partially occluded object detection; partial
configuration model; unified detection framework; part sharing; deformable part-based model

1. Introduction

Object detection has been a key factor in high-resolution remote sensing images (HR-RSIs) analysis,
and has been extensively studied for the remote sensing community. It is basic but challenging, due to
the fact that HR-RSIs contain objects with different textures, shapes, and complex backgrounds and are
always affected by different imaging conditions caused by weather, clouds, sun elevation angles, etc.

Due to recent advancement in remote sensing technology, the detection of small moveable
manmade objects becomes possible, and the focus of object detection in remote sensing has been
gradually moved to relatively small targets, such as vehicles, airplanes, and ships, from large man-made
infrastructures such as airports and residual areas. This shift leads to a situation in which, on the one
hand, the induced information in HR-RSIs can easily affect the detection accuracy by the background,
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and on the other hand makes it hard to find frequently partially occluded objects with missing
information. This paper exactly concentrates on partially occluded object detection (POOD) in HR-RSIs
with high accuracy.

The state-of-the-art object detection methods for HR-RSIs can be roughly categorized into two
groups. The first group of methods are based on deep learning (mainly the convolutional neural
network (CNN) based methods [1–10]), which use a large amount of samples to train a deep layered
neural network and learn deep feature representation to classify the candidate regions into objects and
background. Its performances on ordinary unoccluded HR-RSI datasets is remarkable and superior.
However, state-of-the-art CNN-based methods are unable to precisely handle the occlusion problem.
Although some tricks [11] can be applied to tackle it to some extent, its capability is rather limited.
For example, the data augmentation method [12] is always used to extend the training set to account for
different transformations of objects, such as sample cropping. However, the trained network can only
detect the unoccluded object area and will be unable to infer the exact location of the partially occluded
object, which is considered to be the essential quality for an object detection method. Moreover, its
black-box architecture also makes it relatively hard to accommodate heavy occlusion [13] which is
very common in HR-RSIs.

The other group of methods have handcrafted features or handcrafted architectures [13–22]. They
either concentrate on better feature representation for objects [18,19], or focus on flexibly modeling
the object structures and appearance [17,20], or try to design a better classifier [21,22]. This group has
been extensively studied in previous decades before the emergence of deep learning-based methods.
The deformable part-based method (DPM) proposed by Felzenszwalb [15] is an outstanding generic
object detection method in this group. It models object structure with a pictorial structure model
and object appearance with part and root filters. Successively, researchers introduce DPM into object
detection in HR-RSIs [14,16,20,23,24]. However, researchers demonstrate that the performance of
DPM will drop greatly when occlusion happens [17,25]. The fact is that the detection tasks in varied
applications using HR-RSIs are always accompanied with large occlusion.

To tackle this, Ouyang et.al. and Niknejad et al. [26,27] both firstly utilize DPM to detect the
scores of parts and then infer the occlusion with a hierarchical deep belief network and a two-layer
conditional random field. These two methods concentrate on the inference of occlusion based on
the scores of parts at hand. Different to these, our previous work [17] proposed a two-layer object
model named partial configuration object model (PCM) to deal with the occlusion problem in HR-RSIs.
It designs several partial configurations to detect the unoccluded evidences and finally synthesizes
these evidences to justify the presence of an object. Its idea is very simple and the result is promising.
However, it requires a great amount of manual predefinition and massive computation [13]. To solve
the problem of PCM, an automatic and fast PCM generation method, AFI-PCM, was proposed by
us in [13]. It proposed a part sharing mechanism to tackle the above problem, thereby making the
automatic implementation of PCM possible. However, it only pays attention to the model training
stage of PCM and the more concerned detection stage is exactly as slow as PCM.

The work in this paper is inspired from the problems in PCM and AFI-PCM, which tries to
integrate the entire PCM model with a novel part sharing mechanism for both fast and automatic
model training and detection, that is, a unified PCM framework for fast POOD. To the best of our
knowledge, no PCM/AFI-PCM–like POOD methods are reported currently, except for Refs. [13,17].
The work in this paper is a largely extended version of our previous work [13,17]. The contributions of
the work can be found in four aspects: (1) we analyze the shortcomings of PCM and AFI-PCM in detail,
and give the inherent causes that lead to these shortcomings; (2) we propose to use a part sharing
mechanism for fast POOD, which will get around the PCM assembly process. It makes the entire
training and detection processes a unified framework, and obtains great detection speedup compared
to PCM and AFI-PCM. Experimental results not only verified the speedup, but also show that it can
obtain a comparable accuracy with PCM; (3) we propose a novel spatial interrelationship estimation
method directly from the deformation information of DPM model; (4) we propose to simultaneously
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learn the weights within a partial configuration and the weights between partial configurations in a
unified way.

The remainder of this paper is organized as follows. Section 2 analyzes the shortcomings of PCM
and AFI-PCM in detail and gives their inherent causes. Section 3 gives detailed information about
the proposed unified PCM framework for fast POOD. Section 4 shows the experimental results. And
conclusions are drawn in Section 5.

2. Shortcomings Analysis

In this section, we first briefly introduce PCM and AFI-PCM which are both designed for POOD
in HR-RSIs, and then give detailed shortcoming analysis of these two methods. For convenience, we
take the airplane category as an example to elaborate all related ideas hereinafter.

2.1. Brief Review of PCM and AFI-PCM

Compared to conventional single-layer object detection methods like DPM, PCM defined an
extra buffer layer to block the occlusion impact from passing onto the object layer. This layer is
intended to encode possible occlusion states. It is named as partial configurations which is the
configuration of adjacent predefined semantic parts. Each partial configuration is represented by a
standard DPM model.

