Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion
Abstract
:1. Introduction
2. Data Processing
2.1. Deriving InSAR Long-Term Ground Displacement
2.2. Extracting Single Lava Fields between March 1998 and April 2007
- (1)
- No superimposition. Only single lava flow (emplaced between March 1998 and April 2007) covering areas were selected by spatial analysis. For instance, the light blue area in Figure 3 is only covered by the Apr 2007 lava flow, neither by lava flow emplaced before nor after Apr 2007.
- (2)
- Emplacements on volcano flanks. We extracted the lava fields situated away from the summit cone and affected by long-term displacement rather than transient eruptive displacement.
- (3)
- InSAR coherent area. The selected areas were required to be coherent in InSAR data. Some flow areas where significant displacement was supposed to occur, however, did not remain to be coherent in InSAR data. These areas were not taken into account in the analysis.
2.3. Estimating Lava Thickness
3. Results
3.1. Subsidence in Lava Fields outside the EFA
3.2. Subsidence in Lava Fields inside the EFA
4. Discussion
4.1. Only Post-Lava Emplacement Processes Account for the Subsidence in the EFA?
4.2. Contribution of the Post-Lava Emplacement Processes to the Subsidence in the EFA
4.3. New Insights for Causes of Displacement on the Eastern Flank
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Briole, P.; Massonnet, D.; Delacourt, C. Post-eruptive displacement associated with the 1986–87 and 1989 lava flows of Etna detected by radar interferometry. Geophys. Res. Lett. 1997, 24, 37–40. [Google Scholar] [CrossRef]
- Stevens, N.F.; Wadge, G.; Williams, C.A.; Morley, J.G.; Muller, J.P.; Murray, J.B.; Upton, M. Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. J. Geophys. Res. Solid Earth 2001, 106, 11293–11313. [Google Scholar] [CrossRef]
- Stevens, N.F.; Wadge, G.; Williams, C.A. Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes. Int. J. Remote Sens. 2001, 22, 819–828. [Google Scholar] [CrossRef]
- Schaefer, L.; Lu, Z.; Oommen, T. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sens. 2016, 8, 73. [Google Scholar] [CrossRef]
- Roult, G.; Peltier, A.; Taisne, B.; Staudacher, T.; Ferrazzini, V.; Di Muro, A. A new comprehensive classification of the Piton de la Fournaise activity spanning the 1985–2010 period. Search and analysis of short-term precursors from a broad-band seismological station. J. Volcanol. Geotherm. Res. 2012, 241, 78–104. [Google Scholar] [CrossRef]
- Staudacher, T.; Peltier, A.; Ferrazzini, V.; Di Muro, A.; Boissier, P.; Catherine, P.; Kowalski, P.; Lauret, F.; Lebreton, J. Fifteen years of intense eruptive activity (1998–2013) at Piton de La Fournaise volcano: A review. In Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala, 2nd ed.; Bachèlery, P., Lénat, J.F., Di Muro, A., Michon, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 139–170. ISBN 978-3-642-31394-3. [Google Scholar]
- Peltier, A.; Got, J.L.; Villeneuve, N.; Boissier, P.; Staudacher, T.; Ferrazzini, V.; Walpersdorf, A. Long-term mass transfer at Piton de la Fournaise volcano evidenced by strain distribution derived from GNSS network. J. Geophys. Res. Solid Earth 2015, 120, 1874–1889. [Google Scholar] [CrossRef]
- Staudacher, T.; Peltier, A. Ground displacement at Piton de la Fournaise (La Réunion Island), a review from 20 years of GNSS monitoring. In Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active Volcanoes of the World, 2nd ed.; Bachèlery, P., Lénat, J.F., Di Muro, A., Michon, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 251–269. ISBN 978-3-642-31394-3. [Google Scholar]
- Servadio, Z. Apports de l’imagerie à haute résolution spectrale et spatiale dans les bilans de volume et les bilans radiatifs au Piton de La Fournaise. Ph.D. Thesis , Université de la Réunion, La Réunion, France, 2011. [Google Scholar]
- Baker, S.; Amelung, F. Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawaii observed with InSAR. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S. Detecting the Source Location of Recent Summit Inflation via Three-Dimensional InSAR Observation of Kīlauea Volcano. Remote Sens. 2015, 7, 14386–14402. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal displacement analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, B7. [Google Scholar] [CrossRef]
- Froger, J.L.; Famin, V.; Cayol, V.; Augier, A.; Michon, L.; Lénat, J.F. Time-dependent displacements during and after the April 2007 eruption of Piton de la Fournaise, revealed by interferometric data. J. Volcanol. Geotherm. Res. 2015, 296, 55–68. [Google Scholar] [CrossRef]
- Remy, D.; Chen, Y.; Froger, J.L.; Bonvalot, S.; Cordoba, L.; Fustos, J. Revised interpretation of recent InSAR signals observed at Llaima volcano (Chile). Geophys. Res. Lett. 2015, 42, 3870–3879. [Google Scholar] [CrossRef]
