Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. MODIS NDVI Data
2.2.2. Meteorological Data
2.2.3. Watershed Data
2.2.4. Population Density Data
2.2.5. Land Cover Data
3. Results
3.1. Spatial-Temporal Changes in Lake Area
3.1.1. Temporal Variation in Lake Area
3.1.2. Spatial Variations in Lake Area Changes
3.2. Fluctuations in Influencing Factors
3.2.1. Air Temperature
3.2.2. Precipitation
3.2.3. Evapotranspiration
3.2.4. Land Cover
3.2.5. Population Density
3.3. The Correlation of Lake Area and the Factors that Influence It
4. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, Y.; Li, S.; Shen, D.F.; Chen, W. Climate Change and Its Impact on the Lake Environment in the Tibetan Plateau in 1971–2008. Sci. Geogr. Sin. 2012, 32, 1503–1512. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xie, H.; Kang, S. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multire analysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117, 5102. [Google Scholar]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X.; Veroustraete, F. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 2007, 28, 5523–5533. [Google Scholar] [CrossRef]
- Moss, B. Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review. Sci. Total Environ. 2012, 434, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.; Mc Donald, C.; de Hoyos, C.; Mischke, U.; Phillips, G.; Borics, G.; Poikane, S.; Skjelbred, B.; Solheim, A.L.; van Wichelen, J.; et al. Sustaining recreational quality of European lakes: Minimizing the health risks from algal blooms through phosphorus control. J. Appl. Ecol. 2013, 50, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Andersen, T.; Dörsch, P.; Tominaga, K.; Thrane, J.-E.; Hessen, D.O. Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 2015, 126, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Dornhofer, K.; Oppelt, N. Remote Sensing for lake research and monitoring-Recent advance. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of remote sensing in water resource management: The case study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Sustaining China’s water resources. Science 2013, 339, 141. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Flower, R.J.; Thompson, J.R. China’s new leaders offer green hope. Nature 2013, 493, 163. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wu, S.; Yang, Q. An assessment of global environmental change and its impacts on the regional development in China. Prog. Geogr. 2003, 22, 160–169. [Google Scholar]
- Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic Analysis of Time Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [Google Scholar] [CrossRef]
- Cheng, C.; Fu, W.; Hu, Z.; Hu, S.; Li, X. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology. Remote Sens. Land Resour. 2015, 27, 146–152. [Google Scholar]
- Bai, J.; Chen, X.; Li, J.; Yang, L. Changes of inland lake area in arid Central Asia during 1975–2007: Remote sensing analysis. J. Lake Sci. 2011, 23, 80–88. [Google Scholar]
- Gao, H.; Zhu, C.; Li, Z. Quantitative Analysis of the Impact of Irrigation Water from Kaidu River on the Area Change of Bosten Lake. J. Nat. Resour. 2005, 20, 502–507. [Google Scholar]
- Sima, S.; Ahmadalipour, A.; Jood, M.S.; Tajrishy, M.; Abrishamchi, A. Monitoring Urmia Lake Area Variations Using MODIS Satellite Data. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012. [Google Scholar]
