The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product
Abstract
:1. Introduction
2. Data
3. Methods
4. Results
4.1. CAMEL Broadband Emissivity
4.2. BBE by Land Type and Climate Regime
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V. The Role of Earth Radiation Budget Studies in Climate and General Circulation Research. J. Geophys. Res. 1987, 92, 4075–4095. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). The Global Observing System for Climate: Implementation Needs GCOS-200; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- Prabhakara, C.; Dalu, G. Remote sensing of the surface emissivity at 9 micron over the globe. J. Geophys. Res. 1976, 81, 3719–3724. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Norman, J.M.; Divakarla, M.; Goel, N.S. Algorithms for extracting information from remote thermal-IR observations of the earth’s surface. Remote Sens. Environ. 1995, 51, 157–168. [Google Scholar] [CrossRef]
- Garand, L.; Buehner, M.; Wagneur, N. Background Error Correlation between Surface Skin and Air Temperatures: Estimation and Impact on the Assimilation of Infrared Window Radiances. J. Appl. Meteorol. Climatol. 2004, 43, 1853–1863. [Google Scholar] [CrossRef]
- Dutta, S.K.; Garand, L.; Heilliette, S. Assimilation of Infrared Radiance Observations with Sensitivity to Land Surfaces in the Canadian Ensemble–Variational System. J. Appl. Meteorol. Climatol. 2016, 55, 561–578. [Google Scholar] [CrossRef]
- Duda, J.D.; Wang, X.; Xue, M. Sensitivity of Convection-Allowing Forecasts to Land-Surface Model Perturbations and Implications for Ensemble Design. Mon. Weather Rev. 2017, 145, 2001–2025. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Liang, S. An Improved Land Surface Emissivity Parameter for Land Surface Models Using. Am. Meterol. Soc. 2006, 19, 2867–2881. [Google Scholar]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S. Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. Atmos. 2005, 110, D11109. [Google Scholar] [CrossRef]
- Tang, B.-H.; Wu, H.; Li, C.; Li, Z.-L. Estimation of broadband surface emissivity from narrowband emissivities. Opt. Express 2010, 19, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Schmugge, T.; Jacob, F.; French, A. Estimation of broadband land surface emissivity from multi-spectral thermal infrared remote sensing. Agron. EDP Sci. 2002, 22, 695–696. [Google Scholar] [CrossRef]
- Ogawa, K.; Schmugge, T.; Rokugawa, S. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 334–343. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Liang, S.; Yan, G.; Cheng, J. Empirical algorithms to map global broadband emissivities over vegetated surfaces. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2619–2631. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Ren, B.; Shi, L.; Liu, H. A comparative study of three land surface broadband emissivity datasets from satellite data. Remote Sens. 2014, 6, 111–134. [Google Scholar] [CrossRef]
- Wilber, A.C.; Kratz, D.P.; Gupta, S.K. Surface Emissivity Maps for Use in Retrievals of Longwave Radiation Satellite; NASA Langley Research Center: Hampton, VA, USA, 1999.
- Ogawa, K.; Schmugge, T. Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and MODIS Data. Earth Interact. 2004, 8, 1–14. [Google Scholar] [CrossRef]
- Borbas, E.; Hulley, G.; Feltz, M.; Knuteson, R.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application. Remote Sens. 2018, 10, 643. [Google Scholar] [CrossRef]
- Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation. Remote Sens. 2018, 10, 664. [Google Scholar] [CrossRef]
- Hook, S. Combined ASTER and MODIS Emissivity for Land (CAMEL) Uncertainty Monthly Global 0.05Deg. V001; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Souix Falls, SD, USA, 2017. Available online: https://lpdaac.usgs.gov/dataset_discovery/measures/measures_products_table/cam5k30uc_v001 (accessed on 15 June 2018). [CrossRef]
- Borbas, E.E.; Hulley, G.C.; Knuteson, R.O.; Feltz, M.L. MEaSUREs Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR): The Combined ASTER and MODIS Emissivity Database over Land (CAMEL) Users’ Guide. 2017. Available online: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/cam5k30_v1_user_guide_atbd.pdf (accessed on 7 May 2018).