The basic unit in PCM is semantic part. They are selected from a predefined category-dependent
undirected skeleton graph. The definition of semantic parts determines the coverage of partial
configurations. The coverage will then be used to estimate the spatial interrelationship that converts
partial configuration hypotheses into full-object ones in the second layer of PCM. The second layer
is the object layer that is the arrangements of partial configurations. Instead of the commonly used
linear-scoring mechanism, a max-scoring one is used in the object layer to ensure that even certain
partial configurations are occluded; the remained partial configurations will still have the chance to
capture the unoccluded evidence of the presence of object to finally detect the object. During detection,
unoccluded partial configurations will contribute to the locating of the partially occluded objects.

AFI-PCM mainly aims at the training stage for automatic and fast implementation of PCM. Based
on the idea that a trained DPM model contains all the elements that PCM needs, AFI-PCM proposes
to share part and root filters within partial configurations. It means that AFI-PCM find another
way around to directly assemble these elements to generate new PCM models, while still following
the detection pipeline of PCM. AFI-PCM adds an extra DPM filter layer into the two-layer object
architecture of PCM for training, and uses the same two-layer architecture for model detection.

2.2. Shortcomings of PCM

In this section, we extend the analyses in [13] about shortcomings of PCM from four perspectives.

2.2.1. Uncertainty of Semantic Parts and the Gap between Semantic Parts and Parts in Detection

The semantic part is the basic element in the first layer, of which the combination determines
the coverage of partial configurations. The semantic parts are defined manually and semantically,
along with the skeleton graph of the category. Generally, it is hard to determine whether the defined
semantic parts are suitable for detection.

Actually, the semantic parts are not explicitly used in the partial configuration layer. They are
only used to calculate the coverage of partial configuration. Partial configuration is represented by a
standard DPM with parts located at salient points of the object. Therefore, these semantic parts are not
the parts that we use for detection. In this way, the human prior does not contribute to the detection.
Figure 1 shows all related parts in the entire train and detection chain. It can be seen that semantic
parts are different from the parts trained in the DPM model. It also indicates that the entire PCM
model is designed with redundancy, as large amount of extra work will be needed to transform the
defined semantic parts to the trained parts.
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as with PCM, and it shares the fourth shortcoming of PCM, that is, the more important detection 
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Figure 1. Relevant parts in partial configuration model (PCM). Semantic parts are designed from the
object, while the trained parts are from the deformable part-based model (DPM) trained from the
samples of partial configurations whose coverage is defined by semantic parts. The detection of trained
parts on images will generate detected parts.

2.2.2. Tedious Sample Annotation and Arbitrary Skeleton Graph Predefinition

As revealed above, obtaining the semantic parts becomes a necessary and unavoidable job in
PCM. Moreover, we cannot use definite rules to obtain partial configurations’ coverage directly from
the bounding box of a full object, in order to avoid the variances of Gaussian functions of a spatial
interrelationship being zero and the following weighted continuous clustering being discretized.

For PCM, annotating the semantic parts of each training sample becomes an inevitable route.
However, this work is highly labor-intensive. Though it tries to reduce the annotation volume of a full
object through semantic part combination, a large amount of additional annotations is still needed,
compared to general object detection methods which only need full-object annotations.

In PCM, the semantic parts are organized with a category-dependent skeleton graph, and this
graph should be defined beforehand for each category by operators. This predefinition relies too
much on the operators’ subjective understanding, and sometimes it is also hard to tell whether the
definition is suitable for detection. The predefinition of the skeleton graph greatly hinders the automatic
implementation of PCM to other new object categories.

2.2.3. Repeated Training of Shared Semantic Part Areas

PCM uses multiple partial configurations to handle the occlusion impact. All these partial
configurations are separately trained using the samples cropped from the same full object samples
according to the coverage combined from the same set of semantic parts. This multi-model training
process is actually a repeated process of modeling the same set of semantic part areas, as can be
observed in Figure 1. Therefore, the training of PCM is inefficient.

2.2.4. Repeated Detection of Shared Semantic Part Areas

During the detection stage, each DPM model of partial configuration will slide through the entire
image to obtain the corresponding responses of part and root filters. Similarly, for an object to be
detected, the multi-model detection process will convolve through its shared semantic part areas
10 times if the number of partial configurations is 10. Therefore, the detection process of PCM is also
rather time-consuming. As can be imagined, it will be unsuitable for the applications that online
detection speed is crucial for, especially when using very large HR-RSIs.

2.3. Shortcomings of AFI-PCM

2.3.1. Repeated Part Detection and Redundant PCM Packing

AFI-PCM in [13] tries to speed up the training stage of PCM through a part sharing mechanism.
It intends to share the same set of parts from a trained DPM model of a full object, and pack the shared
part filters into new PCM models. As a consequence, its detection process is exactly the same as with
PCM, and it shares the fourth shortcoming of PCM, that is, the more important detection stage is ignored.
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We take a detection example of a partial configuration and Figure 2 illustrates the detection time
consumption percentages of the four main steps: construct feature pyramid, obtain filter response,
apply structural rules, and get final detections. The first two steps take more than 75% of the detection
computation, while this work is exactly the same for different PCM models for the same image.
The remaining two steps are different between different partial configurations but only take less than a
quarter of the time. If the first two steps are shared, the computation overhead will be greatly reduced.
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Figure 2. Time consumption of different steps in the detection of a partial configuration. As each
partial configuration is represented by a DPM model, its detection is exactly a standard DPM detection
process which is to (1) construct feature pyramid; (2) obtain filter responses; (3) apply rules, and (4) get
detections. The first two steps take up nearly three quarters of the time consumption.

2.3.2. Separated Weights Learning among and within Partial Configurations

In AFI-PCM, there are two key factors. One is the weights that balance the performance differences
between partial configurations, and the other one is the weights that balance the elements within a
partial configuration. In PCM, the former is obtained through a max-margin Support Vector Machine
(SVM) optimization method and the latter is done within the DPM method through latent SVM.
In AFI-PCM, both parameters are explicitly optimized by the same max-margin SVM optimization
method. However, these two optimization processes are separately learnt on two different datasets.
Therefore, the optimization error introduced by the first round of optimization will be passed to the
second round of optimization and it will be magnified.