- Yahyapour, Y.; Shamsishahrabadi, M.; Mahmoudi, M.; Siadati, S. Evaluation of human papilloma virus infection in patients with esophageal squamous cell carcinoma from the Caspian Sea area, north of Iran. Asian Pac. J. Cancer Prev. 2012, 13, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Halabisky, M.; Moskal, L.M.; Gillespie, A.; Hannam, M. Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sens. Environ. 2016, 177, 171–183. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Veroustraete, F. Reconstruction pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv. Space Res. 2006, 37, 835–840. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Huang, C. A simple data assimilation method for reconstructing time-series MODIS NDVI data. Adv. Space Res. 2009, 44, 501–509. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M. Advance in Method Comparison of Reconstructing Remote Sensing Time Series Data Set. Remote Sens. Technol. Appl. 2014, 29, 362–368. [Google Scholar]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Ma, M.; Song, Y.; Wang, X. Dynamically Monitoring the Lake Group in Ruoqiang County, Xinjiang Region. J. Glaciol. Geocryol. 2008, 30, 189–195. [Google Scholar]
- Zhang, K.X.; Zhang, G.Q. Monitoring area changes of Poyang Lake by MODIS Data (2000–2011). J. East China Inst. Technol. (Soc. Sci.) 2013, 32, 390–396. [Google Scholar]
- Qin, B. A preliminary investigation of lake evolution in 20 century in inland mainland and Asia with relate to the global warming. J. Lake Sci. 1999, 11, 11–19. [Google Scholar]
- Yan, L.; Zheng, M.; Wei, L. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years. Earth Sci. Front. 2016, 23, 310–323. [Google Scholar]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.R.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of climate change on Tibetan lakes: Patterns and processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Yan, L.; Zheng, M. The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Quat. Int. 2015, 371, 31–48. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2016, 11, 381–391. [Google Scholar] [CrossRef]
- Hyung, J.R.; Joong, S.W.; Kyung, D.M. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar]
- Ouma, Y.O.; Tateishi, R.A. Water index for rapid mapping of shoreline changes of Five East African Rift Valley Lakes: An empirical analysis using landsat TM and ETM + data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- United States Geological Survey. Available online: http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.006/ (accessed on 13 January 2017).
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Satoshi, K.; Zhang, J.Q.; Wang, Q.X. An approach to estimate the water level and volume of Dongting Lake using Terra/MODIS data. Acta Geogr. Sin. 2004, 59, 88–94. [Google Scholar]
- Huang, S.; Li, J.; Xu, M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series. Nat. Hazards 2012, 62, 93–100. [Google Scholar] [CrossRef]
- Jian, X.; Zhang, Z.; Qiu, Y.; Zhang, W. Research Progress in Water Extraction Based on Remote Sensing Data of MODIS. J. Langfang Teach. Univ. (Nat. Sci. Ed.) 2014, 1, 5–10. [Google Scholar]
- Ding, L.; Wu, H.; Wang, C.; Qin, Z.; Zhang, Q. Quick Recognition and Mapping of Lake Water Information Based on MODIS Image. Hydrogr. Surv. Charting 2006, 6, 31–34. [Google Scholar]
- Tan, C.; Ma, M.; Kuang, H. Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010. Remote Sens. 2017, 9, 150. [Google Scholar] [CrossRef]
- The Global Land Assimilation System. Available online: http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS (accessed on 13 May 2017).
- Rodell, M.; Beaudoing, H.K. NASA/GSFC/HSL(2016), GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree V2.1; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2017.
- United States Geological Survey. Available online: http://hydrosheds.cr.usgs.gov/dataavail.php (accessed on 25 December 2016).
- NASA Social Data and Application Center. Available online: http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density (accessed on 15 June 2017).
- European Space Agency (ESA). Climate Change Initiative (CCI) Project. Available online: https://www.esa-landcover-cci.org/?q=node/175 (accessed on 7 January 2017).