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol. 2007, 47, 108–123. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Borbas, E.E.; Seemann, S.W. Global Infrared Land Surface Emissivity: UW-Madison Baseline Fit Emissivity Database V2.0. 2007. Available online: http://cimss.ssec.wisc.edu/iremis/ (accessed on 15 June 2018).
- Hulley, G.; Hook, S. AG5KMMOH: ASTER Global Emissivity Dataset, Monthly, 0.05 Degree, HDF5 V041; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Souix Falls, SD, USA, 2016. Available online: https://lpdaac.usgs.gov/node/1123 (accessed on 15 June 2018). [CrossRef]
- Borbas, E.E.; Ruston, B.C. The RTTOV UWiremis IR Land Surface Emissivity Module; EUMETAT NWP SAF, NWPSAF-MO-VS-042; EUMETSAT: Darmstadt, Germany, 2010. [Google Scholar]
- Wan, Z. MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG. V006; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Souix Falls, SD, USA, 2015. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3_v006 (accessed on 15 June 2018). [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Channan, S.; Collins, K.; Emanuel, W.R. Global Mosaics of the Standard MODIS Land Cover Type Data; University of Maryland and the Pacific Northwest National Laboratory: College Park, MD, USA, 2014. [Google Scholar]
- Borbas, E.E.; Feltz, M.L.; Knuteson, R.O. Broad Band Emissivity derived from the MEaSUREs CAMEL V001 Database. UW-Madison Space Science and Engineering Center. Dataset. 2017. Available online: https://ezid.lib.purdue.edu/id/doi:10.21231/S2PP8H (accessed on 15 June 2018). [CrossRef]
Value | Description |
---|---|
0 | Good—BBE between 0.8–1.0 |
1 | Good—no MODIS data, 290 K used as default skin temperature |
2 | BBE outside 0.8–1.0 range |
3 | BBE calculation failed |
4 | No BBE calculation—no CAMEL coefficients available |
5 | No BBE calculation—sea or inland water |
Site | CAMEL | CAMEL Uncertainty | Lab Data | UWIREMIS |
---|---|---|---|---|
Namib ** | 0.9049 | 0.0112 | 0.8934 | 0.9182 |
Yemen | 0.9609 | 0.0087 | 0.9616 | 0.9580 |
Congo | 0.9716 | 0.0059 | 0.9767 | 0.9673 |
ARM SGP | 0.9684 | 0.0045 | 0.9720 | 0.9667 |
Greenland | 0.9775 | 0.0038 | 0.9831 | 0.9798 |
Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1: Evergreen Needle | 0.974 | 0.975 | 0.975 | 0.974 | 0.973 | 0.973 | 0.974 | 0.974 | 0.973 | 0.973 | 0.973 | 0.974 |
2: Evergreen Broad | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 |
3: Deciduous Needle | 0.972 | 0.972 | 0.974 | 0.973 | 0.97 | 0.972 | 0.973 | 0.972 | 0.971 | 0.969 | 0.972 | 0.972 |
4: Deciduous Broad | 0.968 | 0.969 | 0.969 | 0.97 | 0.971 | 0.971 | 0.97 | 0.969 | 0.969 | 0.969 | 0.968 | 0.968 |
5: Mixed Forest | 0.971 | 0.972 | 0.972 | 0.971 | 0.971 | 0.972 | 0.973 | 0.972 | 0.972 | 0.971 | 0.97 | 0.97 |
6: Closed Shrubs | 0.964 | 0.964 | 0.964 | 0.966 | 0.966 | 0.964 | 0.963 | 0.963 | 0.963 | 0.964 | 0.965 | 0.964 |
