The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application
Abstract
:1. Introduction
2. Data
2.1. The ASTER Global Emissivity Dataset
2.1.1. ASTER Vegetation and Snow Cover Adjustment
2.1.2. Aggregation of ASTER GED to 5-km Resolution
2.2. The UW Baseline Fit and High Spectral Resolution Land Surface Emissivity Database
2.2.1. Input MODIS MOD11 Products
2.3. The Laboratory Measurements
3. Method
3.1. Emissivity Hinge-Points Methodology
3.2. High Spectral Resolution Methodology
3.2.1. Determining of the Number of Principal Components to Use
4. CAMEL Products
5. Applications
6. Conclusions and Future Plans
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Willet, K.; Thorne, P. The ISTI Steering Committee. Progress Report for the International Surface Temperature Initiative. 2011. Available online: http://www.surfacetemperatures.org/progress_reports (accessed on 15 November 2017).
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Moran, M.S. Thermal infrared measurement as an indicator of plant ecosystem health. In Thermal Remote Sensing in Land Surface Processes; Quattrochi, D.A., Luvall, J., Eds.; Taylor and Francis: Abingdon-on-Thames, UK, 2003; pp. 257–282. [Google Scholar]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula. J. Geophys. Res. Atmos. 2003, 108, 4795. [Google Scholar] [CrossRef]
- French, A.N.; Schmugge, T.J.; Ritchie, J.C.; Hsu, A.; Jacob, F.; Ogawa, K. Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities. Remote Sens. Environ. 2008, 112, 1730–1748. [Google Scholar] [CrossRef]
- Seemann, S.W.; Li, J.; Menzel, W.P.; Gumley, L.E. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol. 2003, 42, 1072–1091. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S. MOD21 MODIS/Terra Land Surface Temperature/3-Band Emissivity 5-Min L2 1 km V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2017. [CrossRef]
- Hulley, G.; Hook, S. AG100: ASTER Global Emissivity Dataset 100-meter V003; NASA EOSDIS Land Processes DAAC; USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2014. [CrossRef]
- Borbas, E.; Seemann, S.W. Global Infrared Land Surface Emissivity: UW-Madison Baseline Fit Emissivity Database V2.0; Space Science and Engineering Center, University of Wisconsin-Madison: Madison, WI, USA, 2007; Available online: http://cimss.ssec.wisc.edu/iremis/ (accessed on 15 November 2017).
- Hulley, G.; Hook, S. AG5KMMOH: ASTER Global Emissivity Dataset, Monthly, 0.05 degree, HDF5 V041; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2016. [CrossRef]
- Borbas, E.E.; Ruston, B.C. The RTTOV UW IR Land Surface Emissivity Module. Mission Report NWPSAF-MO-VS-042; EUMETSAT Numerical Weather Prediction; Satellite Applications Facility: Darmstadt, Germany, 2010; Available online: nwpsaf.eu/vs_reports/nwpsaf-mo-vs-042.pdf (accessed on 15 November 2017).
- Hook, S. CAM5K30EM: Combined ASTER and MODIS Emissivity for Land (CAMEL) Emissivity Monthly Global 0.05 Deg V001; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017. [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research. IEEE Geosci. Remote Sens. Lett. 2010, 1304–1315. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial resolution. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of Versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity Products and Validation with Laboratory Measurements of Sand Samples from the Namib Desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. The North American ASTER Land Surface Emissivity Dataset (NAALSED) Version 2.0. Remote Sens. Environ. 2009, 113, 1967–1975. [Google Scholar] [CrossRef]
- Vogel, R.; Liu, Q.; Han, Y.; Weng, F. Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J. Geophys. Res. Atmos. 2011, 116, 11. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Best, F.A.; DeSlover, D.H.; Osborne, B.J.; Revercomb, H.E.; Smith, W.L., Sr. Infrared land surface remote sensing using high spectral resolution aircraft observations. Adv. Space Res. 2004, 33, 1114–1119. [Google Scholar] [CrossRef]
- Abrams, M.; (NASA/JPL). Personal Communication, 2018.
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, A.; Roy, P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.; Kuyper, J.; Yin, Z.; Tan, B. (Terra, Aqua) MODIS Geolocation Status; NASA GSFC Code 619; MODIS Science Team Meeting, Calibration Workshop: Greenbelt, MD, USA, 2016. Available online: https://modis.gsfc.nasa.gov/sci_team/meetings/201606/presentations/cal/MODIS_VIIRS_Geolocation_Status_CalWorkshop_Lin_2016.pdf (accessed on 15 February 2018).
- Moeller, C.; (UW-Madison/SSEC). Personal Communication, 2018.