- Santoro, M.; Kirches, G.; Wevers, J.; Boettcher, M.; Brockmann, C.; Lamarche, C.; Bontemps, S.; Defourny, P. Land Cover CCI Product User Guide; Version 2.0; The ESA Climate Change Initiative: Redu, Belgium, 2017. [Google Scholar]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J. Hydrol. 2014, 514, 131–144. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. Hydrol. Process. 2015, 29, 2769–2781. [Google Scholar] [CrossRef]
- Micklin, P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2006, 75, 1–15. [Google Scholar] [CrossRef]
- Zafarnejad, F. The contribution of dams to Iran’s desertification. Int. J. Environ. Stud. 2009, 66, 327–341. [Google Scholar] [CrossRef]
- Najafi, A.; Vatanfada, J. Environmental challenges in trans-boundary waters, case study: Hamoon Hirmand Wetland (Iran and Afghanistan). Int. J. Water Resour. Arid Environ. 2011, 1, 16–24. [Google Scholar]
- Yang, L. Integrated water resources management project for the downstream of Amu Darya and Syr Darya Rivers. Express Water Reasour. Hydropower Inf. 2009, 30, 6–9. [Google Scholar]
Watershed | Lake Area | Temperature | Precipitation | Evaporation | Population Density |
---|---|---|---|---|---|
(km2/a) | (°C/a) | (mm/a) | (mm/a) | (persons/5a) | |
Se-lin Lake | 24.936 | 0.370 | −3.322 | 2.897 | 0.083 |
Ayakkum Lake | 23.177 | 0.225 | 5.193 | 3.144 | 0.000 |
Lake Sarykamish | 12.046 | 0.099 | −2.717 | −0.150 | 1.455 |
Qinghai Lake | 11.284 | 0.201 | 6.671 | 3.636 | 0.281 |
Lake Alakol | 5.177 | 0.054 | 6.398 | 1.297 | 0.940 |
Ngoring Lake | 2.968 | 0.139 | 3.208 | 2.548 | 4.983 |
Gyaring Lake | 1.461 | 0.139 | 3.208 | 2.548 | 4.983 |
Har-hu | 1.439 | 0.136 | 6.527 | 4.148 | 0.000 |
Lake Ulungur | 0.191 | 0.076 | 4.177 | 2.449 | 0.102 |
Sayram Lake | −0.381 | −0.003 | 5.983 | −0.411 | 0.043 |
Lake Issykkul | −1.382 | 0.066 | −1.713 | −4.225 | 0.874 |
Lake Aydar | −2.011 | 0.071 | 6.453 | 1.750 | 4.750 |
Lake Saysan | −2.223 | −0.049 | 2.756 | 1.667 | −0.051 |
Lake Balkhash | −2.269 | 0.029 | 3.949 | 0.292 | 0.891 |
Lake Asad | −2.840 | 0.220 | −2.316 | −1.052 | 7.016 |
Lake Kapchagayskoye | −3.212 | 0.029 | 3.949 | 0.292 | 0.891 |
Bosten Lake | −8.330 | 0.163 | 1.746 | 0.176 | 0.789 |
Tsimlyanskoye | −9.756 | 0.065 | −11.110 | 0.121 | −0.891 |
Lake Tharthar | −15.525 | 0.220 | −2.316 | −1.052 | 7.016 |
Ebi Lake | −21.564 | 0.044 | 3.283 | −0.294 | 1.319 |
Lake Urmia | −165.746 | 0.143 | −2.120 | 1.889 | 11.569 |
Aral Sea | −995.633 | 0.087 | 5.968 | 3.134 | 4.113 |
Type | Farmland (103 km2) | Forest (103 km2) | Grassland (103 km2) | Wetland (103 km2) | Bare Land (103 km2) | Water Body (103 km2) | Construction Land (103 km2) | |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2001 | 1533.5 | 1142.7 | 2029.9 | 46.7 | 1773.4 | 212.1 | 15.4 | |