2.3.3. Extra Loop in Spatial Interrelationship Estimation

In PCM, the spatial interrelationship is estimated from offsets statistics from the manually
annotated partial configuration to the full object. This annotation process is tedious, as analyzed in the
above section. In AFI-PCM, this process is made into an automatic one. It uses the trained DPM model
to re-detect the training samples to obtain the part locations for spatial interrelationship estimation.
However, there is an extra loop in this process (See the blue arrows in Figure 3), although already
better than manual annotation. DPM learns the part deformation from massive training samples,
and then it is used to redetect the training samples for part location variations. These variations are
finally used to estimate the spatial interrelationship. The evident loop also takes a great amount of time in
the training stage.
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2.4. What Are the Causes of These Shortcomings in PCM and AFI-PCM?

PCM consists of two layers. The first layer is the partial configuration layer, and the second layer
is the object layer. There is also a hidden layer in PCM, the semantic part layer, which is the basis of
the first layer. The architecture of PCM is given in Figure 4a. The number of subjects/items in the first
layer is much greater than other layers. As revealed above, the main body of all training or detection
work is involved in the partial configuration layer, and the semantic part layer is only for the purpose
of data preparation. This leads to a situation where a large number of subjects need to be trained or
detected for the first layer. Although the elements in the partial configuration layer are based on the
same basis layer, they do not share the basis during the training and detection, that is, the entire basis
layer is separately trained or detected for each partial configuration. We believe that this is where these
shortcomings in PCM come from.
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Figure 4. The architectures of (a) PCM and (b) unified PCM for fast partially occluded object
detection (POOD).

As for AFI-PCM, it has a different architecture from PCM. It uses the part layer as its basis layer,
and all other layers are constructed from this. However, this benefit is only used for the training stage,
not for the more important detection stage. A more unified framework for both training and detection
is preferred, as well as the unified parameter learning of different layers. Another cause is that the
potential of the trained DPM is not fully explored. For example, the deformation information of an
object is already trained from massive samples, so it does not need to re-detect training samples for
this information.

3. Unified PCM Framework for Fast POOD

Given the analysis of the shortcomings of PCM and AFI-PCM and their causes, we propose to
“sink” the main body of all training and detection work into its lower layer, as indicated in Figure 4b.
We add an extra shared part layer under the original partial configuration layer. The trained DPM
model becomes the hidden layer in our architecture. In PCM, all data preparation work, such as
annotations, is included in the hidden layer, and the main body of training and detection lies in the
first layer. In the proposed architecture, the intention is similar: the data preparation work is for the
hidden layer of training DPM and the main body of training and detection goes to the first layer for
shared parts training and detection. We also keep the merits of PCM, which uses fully visible samples
to train PCM for partially occluded objects.

In this section, the proposed unified PCM framework (UniPCM) for fast POOD is described
in detail. The proposed framework is illustrated in Figure 5, which can be divided into several
aspects. For the training stage, the original multi-model training process is replaced by (1) single
model training; (2) partial configuration design; (3) spatial interrelationship estimation; and (4) unified
weights learning. The multi-model detection stage is changed into a single model detection and
part sharing based results combination. We firstly give the motivation for a part sharing mechanism,
and then describe the key points of the proposed UniPCM framework for fast POOD.
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Figure 5. The UniPCM framework for fast POOD. The framework can be divided into two stages:
training and detection. The training stage includes full-object DPM training, partial configuration
design, and unified weights learning, and spatial interrelationship estimation. The detection stage
consists of shared filter convolution, response combination, hypothesis generation, full object inference,
and clustering.

3.1. Part Sharing Mechanism

We first take a look at the first shortcoming of PCM. Once the coverage of partial configuration is
set, all related parts are consistent in the following training and detection processes, that is, no gap
exists anymore, as can be seen in Figure 1. Since the parts of DPM cannot be annotated beforehand,
PCM uses the semantic parts with similar functions to replace them. This is the cause of the second
shortcoming. If we can use the same set of parts for both annotation and training, the gap between the
semantic parts and the parts in DPM could be bridged.

Once we obtain a DPM model, the coverage of partial configurations can be determined based on
its parts’ locations. Hence, in this paper, we propose to directly use the parts trained from DPM as
our semantic parts. Actually, this DPM model is a full-object model trained from fully visible samples.
Although the parts of a full object DPM model have no semantic meaning, they do cover certain salient
areas of the object. Their combination can also represent occlusion patterns which are most related to
POOD using this DPM model. In this way, no skeleton graph has to be defined beforehand since the
spatial configuration of parts in DPM is already trained from samples.

For the third shortcoming, the overlapping areas of partial configurations have already been
trained, so there is no need to re-train them if we directly use the parts from the trained DPM model.
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Accordingly, we propose to directly share these part filters for partial configurations. In this way, only
one model needs to be trained, which will largely speed up the training process.

The fourth shortcoming of PCM is similar to the third one. In PCM, each partial configuration will
detect their own parts. Once the parts are shared, only one set of original parts needs to be detected,
and the results of partial configurations can thus be inferred from them, which is the same situation
with AFI-PCM.

As revealed above, the part sharing mechanism mainly operates for/at the parts of PCM,
and successfully “sinks” the main body of training from the partial configuration layer in PCM (Figure 4a)
to the shared part layer in Figure 4b. Consequently, part sharing exactly solves the shortcomings
mentioned above for PCM and AFI-PCM, and will largely speed up training and detection simultaneously.

3.2. Partial Configuration Design

Different from PCM that uses predefined semantic parts and a skeleton graph to generate
partial configurations, all that is available for our method is the trained full-object DPM model.
As each partial configuration is represented by a DPM model, we need to prepare the root filter, part
filters, and deformation information for a new partial configuration model, which is described in the
following subsections.