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; DeFeis, I.; Borbas, E.E. Diurnal variation in Sahara desert sand emissivity during the dry season from IASI observations. J. Geophys. Res. Atmos. 2014, 119, 1626–1638. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 114, 711–715. [Google Scholar] [CrossRef]
- Wan, Z.M.; Li, Z.L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- MODIS Land Surface Emissivity/Temperature (MOD11) C4.1 LST Document. Available online: http://landweb.nascom.nasa.gov/QA_WWW/forPage/C41_LST.doc (accessed on 15 February 2018).
- Wilson, T.; Wu, A.; Geng, X.; Wang, Z.; Xiong, X. Analysis of the electronic crosstalk effect in Terra MODIS long-wave infrared photovoltaic bands using lunar images. Image Signal Process. Remote Sens. 2016, 22, 100041C. [Google Scholar]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8-14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3-5 μm atmospheric window. Remote Sens. Environ. 1994, 47, 345–361. [Google Scholar] [CrossRef]
- Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S.J. The Combined ASTER MODIS Emissivity Over Land (CAMEL) Part 2: Uncertainty and Validation. Remote Sens. 2018. under review. [Google Scholar]
- Borbas, E.; Hulley, G.; Knuteson, R.; Feltz, M. MEaSUREs Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR): The Combined ASTER and MODIS Emissivity Database over Land (CAMEL) Users’ Guide; 2017. Available online: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/cam5k30_v1_user_guide_atbd.pdf (accessed on 15 November 2017).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Reichle, R.H.; Sujay, V.K.; Sarith, P.P.M.; Randal, D.K.; Liu, Q. Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeorol. 2010, 11, 1103–1122. [Google Scholar] [CrossRef]
- Borbas, E.; Feltz, M.; Knuteson, R. Broad Band Emissivity Derived from the MEaSUREs CAMEL V001 Database; UW-Madison, Space Science and Engineering Center: Madison, WI, USA, 2017; Available online: https://doi.org/10.21231/S2PP8H (accessed on 15 November 2017).
- Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S. Global Broadband IR Surface Emissivity Computed from Combined ASTER and MODIS Emissivity over Land (CAMEL). In Proceedings of the American Meteorological Society Joint 21st Satellite Meteorology, Oceanography and Climatology Conference and 20th Conference on Air-Sea Interaction, Madison, WI, USA, 15–19 March 2016; Available online: https://ams.confex.com/ams/21SATMET20ASI/webprogram/Paper296752.html (accessed on 15 February 2018).
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Havemann, S.; Matricardi, M.; Geer, A.; Cristina, L.; Brunel, P.; Vidot, J. RTTOV-12 Science and Validation Report; NWPSAF-MO-TV-41; 2017. Available online: https://www.nwpsaf.eu/site/download/documentation/rtm/docs_rttov12/rttov12_svr.pdf (accessed on 15 February 2018).
- Weisz, E.; Smith, W.L.; Smith, N. Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements. J. Geophys. Res. Atmos. 2013, 118, 6433–6443. [Google Scholar] [CrossRef]
- August, T. The EUMETSAT operational IASI L2 products and services, from Global to Regional. In Proceedings of the International TOVS Study Conference, Darmstadt, Germany, 29 November–5 December 2017. [Google Scholar]
- Gambacorta, A.; Barnet, C.; Wolf, W.; King, T.; Maddy, E.; Strow, L.; Xiong, X.; Nalli, N.; Goldberg, M. An Experiment Using high spectral resolution CrIS measurements for atmospheric trace gases: Carbon monoxide retrieval impact study. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1639–1643. [Google Scholar] [CrossRef]
- Zhou, D.; Larar, M.A.; Liu, X.; Smith, W.; Strow, L.; Yang, P.; Schluessel, P.; Calbet, X. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1277–1290. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Li, Y.; Zhang, Y.; Schmit, T.J.; Zhou, L.; Goldberg, M.D.; Menzel, W.P. Determining diurnal variations of land surface emissivity from geostationary satellites. J. Geophys. Res. 2012, 117, D23302. [Google Scholar] [CrossRef]
- Label, J.; Stoll, M.P. Angular variation of land surface spectral emissivity in the thermal infrared: Laboratory investigations on bare soils. Int. J. Remote Sens. 1991, 12, 2299–2310. [Google Scholar]
- Sobrino, J.A.; Cuenca, J. Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 1999, 38, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, J.; Sobrino, A.J. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity. Appl. Opt. 2004, 43, 4598–4602. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Satnos, V.; Valor, E.; Caselles, V.; Burgos, M.A.; Coll, C. On the angular variation of thermal infrared emissivity of inorganic soils. J. Geophys. Res. 2012, 117, D19116. [Google Scholar] [CrossRef]
- Ruston, B.; Weng, F.; Yan, B. Use of a One-Dimensional variation retrieval to Diagnose Estimates of Infrared and Microwave Surface Emissivity Over Land for ATOVS Sounding Instruments. IEEE Trans. Geosci. Remote Sens. 2008, 46, 393–402. [Google Scholar] [CrossRef]
- Borbas, E.; Investigation into the Angular Dependence of IR Surface Emissivity. Mission Report; EUMETSAT NWPSAF-MO-VS-050; 2014. Available online: https://nwpsaf.eu/vs_reports/nwpsaf-mo-vs-050.pdf (accessed on 15 February 2018).