2002 | 1535.6 | 1140.0 | 2032.3 | 46.6 | 1770.7 | 211.0 | 17.6 | |
2003 | 1535.5 | 1138.1 | 2033.8 | 46.5 | 1778.5 | 201.3 | 20.0 | |
2004 | 1535.8 | 1144.1 | 2033.1 | 46.5 | 1770.8 | 200.7 | 22.6 | |
2005 | 1535.9 | 1142.8 | 2034.2 | 46.5 | 1770.2 | 200.2 | 24.0 | |
2006 | 1536.9 | 1142.6 | 2033.8 | 46.6 | 1769.6 | 199.2 | 25.1 | |
2007 | 1537.8 | 1142.2 | 2034.9 | 46.6 | 1770.2 | 195.6 | 26.4 | |
2008 | 1538.9 | 1144.3 | 2034.9 | 46.6 | 1766.8 | 194.5 | 27.8 | |
2009 | 1539.4 | 1146.5 | 2033.6 | 46.6 | 1771.7 | 187.0 | 28.9 | |
2010 | 1541.2 | 1148.2 | 2034.4 | 46.6 | 1762.7 | 190.6 | 29.9 | |
2011 | 1541.6 | 1147.9 | 2036.3 | 46.7 | 1761.2 | 189.1 | 30.9 | |
2012 | 1542.2 | 1147.9 | 2037.5 | 46.8 | 1759.6 | 187.5 | 32.2 | |
2013 | 1541.5 | 1148.3 | 2036.8 | 46.8 | 1758.8 | 187.5 | 34.1 | |
2014 | 1541.7 | 1149.2 | 2036.5 | 46.7 | 1755.6 | 187.7 | 36.3 | |
2015 | 1541.1 | 1149.2 | 2036.2 | 46.7 | 1755.7 | 187.5 | 37.4 | |
Change rate | 0.62 | 0.70 | 0.39 | 0.1 | −1.42 | −1.76 | 1.46 | |
Difference | 7.61 | 0.642 | 6.24 | 0.8 | −17.72 | −24.65 | 22.02 |
2001 | Farmland (103 km2) | Forest (103 km2) | Grassland (103 km2) | Wetland (103 km2) | Construction Land (103 km2) | Bare Land (103 km2) | Water Body (103 km2) | |
---|---|---|---|---|---|---|---|---|
2015 | ||||||||
Farmland | 1509.63 | 7.24 | 3.48 | 0.05 | 11.87 | 0.90 | 0.26 | |
Forest | 10.19 | 1101.23 | 22.31 | 0.65 | 1.13 | 6.77 | 0.39 | |
Grassland | 10.71 | 20.04 | 1988.00 | 0.02 | 7.38 | 3.13 | 0.75 | |
Wetland | 0.01 | 0.92 | 0.01 | 45.62 | 0.02 | 0.00 | 0.06 | |
Construction land | 0.00 | 0.00 | 0.00 | 0.00 | 15.41 | 0.00 | 0.00 | |
Bare land | 10.27 | 19.24 | 21.95 | 0.00 | 1.60 | 1719.29 | 1.11 | |
Water body | 0.23 | 0.42 | 0.51 | 0.38 | 0.03 | 25.65 | 184.91 |
Correlation | |||
---|---|---|---|
Temperature | Precipitation | Evapotranspiration | |
Se-lin Lake | 0.957 ** | −0.368 | 0.530 * |
Ayakkum Lake | 0.811 ** | 0.355 | 0.402 |
Lake Sarykamish | 0.712 ** | −0.477 | −0.362 |
Qinghai Lake | 0.715 ** | 0.447 | 0.437 |
Lake Alakol | 0.287 | 0.291 | 0.106 |
Ngoring Lake | 0.570 * | 0.095 | 0.478 |
Gyaring Lake | 0.673 ** | −0.035 | 0.43 |
Har-hu | 0.708 ** | 0.616 * | 0.668 ** |
Lake Ulungur | −0.285 | 0.128 | 0.361 |
Sayram Lake | −0.015 | −0.543 * | −0.417 |
Lake Issykkul | −0.494 | −0.023 | 0.215 |
Lake Aydar | 0.603 * | −0.312 | −0.25 |
Lake Saysan | 0.12 | 0.504 * | 0.376 |
Lake Balkhash | 0.43 | −0.28 | −0.263 |
Lake Asad | −0.651 ** | 0.083 | −0.146 |
Lake Kapchagayskoye | −0.4 | 0.226 | 0.326 |
Bosten Lake | 0.819 ** | 0.854 ** | 0.899 ** |