3.2.1. Part Selection

The first thing is to determine which parts to be combined into the new model. Each part in DPM
model is characterized by its deformation anchor and size, which is a good guide for our determination.
Without the skeleton graph, there are arbitrary possibilities of part combination. There are always
many unreasonable combinations, representing the occlusion patterns that are not likely to happen in
applications. For the case of remote sensing, geospatial objects on the ground are more likely to be
occluded by larger occluders, such as clouds or its functional facilities. The occlusion patterns, such as
a hollowed-out occlusion pattern, are unlikely to happen or very rare. In PCM, these unreasonable
patterns are filtered out with the aid of a predefined skeleton graph. In our work, the only guide is the
parts’ locations. Therefore, we relax the skeleton graph to a more generalized one. We form a net-like
graph based on the anchor locations of parts, and then choose all possible sub-graphs from this graph,
like PCM under connectivity constraints to leave out unreasonable possible combinations.

For a trained DPM model with n parts represented by Pj =
{

pj, lj, wj

}
, j = 1, · · · , n where

pj corresponds to the part filter parameters, lj =
(
lj,x, lj,y

)
is its anchor position relative to the root

and wj is the deformation parameter; the location set V can be formed into a new undirected and
connected graph G(V, E), see Equation (1) and Figure 6. It is implemented by the iterative Delaunary
triangulation method in [28]. {

V =
{

lj

∣∣∣j = 1, · · · , n
}

E ⊆ {(x, y)|x, y ∈ V, x 6= y}
(1)
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Figure 6. Delaunary triangulation of parts’ locations and corresponding sub-graph selection.

The main difference between this net-like graph and the skeleton graph in PCM is that the former
is generated automatically according to parts’ locations and the latter is defined by human operator.
This graph is more consistent with the DPM model for detection, as analyzed in Section 2.
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When the graph is settled down, the partial configuration design process is the same with [13,17]
which is to select a sub-graph from G(V, E) while maintaining the connectivity constraint [29] and the
vertex number constraint. These two constraints are used to model the location and ratio of occlusion.
An example of this graph is given in Figure 6. This process can be formulated as automatically
choosing a connected sub-graph G(VA, EA) from G(V, E) as Equation (2) and the selected part index
set is formulated as A.

A = {i|i = 1, · · · , n}, where


|2 < card(A) < n
|G(VA, EA) ⊂ G(V, E)
|G(VA, EA) is connected
|EA ⊆ {(x, y)|x, y ∈ VA, x 6= y} ⊂ E

(2)

When the part index set of each partial configuration is determined, we directly select the
corresponding part parameters of {pi}(i ∈ A) from the trained DPM model as the parts of the partial
configuration and keep their deformation parameters unchanged.

3.2.2. Root Cropping

The next step is to generate the root filter of partial configuration. The root filter for DPM is a
parameter matrix that will convolve through the feature space to obtain the global appearance response
of the object. For a partial configuration, its coverage is calculated from the minimal bounding rectangle
of its selected parts. Then we directly crop the root filter parameter matrix according to this calculated
coverage. The obtained root filter parameter matrix will be reweighted in the following step. Once the
new root filter is set, the deformation anchors of parts are shifted to their actual locations.

Up until now, we have completed the work for selecting parts and cropping root from the trained
DPM model. The last step away from a complete DPM model is the balance between the selected parts
and cropped root.

3.3. Unified Weights Learning

In PCM, partial configurations are unbalanced and need to be weighted. We call this process
inter-partial-configuration (inter-PC) weights learning which is conducted on the validation samples
using a max-margin SVM framework. Actually, the shared filters in a partial configuration are also
unbalanced and need to be reweighed as well. We call this intra-partial-configuration (intra-PC)
weights learning. To combine these two processes into the entire framework of PCM, a natural idea is
to coarsely aggregate these two reweighing processes. However, intra-PC parameters are intermediate
results, and will be implicitly used in inter-PC weights learning. Moreover, they are two separated
processes conducted on two different sample sets. The quality of intra-PC weights learning will largely
affect the followed inter-PC weights learning.

We first review the weights learning process of PCM as illustrated in Figure 7. In each partial
configuration, each component will be assigned a weight wi,j, including a bias term bi. When the N
partial configurations have settled down, each partial configuration will be assigned a weight Ti to
indicate its importance during the following hypotheses fusion process. In inter-PC weights learning,
these scores of partial configurations will be combined with a linear formula. One simple idea is to
directly optimize these two processes in one step. However, when the weights are multiplied for
inter-PC optimization, it becomes a non-convex problem which is hard to optimize.

To tackle this problem, we propose a unified weights learning framework in this paper, which
takes another way around. To separate the multiplied weights for a convex problem, we change the
second optimization into a filter reweighing problem, that is, optimizing the weights of all cropped
root filters and all part filters, and then obtaining the weights of partial configurations from these
learnt filter weights.

For each partial configuration, we optimize the weights of its elements. Let sj denotes the score
of filter j(j ∈ Ai) of partial configuration i(i = 1, · · · , N), the score of the partial configuration can be
formulated as
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yi = ∑
j∈Ai

wi,jsj + bi = wT
i sAi + bi (3)

The optimization objective function is that the weights make the combination way in Equation (3)
match their labels on validation samples. For all prepared filters from the trained DPM model, their
score combination should also match their labels l. Let sk(1 ≤ k ≤ n + N) denote the score of k-th filter
(including part filters and cropped root filters), their final label can be formulated as

Y =
n+N

∑
k=1

αksk + B = αTs + B (4)

where αk is the weights of two kinds of filters, and B is the bias term. We combine the above two
optimization processes into one optimization process that simultaneously obtains the intra-PC and
inter-PC weights which are learnt by minimizing the structured prediction objective function:

min
wi ,α, b, B

1
2

(
αTα +

N
∑
i=1

wT
i wi

)
+

N

∑
i=1

Ci ∑
j

εj + C ∑
j

ξ j, s.t.