7: Open Shrubs | 0.965 | 0.965 | 0.965 | 0.966 | 0.964 | 0.963 | 0.963 | 0.963 | 0.962 | 0.963 | 0.964 | 0.964 |
8: Woody Savanna | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.97 | 0.97 | 0.97 | 0.971 | 0.971 |
9: Savanna | 0.967 | 0.967 | 0.967 | 0.967 | 0.967 | 0.967 | 0.966 | 0.966 | 0.965 | 0.964 | 0.965 | 0.966 |
10: Grassland | 0.968 | 0.968 | 0.966 | 0.965 | 0.965 | 0.964 | 0.963 | 0.963 | 0.964 | 0.964 | 0.965 | 0.967 |
11: Wetland | 0.973 | 0.974 | 0.975 | 0.974 | 0.971 | 0.971 | 0.972 | 0.972 | 0.971 | 0.971 | 0.972 | 0.973 |
12: Cropland | 0.97 | 0.97 | 0.969 | 0.968 | 0.968 | 0.968 | 0.969 | 0.969 | 0.969 | 0.968 | 0.968 | 0.969 |
13: Urban Area | 0.968 | 0.968 | 0.967 | 0.967 | 0.968 | 0.967 | 0.967 | 0.967 | 0.967 | 0.967 | 0.967 | 0.968 |
14: Crop/Mosaic | 0.968 | 0.968 | 0.967 | 0.966 | 0.967 | 0.968 | 0.968 | 0.968 | 0.969 | 0.968 | 0.968 | 0.968 |
15: Snow & Ice | 0.975 | 0.975 | 0.976 | 0.976 | 0.976 | 0.975 | 0.974 | 0.974 | 0.975 | 0.976 | 0.975 | 0.975 |
16: Barren/Sparse Veg | 0.927 | 0.927 | 0.925 | 0.925 | 0.925 | 0.924 | 0.924 | 0.924 | 0.924 | 0.925 | 0.925 | 0.926 |
IGBP Category | Number of Samples |
---|---|
1: Evergreen Needle Forests | 179,000 |
2: Evergreen Broad Forests | 454,500 |
3: Deciduous Needle Forests | 94,500 |
4: Deciduous Broad Forests | 43,400 |
5: Mixed Forest | 492,200 |
6: Closed Shrubs | 1400 |
7: Open Shrubs | 1,184,900 |
8: Woody Savanna | 418,000 |
9: Savanna | 361,900 |
10: Grassland | 876,300 |
11: Wetland | 46,000 |
12: Cropland | 507,000 |
13: Urban Area | 3300 |
14: Crop/Mosaic | 277,300 |
15: Snow & Ice | 367,700 |
16: Barren/Sparse Vegetation | 695,300 |
Representation | Emissivity (-) | Skin Temperature (K) | LW Radiation (W/m2) |
---|---|---|---|
Change between months | 0.005 | 230 | 0.79 |
Change between months | 0.005 | 310 | 2.62 |
Change between months | 0.005 | 340 | 3.79 |
Change in land cover | 0.05 | 230 | 7.9 |
Change in land cover | 0.05 | 310 | 26.1 |
Change in land cover | 0.05 | 340 | 37.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S. The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product. Remote Sens. 2018, 10, 1027. https://doi.org/10.3390/rs10071027
Feltz M, Borbas E, Knuteson R, Hulley G, Hook S. The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product. Remote Sensing. 2018; 10(7):1027. https://doi.org/10.3390/rs10071027
Chicago/Turabian StyleFeltz, Michelle, Eva Borbas, Robert Knuteson, Glynn Hulley, and Simon Hook. 2018. "The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product" Remote Sensing 10, no. 7: 1027. https://doi.org/10.3390/rs10071027
APA StyleFeltz, M., Borbas, E., Knuteson, R., Hulley, G., & Hook, S. (2018). The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product. Remote Sensing, 10(7), 1027. https://doi.org/10.3390/rs10071027