- Solaro, G.; Acocella, V.; Pepe, S.; Ruch, J.; Neri, M.; Sansosti, E. Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Chaussard, E. Subsidence in the Parícutin lava field: Causes and implications for interpretation of displacement fields at volcanoes. J. Volcanol. Geotherm. Res. 2016, 320, 1–11. [Google Scholar] [CrossRef]
- Stevens, N.F.; Wadge, G.; Murray, J.B. Lava flow volume and morphology from digitized contour maps: A case study at Mount Etna, Sicily. Geomorphology 1999, 28, 251–261. [Google Scholar] [CrossRef]
- Lu, Z.; Masterlark, T.; Dzurisin, D. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow displacement. J. Geophys. Res. Solid Earth 2005, 110, B2. [Google Scholar] [CrossRef]
- Ebmeier, S.K.; Biggs, J.; Mather, T.A.; Elliott, J.R.; Wadge, G.; Amelung, F. Measuring large topographic change with InSAR: Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet. Sci. Lett. 2012, 335, 216–225. [Google Scholar] [CrossRef]
- Bato, M.G.; Froger, J.L.; Harris, A.J.L.; Villeneuve, N. Monitoring an effusive eruption at Piton de la Fournaise using radar and thermal infrared remote sensing data: Insights into the October 2010 eruption and its lava flows. Geol. Soc. Lond. Spec. Publ. 2016, 426. [Google Scholar] [CrossRef]
- Peltier, A.; Bianchi, M.; Kaminski, E.; Komorowski, J.C.; Rucci, A.; Staudacher, T. PSInSAR as a new tool to monitor pre-eruptive volcano ground displacement: Validation using GPS measurements on Piton de la Fournaise. Geophys. Res. Lett. 2010, 37, 245–269. [Google Scholar] [CrossRef]
- Tinard, P. Caractérisation et Modélisation des Déplacements du sol Associés à L’activité Volcanique du Piton de la Fournaise, île de La Réunion, à Partir de Données Interférométriques. Août 2003–Avril 2007. Ph.D. Thesis, Université Blaise Pascal-Clermont-Ferrand II, Clermont-Ferrand, France, 2007. [Google Scholar]
- Chen, Y.; Remy, D.; Froger, J.-L.; Peltier, A.; Villeneuve, N.; Darrozes, J.; Perfettini, H.; Bonvalot, S. Long-term ground displacement observations using InSAR and GNSS at Piton de la Fournaise volcano between 2009 and 2014. Remote Sens. Environ. 2017, 194, 230–247. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal displacement. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Usai, S. A least squares database approach for SAR interferometric data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef]
- Kositsky, A.P.; Avouac, J.P. Inverting geodetic time series with a principal component analysis-based inversion method. J. Geophys. Res. Solid Earth 2010, 115, B3. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface displacement in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- Griffiths, R.W.; Fink, J.H. Effects of surface cooling on the spreading of lava flows and domes. J. Fluid Mechanics 1993, 252, 667–702. [Google Scholar] [CrossRef]
- Griffiths, R.W. The dynamics of lava flows. Ann. Rev. Fluid Mech. 2000, 32, 477–518. [Google Scholar] [CrossRef]
- Michon, L.; Saint-Ange, F. Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): Characterization and implication in the volcano evolution. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Peltier, A.; Poland, M.; Staudacher, T. Are Piton de la Fournaise (La Réunion) and Kīlauea (Hawaii) really “analog volcanoes”. Hawaiian volcanoes: From source to surface. Geophys. Monogr. Ser. 2015, 208, 507–531. [Google Scholar] [CrossRef]
- Clarke, D.; Brenguier, F.; Froger, J.L.; Shapiro, N.M.; Peltier, A.; Staudacher, T. Timing of a large volcanic flank movement at Piton de la Fournaise Volcano using noise-based seismic monitoring and ground displacement measurements. Geophys. J. Int. 2013, 195, 1132–1140. [Google Scholar] [CrossRef]
Satellite | Beam/Track | Pass | Time Spans | Incidence Angle (deg) | Wavelength (m) | Ground Resolution (m) | Acquisitions | Interferograms |
---|---|---|---|---|---|---|---|---|
TSX/TDX | strip_008/68 | Ascending | 7 March 2009–15 November 2014 | 33.5 | 0.0310 | Range: 3.23 Azimuth: 3.3 | 56 | 325 |
TSX/TDX | strip_010/121 | Descending | 13 December 2008–6 October 2014 | 36.5 | 0.0310 | Range: 1.94 Azimuth: 3.3 | 34 | 196 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, K.; Froger, J.-L.; Tan, K.; Remy, D.; Darrozes, J.; Peltier, A.; Feng, X.; Li, H.; Villeneuve, N. Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion. Remote Sens. 2018, 10, 597. https://doi.org/10.3390/rs10040597
Chen Y, Zhang K, Froger J-L, Tan K, Remy D, Darrozes J, Peltier A, Feng X, Li H, Villeneuve N. Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion. Remote Sensing. 2018; 10(4):597. https://doi.org/10.3390/rs10040597
Chicago/Turabian StyleChen, Yu, Kefei Zhang, Jean-Luc Froger, Kun Tan, Dominique Remy, José Darrozes, Aline Peltier, Xiaojun Feng, Huaizhan Li, and Nicolas Villeneuve. 2018. "Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion" Remote Sensing 10, no. 4: 597. https://doi.org/10.3390/rs10040597
APA StyleChen, Y., Zhang, K., Froger, J. -L., Tan, K., Remy, D., Darrozes, J., Peltier, A., Feng, X., Li, H., & Villeneuve, N. (2018). Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion. Remote Sensing, 10(4), 597. https://doi.org/10.3390/rs10040597