∀j, yi,jlj ≥ 1− εj
∀j, Yjlj ≥ 1− ξ j
wi ≥ 0, εj ≥ 0
α ≥ 0, ξ j ≥ 0

(5)

This standard convex optimization problem can be solved by Lagrange multipliers method using
the standard off-the-shelf convex optimization package CVX [30]. The constants Ci, C can be found
using 5-fold cross validation.
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∑
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(j ∈ Az)Tzwz,j+1 = αj+N , 1 ≤ j ≤ n
N
∑
k

Tkbk + TB = B

(6)

where
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( f alse) = 0. Once we obtain the above weights wi, α, the inter-PC weights Ti can
be calculated from a least-square solution.

3.4. Spatial Interrelationship Estimation

Through samples re-detection, the partial configuration location distribution can be estimated
from the relative offsets of detected parts in AFI-PCM, which is of low efficiency as analyzed in
Section 2. These offset variances actually come from the deformation ability embedded in the DPM model
as a match cost like a spring. These deformation parameters are trained from massive training samples,
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and it is a repetitive process to re-detect the deformation related variances. Based on this fact, we propose
to derive the spatial interrelationship directly from the deformation parameters trained in DPM for partial
configurations (indicated as yellow arrows in Figure 3). Its main idea is described as follows.

Given the index set A of a partial configuration, we use their corresponding parts
Pj =

{
pj, lj, wj

}
, j ∈ A to derive the location interrelationship and size interrelationship.

The deformation cost in DPM for location x = (x, y) is defined as

d = ∆D ·wj, where

{
∆D =

(
∆x, ∆y, ∆x2, ∆y2)

(∆x, ∆y) = lj − x =
(

lj,x, lj,y

)
− (x, y)

. (7)

This deformation cost performs like a spring, and the closer the part locates to the ideal anchor
position, the lower the cost will be. This inspires us to transform the deformation cost into a location
distribution term. We use a simple conversion function in Equation (8) where l is the anchor position,
x is the current position, and w is the deformation parameter vector. N(·) is a normalization function
that constrains the data in the range of part size and convert the value range to [0, 1]. Based on the above
function, the part location becomes a continuous spatial probability density function (PDF). As can
be seen in Equation (7), the deformation cost in DPM is dimension-independent, so the following
derivation process can be conducted independently in X and Y dimensions.

fl,w(x) = −N((l− x) ∗w) (8)

The location interrelationship represents the relative shift from the center of partial configuration
to the object center, and the size interrelationship represents the size ratio between partial
configuration and the full object. Given the index set A of a partial configuration and its Pj, j ∈ A,
the interrelationships can be estimated as


|τx = (R+L)−(r+l)

2(r−l)

|τy = (B+T)−(b+t)
2(b−t)

|τw = R−L
r−l

|τh = B−T
b−t

, where



|R = max
{

lj,x

}
|L = min

{
lj,x

}
|B = max

{
lj,y

}
|T = min

{
lj,y

} and


|r = max{lm,x}
|l = min{lm,x}
|b = max

{
lm,y

}
|t = min

{
lm,y

} , m ∈ A, j = 1, · · · , n (9)

In Equation (9), (R, L, B, T) and (r, l, b, t) represent the right, left, bottom, and top of the bounding
boxes of full object and partial configuration. In this way, the continuous interrelationship estimation
can be solved as the derivation from the PDFs of parts to the PDF of

(
τx, τy, τw, τh

)
based on Equation (9).

Fortunately, most of the operations are linear, and they can be directly solved with cascaded operations
of PDF estimations. All related formulations of the operations are given in Appendix A.

3.5. Unified Detection Framework

In PCM, the obtained models of partial configurations individually slide through the entire image
to obtain their corresponding detection results, which means that the computational cost is nearly N
times as much as that of a full-object DPM model. This paper aims to cut down the computation in
both the training and detection stage. Along with the training scheme, our detection is also based
on the part sharing mechanism in a unified detection framework, which will largely reduce the
computational overhead.

Similar to the training of PCM in that only one DPM model needs to be trained, our detection
also needs only one DPM detection with similar computational cost, thereby largely reducing the cost,
compared to PCM and AFI-PCM. It means that only one DPM will slide through the image pyramid,
and all the POOD work is done based on the results of this DPM.

For a trained DPM with n parts, we can obtain N partial configurations. Therefore, N cropped
root filters and n part filters are prepared for detection from the trained DPM model, along with their
weights. In the proposed method, we only have to get the responses of (N + n) filters and then all
responses of partial configurations are obtained.
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During detection, we first obtain the responses of all part filters and cropped root filters in the
feature pyramid, before they are fed with the trained weights. The weighed responses of the root
and part filters of specific partial configuration are combined to yield a final score pyramid for each
PC. Different from training, we will then only use the weights of partial configuration to reweigh
the responses of PC, rather than forming new results for PCs. Finally the bounding boxes of partial
configurations, together with their scores, are predicted as in [15].

These partial configuration hypotheses will be pre-filtered by a Non-Maximum Suppression
(NMS) to ensure that there is only one type of partial configuration in the local area. The following
clustering method is the same as PCM. These hypotheses are firstly grouped. In each group,
the hypotheses are converted to full-object hypotheses using the spatial interrelationship estimated in
Section 3, which is followed by a weighted continuous NMS method of PCM to obtain the final object
bounding box hypotheses.

The entire detection process at one scale is illustrated in Figure 8.
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configuration. The calculated hypotheses of partial configurations are then converted into that of full
object before clustering for final detections.

4. Experimental Results and Discussion

In this section, we provide experimental results and analysis of the proposed UniPCM framework
on HR-RSIs. The method is verified on the categories of airplane and ship.
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4.1. Data Set Description

For fair comparison with PCM and AFI-PCM, we adopt the same training, validation and test
data sets. Their detailed information is provided as follows.