Lake Tsimlyanskoye | −0.095 | 0.288 | −0.148 |
Lake Tharthar | −0.479 | 0.322 | 0.584 * |
Ebi Lake | 0.636 ** | 0.558 * | 0.710 ** |
Lake Urmia | −0.724 ** | 0.193 | −0.269 |
Aral Sea | −0.555 * | −0.384 | −0.393 |
Correlation | ||||||
---|---|---|---|---|---|---|
Farmland | Forest | Grassland | Wetland | Construction Land | Bare Land | |
Se-lin Lake | −0.903 ** | −0.988 ** | 0.333 | −0.536 * | −0.982 ** | |
Ayakkum Lake | 0.964 ** | 0.800 ** | −0.960 ** | −0.974 ** | ||
Sarykamish | 0.689 ** | −0.797 ** | 0.718 ** | 0.885 ** | 0.768 ** | −0.841 ** |
Qinghai Lake | −0.929 ** | −0.950 ** | 0.935 ** | −0.247 | 0.919 ** | −0.630 * |
Lake Alakol | 0.972 ** | −0.593 * | 0.492 | 0.949 ** | −0.953 ** | |
Ngoring Lake | −0.722 ** | −0.677 ** | 0.567 * | −0.333 | 0.760 ** | −0.753 ** |
Gyaring Lake | −0.808 ** | −0.734 ** | 0.566 * | −0.316 | 0.843 ** | −0.796 ** |
Har-hu | 0.838 ** | −0.781 ** | −0.590 * | |||
Lake Ulungur | 0.405 | −0.072 | 0.024 | −0.303 | 0.059 | −0.098 |
Sayram Lake | −0.216 | 0.417 | −0.202 | 0.283 | ||
Lake Issykkul | −0.578 * | −0.617 * | 0.705 ** | −0.794 ** | 0.047 | |
Lake Aydar | 0.076 | 0.391 | −0.175 | −0.161 | 0.115 | −0.283 |
Lake Saysan | 0.585 * | −0.436 | 0.226 | 0.637 * | −0.488 | 0.399 |
Lake Balkhash | −0.314 | −0.288 | −0.669 ** | −0.568 * | −0.34 | 0.425 |
Lake Asad | −0.738 ** | 0.679 ** | −0.745 ** | −0.676 ** | −0.820 ** | −0.452 |
Kapchagayskoye | −0.787 ** | −0.800 ** | 0.540 * | −0.683 ** | −0.854 ** | 0.758 ** |
Bosten Lake | −0.978 ** | −0.970 ** | −0.730 ** | −0.957 ** | −0.817 ** | 0.970 ** |
Tsimlyanskoye | 0.221 | 0.453 | −0.43 | −0.525 * | −0.28 | 0.662 ** |
Lake Tharthar | −0.463 | 0.376 | 0.056 | −0.497 | −0.523 * | −0.255 |
Ebi Lake | −0.672 ** | −0.734 ** | −0.578 * | −0.636 * | 0.658 ** | |
Lake Urmia | 0.689 ** | −0.797 ** | 0.718 ** | 0.885 ** | 0.768 ** | −0.841 ** |
Aral Sea | 0.481 | −0.843 ** | −0.076 | 0.709 ** | −0.939 ** | −0.940 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Guo, B.; Kuang, H.; Yang, H.; Ma, M. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sens. 2018, 10, 595. https://doi.org/10.3390/rs10040595
Tan C, Guo B, Kuang H, Yang H, Ma M. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sensing. 2018; 10(4):595. https://doi.org/10.3390/rs10040595
Chicago/Turabian StyleTan, Chao, Bo Guo, Honghai Kuang, Hong Yang, and Mingguo Ma. 2018. "Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road" Remote Sensing 10, no. 4: 595. https://doi.org/10.3390/rs10040595
APA StyleTan, C., Guo, B., Kuang, H., Yang, H., & Ma, M. (2018). Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sensing, 10(4), 595. https://doi.org/10.3390/rs10040595