CAMEL Channel Number | CAMEL Wavelength [μm] | UWBF Channels | ASTER Channels | CAMEL Combining Method |
---|---|---|---|---|
1 | 3.6 | Y | - | UWBF1 |
2 | 4.3 | Y | - | UWBF2 |
3 | 5.0 | Y | - | UWBF3 |
4 | 5.8 | Y | - | UWBF4 |
5 | 7.6 | Y | - | UWBF5 |
6 | 8.3 | Y | Y | ASTER1 + (CAMEL7(UWBF6, ASTER2) − ASTER2) |
7 | 8.6 | Y | Y | Weighted Mean(UWBF6, ASTER2) |
8 | 9.1 | - | Y | ASTER 3 + (CAMEL7(UWBF6, ASTER2) − ASTER2) |
9 | 10.6 | - | Y | ASTER4 |
10 | 10.8 | - | - | Linear Interpolation(ASTER4, ASTER5) |
11 | 11.3 | - | Y | ASTER5 |
12 | 12.1 | Y | - | UWBF9 but if ASTER5 > BF9, UWBF9 + diff(UWBF9, ASTER5) * weight |
12 * | 12.1 | Y | - | if snowfrac > 0.5 UWBF9 + diff(CAMEL10, UWBF8) |
13 | 14.3 | Y | - | UWBF10 but if ASTER5 > BF9, UWBF9+ diff(UWBF9, ASTER5) * weight |
13 * | 14.3 | Y | - | if snowfrac > 0.5 CAMEL12 |
Tests | Version # of Laboratory Dataset | Number of PCs |
---|---|---|
1Carbonate test: yes | 10 (general_carbonates) | 5 |
1Carbonate test: no, but CAMEL9.1 <= 0.85 | 8 (general) | 9 |
All the others | 8 (general) | 7 |
MOD10 snow fraction >= 0.5 | 12 (snow/ice) | 2 |
Value | Description |
---|---|
0 | sea or inland water |
1 | input UW BF and ASTER GEDv4 data are good quality |
2 | input UW BF is good quality and ASTER GEDv4 is filled |
3 | the input UW BF is filled, but ASTER GEDv4 is good quality |
4 | both the UW BF and ASTER GEDv4 values are filled |
RTOV10/UWIREMIS | RTTOV12/CAMEL | |
---|---|---|
Spatial Resolution: | 0.1° × 0.1° | 0.05° × 0.05° |
Inputs: | MODIS MYD11 (6) MODIS-ASTER Lab | UW BF (10) ATER-GEDv4 (5) MODIS-ASTER Lab |
Method: | Baseline-fit conceptual modelPCA regression | Conceptual hinge-points method PCA regression |
Laboratory data: | One set of 123 selected MODIS/ASTER | three sets of MODIS/ASTER: 55 general set; 82 general + carbonates; 4 ice/snow |
Number of PCs | 6 | 2, 5, 7, or 9 depends on surface types, ASTER8.6 emis & NDVI, MOD10 snow fraction |
Outputs | Emissivity spectra on 10 hinge points and 417 HSR points, PCA coefficients | Emissivity spectra on 13 hinge points and 417 HSR points, PCA coefficients, uncertainties, NDVI, snow fraction |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borbas, E.E.; Hulley, G.; Feltz, M.; Knuteson, R.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application. Remote Sens. 2018, 10, 643. https://doi.org/10.3390/rs10040643
Borbas EE, Hulley G, Feltz M, Knuteson R, Hook S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application. Remote Sensing. 2018; 10(4):643. https://doi.org/10.3390/rs10040643
Chicago/Turabian StyleBorbas, E. Eva, Glynn Hulley, Michelle Feltz, Robert Knuteson, and Simon Hook. 2018. "The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application" Remote Sensing 10, no. 4: 643. https://doi.org/10.3390/rs10040643
APA StyleBorbas, E. E., Hulley, G., Feltz, M., Knuteson, R., & Hook, S. (2018). The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application. Remote Sensing, 10(4), 643. https://doi.org/10.3390/rs10040643