For airplanes, two test sets are used. The first one is the fully visible NWPU10 VHR dataset [20],
with a ground sampling distance (GSD) of 0.5–2 m. Its airplane class is chosen, which contains
89 images with 753 airplanes. The other is the more challenging Occlusion dataset [17] which is
collected from Google Earth service. There are 47 images with 184 airplanes, with GSD ranging from
0.3–0.6 m. Many airplanes in this dataset are occluded by cloud or hangar, or truncated by image
border. The training and validation datasets are collected from the similar area with similar GSD.
There are, in total, 2810 samples for training and 282 samples for validation. To be noted, no occluded
samples are used for training in our framework.

For ships, one occlusion dataset [17] (hereinafter cited as Ship dataset) is used which is also
collected from Google Earth service with a GSD of 0.5–2.4 m. There are, in total, 30 images with
227 ships, 22 objects of which are occluded. The training dataset contains 231 positive samples and
2422 negative samples, and the validation dataset includes 134 samples collected from similar areas.

4.2. Experimental Setup and Evaluation Criteria

To account for in-plane rotation of objects, we manually spilt the full direction into 16 bins,
that is, 16 models are used for full-direction detection. The north direction is set as 0. To deal with
possible object truncation, we zero-pad the images with 200 pixels for airplanes and 100 pixels for
ships. The scale problem of detection is tackled by the inherent multi-scale capacity of DPM through
feature pyramid matching. There are 5 parts for both the original DPM models of airplanes and
ships. The Intersection-over-Union (IoU) parameter of NMS is 0.3, as calculated in Equation (10).
The experiments are conducted on Ubuntu 14.04 LTS with a 4 GHz CPU, a 32 GB RAM, and a NVIDIA
Titan X GPU. All codes are implemented with MATLAB.

IoU(a, b) =
a ∩ b
a ∪ b

(10)

The detection results are evaluated according to the criteria of [31]. True positive (TP) refers
to a result maintaining an IoU with the ground truth exceeding 0.6, otherwise it is referred as false
positive (FP). The unfound ground truths are false negatives (FNs) and the rests are true negatives
(TNs). The detection Precision and Recall are defined as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (11)

The precision-recall curve (PRC) is used to plot the tradeoff between recall and precision. Average
precision (AP) is defined as the area under PRC. Higher AP indicates better performance, and vice
versa. As different thresholds yield different precisions and recalls, we use another index, F1 score,
to find the optimal threshold for final detection results. The highest F1 score makes the best tradeoff
between recall and precision, as calculated in Equation (12). A higher optimal F1 generally means
better performance.

F1 =
2× Precision× Recall

Precision + Recall
(12)

4.3. Detection Results

In this section, we evaluate the performance of the proposed UniPCM detection framework on
the three test sets. PCM [17], AFI-PCM [13], and DPM [15,32] are taken as our comparison baselines.
Their parameters are chosen according to optimal trails. The DPM model trained for baseline [15,32] is
then used as for partial configuration design for AFI-PCM and UniPCM. Additionally, a deep learning
based object detection method, MSCNN [33], is also used in our experiments as another baseline.
MSCNN is a multi-scale version of the famous Faster RCNN [34] detection method, which uses feature
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maps from multiple convolutional layers to enhance the multi-scale detection capability of CNN.
Therefore, MSCNN is very suitable for object detection in HR-RSIs. It is originally trained on the much
larger dataset ImageNet [35], and then fine-tuned on our training datasets.

All qualitative detection results are obtained with the threshold that leads to the optimal F1 value.
In the following figures, red rectangles correspond to TPs, blue ones correspond to FPs and green ones
are FNs. The predicted object direction is denoted above the rectangles. As MSCNN is unable to be
direction-invariant, its results are all marked as 0.

4.3.1. Detection Results on NWPU10 VHR Dataset

We first verify the proposed UniPCM method on the fully visible NWPU10 VHR dataset. Figure 9
gives some qualitative detection results of all methods. As seen, most of the airplanes are successfully
detected by our method, though with some FPs and FNs. The FNs mainly come from the small objects
that are also missed by its counterparts, which indicates that it is due to the inherent defects of the
trained DPM model. In some images, UniPCM detects some FPs that are avoided by its baselines.
As observed, the structures and appearances of these FPs are very similar to that of an airplane as
indicated from the predicted object angle, for example the FP in the fourth column. MSCNN obtains
the best results among all methods as expected.
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Figure 9. Detection results on NWPU10 VHR dataset of DPM (1st row), PCM (2nd row), AFI-PCM
(3rd row), MSCNN (4th row), and UniPCM (5th row).
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The quantitative results of PRC and optimal F1 values are given in Figure 10a and Table 1, respectively.
The AP values are denoted in the legend of PRC, which are consistent with the performance difference
indicated by optimal F1 values. It can be observed that UniPCM performs equally to that of PCM and
AFI-PCM with very subtle improvement, while outperforming DPM by a large margin. As expected,
the deep learning based method, MSCNN, performs best among the methods with an AP up to 0.95.
Many airplanes with very small coverage are also successfully detected.
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Figure 10. PRC results of all methods on (a) NWPU10 VHR dataset; (b) Occlusion dataset; and
(c) Ship dataset.

Table 1. Optimal F1 values for all methods on all datasets.

Datasets DPM PCM AFI-PCM MSCNN UniPCM

NWPU10 VHR dataset 0.889 0.9118 0.9165 0.9481 0.9198
Occlusion dataset 0.8299 0.9314 0.9164 0.6965 0.9231

Ship dataset 0.4764 0.5612 0.5736 0.5042 0.5661

4.3.2. Detection Results on Occlusion Dataset

Figure 11 shows the detection results on the more challenging Occlusion dataset. Despite the fact
that partial evidences of objects are missing, the PCM based methods successfully find most of the
partial occluded airplanes. UniPCM and AFI-PCM both obtain a few more FNs and FPs, compared to
the original PCM. Similarly, some FPs of PCM are avoided by UniPCM and AFI-PCM. Unsurprisingly,
the performance of MSCNN decreases greatly compared with that on the NWPU10 VHR dataset.
Its capability of discovering partial occluded objects is weak as they are regarded as background with
insufficient full-object evidence.
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Figure 11. Detection results on Occlusion dataset of DPM (1st row), PCM (2nd row), AFI-PCM (3rd
row), MSCNN (4th row), and UniPCM (5th row).

Their performances are also reflected in their PRC and F1 values in Figure 10b. The APs and F1

of UniPCM and AFI-PCM are very close and slightly worse than PCM, but outperform MSCNN and
DPM by a large margin. Notably, the early decline of AFI-PCM in PRC does not appear in UniPCM,
which indicates that its weights are more reasonable.

4.3.3. Detection Results on Ship Dataset

As ships vary from length and size, and many of them are in harbors, ship detection has always
been a very difficult task [36]. The detection results on the Ship dataset of all methods are given
in Figure 12. As can be seen, all of the methods obtain a number of FNs and FPs, including the
deep learning method MSCNN. Despite the fact that their performances are relatively worse than the
airplane datasets, many occluded objects are successfully detected. The ship occluded by cloud in the
second column missed by DPM, PCM, and AFI-PCM is grasped by MSCNN and UniPCM. However,
MSCNN detects more visible ships and maintains a relatively worse object localization accuracy.
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Figure 12. Detection results on Ship dataset of DPM (1st row), PCM (2nd row), AFI-PCM (3rd row),
MSCNN (4th row), and UniPCM (5th row).

Their quantitative results PRC and optimal F1 values are given in Figure 10c and Table 1. UniPCM
achieves the highest AP value among all baselines, which is nearly 0.03 and 0.06 larger than AFI-PCM
and PCM. UniPCM obtains the best precision when recall is about 0.15 to 0.4. It partially proves that its
scoring mechanism is better than other PCM based methods. Optimal F1 value is coincident with PRC.
AFI-PCM maintains a relatively higher F1 than UniPCM, while PCM performs worse than these two.

4.4. Scheme Analysis

In this section, we analyze the detection performance of the proposed UniPCM framework under
different scheme conditions on the NWPU10 VHR dataset and the Occlusion dataset. The following
two factors that will influence the final results are analyzed.

4.4.1. Different Spatial Interrelationship Estimation Schemes

In this paper, we propose to directly estimate the spatial interrelationship from the deformation
information of the trained DPM. In AFI-PCM, this relationship is estimated from the re-detection of
training samples. We evaluate these two different schemes in our experiments. Their PRC results are
illustrated in Figure 13 with the same experimental configuration.
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Figure 13. PRC results of different spatial interrelationship estimation schemes on (a) NWPU10 VHR
dataset and (b) Occlusion dataset.
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As illustrated, their performances on the Occlusion dataset are very close to each other, and the
deformation derivation scheme is a little better than sample re-detection on the NWPU10 VHR dataset.
It is mainly because the sample re-detection process maintains uncertainty during detection, since
the part detection is a process of global optimization of all possible locations and it can be affected by
varied samples. The results indicate that the deformation derived spatial interrelationship can achieve
a slightly better performance with much less computation during estimation.

4.4.2. Different Weights Learning Schemes

AFI-PCM uses two different datasets to learn independent intra-PC and inter-PC weights, while
UniPCM integrates them into one step on only one dataset. To evaluate this difference, we conduct
experiments on the independent weights learning scheme and compare them with the results of
UniPCM. Figure 14 shows their PRC results.
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(b) Occlusion dataset.

Both results on the NWPU10 VHR dataset and the Occlusion dataset illustrate that the unified
weights learning process is better than the independent one. On the NWPU10 VHR dataset, UniPCM
gets an AP improvement of 0.01 which gets to 0.012 on the Occlusion dataset. It is noticeable that
independent learning gets a relatively higher precision when recall is about 0.9, but soon declines
dramatically when recall goes up. The results on two datasets verify that unified weights learning
can achieve better balance between the elements in partial configurations and also between partial
configurations, and is thus better for unified detection than independent learning.

4.5. Training Time Analysis

In this section, we analyze the training time consumed by all baselines. As the architecture
of MSCNN is totally different from others, we only analyze the training overhead of DPM, PCM,
AFI-PCM, and UniPCM in detail. MSCNN runs on the GPU and takes about 4.5 h for training.

There are two groups of work for PCM training for all these methods. The first one is the manual
work that mainly includes sample annotation and category predefinition. For PCM, it contains semantic
part definition, category skeleton graph definition, and part-level sample annotation. For AFI-PCM
and UniPCM, they only include object-level sample annotation. As manual work is hard to evaluate
quantitatively, we do not analyze it in this section. As for manual work, UniPCM and AFI-PCM have
already greatly reduced the workload. The annotation work of UniPCM and AFI-PCM is the same
with DPM.
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The other work for PCM training is the model training. To be brief, we list all related training
stages of these three methods in Table 2.

Table 2. Training stages of different methods, where 1 means running one time, N corresponds to N
times,

√
indicates that it is included, and - refers to absence in the method.

Stage No. Training Stages DPM PCM AFI-PCM UniPCM

1 DPM model training 1 N 1 1
2 partial configuration design - -

√ √

3 spatial interrelationship estimation -
√ √ √

4 intra-PC weights learning - -
√ √

5 inter-PC weights learning -
√ √

In this section, we only take the north direction of airplane and ship models as our experimental
subjects. The statistical results of the model training stage of these methods are illustrated in the bar
chart of Figure 15. The overheads of training one DPM model for airplane and ship categories are
5844 s and 4022 s, respectively. Note that DPM has much lower detection accuracy compared with
PCM based methods, although it achieves shorter time overheads since it is only the first training
step of PCM based methods. Compared with PCM, AFI-PCM largely reduces the training volume to
about 19% and 80% for the two categories, that is, a speedup up to 5.16× and 1.25×. The majority of
saved time is the multi-DPM model training of PCM. Compared to AFI-PCM, UniPCM cuts down the
training time by another 40% and 17%. Taking the airplane category as an example, step 3 of UniPCM
is done within 15 s, while AFI-PCM takes about 1923 s. The step of weights learning, including scores
preparation, is also decreased to about 983 s, while AFI-PCM takes about 2501 s. A similar performance
acceleration can be also observed on the ship model training.
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As the numbers of partial configurations in PCM and UniPCM are different, we take a second
look at the speedup obtained by our UniPCM. To generate one partial configuration for airplanes
and ships, AFI-PCM needs 15% and 48% of the time consumed by PCM, while UniPCM only uses
nearly 10% and 40% of PCM, that is, a speedup of 10× and 2.5×, respectively. We will achieve greater
speedup if more partial configurations are designed. This speedup for training is obvious, and it is
convenient for the fast implementation to new categories of objects, let alone the time already saved
for massive manual annotation work.
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4.6. Detection Time Analysis

AFI-PCM and PCM simply detect N DPM models of partial configurations, that is, it is nearly N
times of one single DPM detection. UniPCM only convolves through the image once and then directly
obtains the responses of all partial configurations. To evaluate the more important detection speed, we
obtain the statistical time consumption of PCM, AFI-PCM, and UniPCM for full-direction detection.
Figure 16 illustrates the time consumption per partial configuration per image of the three methods.
The average image sizes of datasets are 683 × 970, 1125× 1457, and 987 × 1747. Similar to Section 4.5,
we give the detection time consumption of MSCNN of each image in the three datasets, which is about
0.15 s, 0.32 s, and 0.35 s, respectively.

Since a full-object DPM model generally has more filters than a single partial configuration,
it takes the highest time consumption among all baselines as in Figure 2, which partially supports
that obtaining the filter responses takes great detection time. As indicated in Figure 2, nearly three
quarters of AFI-PCM and PCM detection computation involves calculating for the responses of filters.
Although AFI-PCM shares the parts between partial configurations, their filter responses are actually
wasted and unshared during detection. UniPCM makes full use of these responses and its total time
consumption for one partial configuration is only 0.2 s for NWPU10 VHR, 0.4 s for Occlusion, and one
second for Ship dataset; this is almost only 14%, 24%, and 40% of AFI-PCM, respectively, that is, a
speedup up to 7.2×, 4.1× and 2.5× over AFI-PCM, and 5.1×, 3.7× and 2× over PCM. UniPCM makes
fast POOD become possible. The detection speeds of AFI-PCM and PCM are roughly the same, with
differences mainly coming from the extra weights multiplication in AFI-PCM.

To achieve full-direction detection of objects in the experiment, AFI-PCM and UniPCM maintain
208 and 188 partial configurations for the categories of airplane and ship, while PCM uses 160 and
48 partial configurations. It can also be inferred from Figure 16 that when more partial configurations
are designed, UniPCM will obtain a much higher detection speedup.
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5. Conclusions

Partial occluded object detection (POOD) has become a very serious problem for applications that
use high-resolution remote sensing images. The recently published PCM deals with this problem with
relatively heavy computation and a massive labor workload. Its improved variant, AFI-PCM, also
shares similar shortcomings of slow detection. To tackle this, a unified PCM framework (UniPCM)
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is proposed in this paper for fast POOD. Based on an idea that shares the same set of parts for all
automatically designed partial configurations, the proposed method successfully integrates the entire
training and detection pipeline into a unified one. Additionally, a fast and direct spatial interrelationship
estimation method and a unified weights learning approach are proposed. Experimental results on three
datasets indicate that the proposed UniPCM method achieves a comparable accuracy, while obtaining
a much faster model training and image detection speed compared to PCM and AFI-PCM. It makes
fast POOD become possible. In the future, we intend to make this unified POOD framework into a
neural network fashion.
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Appendix A

Appendix A.1. PDF Estimation of Max/Min Functions

For ξ = max{ξ1, ξ2, · · · , ξn}, we have {ξ > x} ⊆ ∪n
i=1{ξi > x}, then the probability of ξ > x is

P(ξ > x) = 1−
n

∏
i=1

P(ξi ≤ x)

P(ξ ≤ x) =
n

∏
i=1

P(ξi ≤ x)

We convert it to the formulation of Cumulative Distribution Function (CDF):

F(z) =
n

∏
i=1

F(zi)

Similarly, the CDF of ξ = min{ξ1, ξ2, · · · , ξn} is

F(z) = 1−
n

∏
i=1

(1− F(zi))

Thus, the PDF of ξ can be obtained by calculating PDF of CDF F(z).

Appendix A.2. PDF Estimation of Sum/Subtract/Divide Functions

For Z = X + Y and their corresponding PDF fX(x), fY(y), we have

FZ(z) = P{Z ≤ z} =
x

x+y≤z

f (x) f (y)dxdy

Let x = u− y, then

FZ(z) =
∫ +∞

−∞

(∫ z−y

−∞
f (x) f (y)dx

)
dy =

∫ +∞

−∞

(∫ z

−∞
f (u− y) f (y)du

)
dy

=
∫ z

−∞

(∫ +∞

−∞
f (u− y) f (y)dy

)
du
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Therefore, the PDF of Z is

fX+Y(z) =
∫ +∞

−∞
fX(z− y) fY(y)dy =

∫ +∞

−∞
fX(x) fY(z− x)dx

Similarly, the PDF of Z = X−Y is

fX−Y(z) =
∫ +∞

−∞
fX(z + y) fY(y)dy =

∫ +∞

−∞
fX(x) fY(x− z)dx

The PDF of Z = X/Y is

fX/Y(z) =
∫ +∞

−∞
|x| fX(xz) fY(x)dx
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