Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database Established
2.3. Study Methods
Delineation of Flood Damaged Areas
3. Results and Discussion
3.1. Flood Damaged Area Delineation
3.2. Study Result Confirmation
4. Conclusions
- (1)
- On 30 August 2016, an area of 106.63 km2 (7.81%) in Hoeryeong City was inundated. Most floods occurred in flat areas adjacent to lower- and middle-order streams.
- (2)
- The DNS map and landform map developed in the model in this study are important factors for delineating FDAs because these two factors reflect NK topography, which is a heterogeneous mountainous region.
- (3)
- High-resolution web-based satellite imagery can be used as ground-truth data in inaccessible regions.
Author Contributions
Funding
Conflicts of Interest
References
- Korea Ministry of Unification. Annual Rainfall Damages Status in North Korea. Available online: http://nkinfo.unikorea.go.kr/nkp/overview/nkOverview.do?sumryMenuId=SO322 (accessed on 24 January 2017).
- Kim, M.S.N. Korea Reeling from Flood Damage. Available online: http://english.chosun.com/site/data/html_dir/2016/09/19/2016091901010.html (accessed on 8 November 2016).
- Yonhap News Agency. (LEAD) 40 People Killed, 11,000 Affected N. Korean Floods. Available online: http://english.yonhapnews.co.kr/search1/2603000000.html?cid=AEN20150826010300315 (accessed on 14 October 2016).
- Barton, I.J.; Bathols, J.M. Monitoring Floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. [Google Scholar] [CrossRef]
- Dhakal, A.S.; Amada, T.; Aniya, M.; Sharma, R.R. Detection of areas associated with flood and erosion caused by a heavy rainfall using multitemporal Landsat TM data. Photogramm. Eng. Remote Sens. 2002, 68, 233–239. [Google Scholar]
- Hudson, P.F.; Colditz, R.R. Flood delineation in a large and complex alluvial valley, lower Pánuco basin, Mexico. J. Hydrol. 2003, 280, 229–245. [Google Scholar] [CrossRef]
- Amini, J. A method for generating floodplain maps using ikonos images and dems. Int. J. Remote Sens. 2010, 31, 2441–2456. [Google Scholar] [CrossRef]
- Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol. 2009, 9, 1–18. [Google Scholar]
- Volpi, M.; Petropoulos, G.P.; Kanevski, M. Flooding extent cartography with Landsat TM imagery and regularized kernel Fisher’s discriminant analysis. Comput. Geosci. 2013, 57, 24–31. [Google Scholar] [CrossRef]
- Giacomelli, A.; Mancini, M.; Rosso, R. Assessment of flooded areas from ERS-1 PRI data: An application to the 1994 flood in Northern Italy. Phys. Chem. Earth 1995, 20, 469–474. [Google Scholar] [CrossRef]
- Townsend, P.A.; Walsh, S.J. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 1998, 21, 295–312. [Google Scholar] [CrossRef]
- Brivio, P.A.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 2002, 23, 429–441. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, F.; Li, L.; Wan, E. Dynamic monitoring and damage evaluation of flood in north-west Jilin with remote sensing. Int. J. Remote Sens. 2002, 23, 3669–3679. [Google Scholar] [CrossRef]
- Chubey, M.S.; Hathout, S. Integration of RADARSAT and GIS modelling for estimating future Red River flood risk. GeoJournal 2004, 59, 237–246. [Google Scholar] [CrossRef]
- Okamoto, K.; Yamakawa, S.; Kawashima, H. Estimation of flood damage to rice production in North Korea in 1995. Int. J. Remote Sens. 1998, 19, 365–371. [Google Scholar] [CrossRef]
- Kim, C.; Choi, J.; Joung, G. A Pilot Study on Environmental Evaluating and Estimation of the North Korea Flooded Area Using Spaceborne Scanner Data; The Korean Federation of Science and Technology Societies: Seoul, Korea, 1998; pp. 66–150. [Google Scholar]
- Lim, J.; Lee, K.S. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems. Environ. Monit. Assess. 2017, 189, 96. [Google Scholar] [CrossRef] [PubMed]
- Mamat, R.; Mansor, S.B. Remote sensing and GIS for flood prediction. In Proceedings of the Twentieth Asian Conference of Remote Sensing, Hong Kong, China, 22–25 November 1999. [Google Scholar]
- Pradhan, B.; Buchroithner, M.F. Comparison and Validation of Landslide Susceptibility Maps Using an Artificial Neural Network Model for Three Test Areas in Malaysia. Environ. Eng. Geosci. 2010, 16, 107–126. [Google Scholar] [CrossRef]
- Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2012, 67, 251–264. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382, 20–33. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646. [Google Scholar] [CrossRef]
- Sar, N.; Chatterjee, S.; Das Adhikari, M. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model. Earth Syst. Environ. 2015, 1, 31. [Google Scholar] [CrossRef]
- Rozos, D.; Bathrellos, G.D.; Skillodimou, H.D. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, Greece. Environ. Earth Sci. 2011, 63, 49–63. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Yeh, C.-H.; Yu, B. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat. Hazards 2011, 59, 1261–1276. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Samanta, R.K.; Bhunia, G.S.; Shit, P.K.; Pourghasemi, H.R. Flood susceptibility mapping using geospatial frequency ratio technique: A case study of Subarnarekha River Basin, India. Model. Earth Syst. Environ. 2018, 4, 395–408. [Google Scholar] [CrossRef]
- Shafapour Tehrany, M.; Shabani, F.; Neamah Jebur, M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat. Nat. Hazards Risk 2017, 8, 1538–1561. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 2016, 75, 12. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Kang, J.E.; Jeon, S. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 895–898. [Google Scholar]
- Pradhan, B.; Mansor, S.; Pirasteh, S.; Buchroithner, M.F. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int. J. Remote Sens. 2011, 32, 4075–4087. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 2018, 217, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Liao, X.; Carin, L. Migratory logistic regression for learning concept drift between two data sets with application to UXO sensing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1454–1466. [Google Scholar] [CrossRef]
- Lee, M.B.; Kim, N.S.; Cho, Y.C.; Cha, J.Y. Landform and Environment in Border Region of N. Korea and China. J. Korean Geogr. Soc. 2016, 51, 761–777. [Google Scholar]
- Myeong, S.; Kim, J.; Lim, M.; Hwang, S.; Son, G.; Ahn, J.; Gang, S.; Joo, G. A Study on Constructing a Cooperative System for South and North Koreas to Counteract Climate Change on the Korean Peninsula III; Korea Environment Institute: Seoul, Korea, 2013; pp. 68–79. [Google Scholar]
- Kwak, I.O. Spatial Structure and Function of Heoryong Market. Ph.D. Thesis, Korea University, Seoul, Korea, 2013. [Google Scholar]
- Shin, J.I. (Newly Written by Shin, Jeong Il) TaekRiJi—North Korea; Next Thinking: Goyang, Korea, 2012; pp. 30–36. [Google Scholar]
- Wikipedia. Hoeryong. Available online: https://en.wikipedia.org/wiki/Hoeryong (accessed on 14 October 2016).
- Lee, M.B.; Kim, N.S.; Kang, C.S.; Shin, K.H.; Choe, H.S.; Han, U. Estimation of soil loss due to cropland increase in Hoeryeung, Northeast Korea. J. Korean Assoc. Reg. Geogr. 2003, 9, 373–384. [Google Scholar]
- Gunjal, K.; Goodbody, S.; Hollema, S.; Ghoos, K.; Wanmali, S.; Krishnamurthy, K.; Turano, E. FAO/WFP Crop and Food Security Assessment Mission to the Democratic People's Republic of Korea; Food and Agriculture Organization of the United Nations/World Food Programme: Rome, Italy, 2013; p. 11. [Google Scholar]
- Wikipedia. North Korea. Available online: https://en.wikipedia.org/wiki/North_Korea#Climate (accessed on 8 June 2016).
- Kim, S.J.; Suh, K.; Kim, S.M.; Lee, K.D.; Jang, M.W. Mapping of inundation vulnerability using geomorphic characteristics of flood-damaged farmlands—A case study of Jinju City. J. Korean Soc. Rural Plan. 2013, 19, 51–59. [Google Scholar] [CrossRef]
- Jasiewicz, J. r. stream.order. Available online: https://grass.osgeo.org/grass70/manuals/addons/r.stream.order.html (accessed on 14 April 2016).
- Hack, J.T. Studies of Longitudinal Stream Profiles in Virginia and Maryland; US Government Printing Office: Washington, DC, USA, 1957; pp. 45–97.
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Tak, H.M. Optimal Variable Establishment for Using Geomorphons in Korean Peninsula. J. Korean Geomorphol. Assoc. 2014, 21, 165–183. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Wiley: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Alice, M. How to Perform a Logistic Regression in R. Available online: https://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/ (accessed on 6 February 2017).
- Kwon, J.M. Data Science to Follow and Learn; Jpub: Seoul, Korea, 2017. [Google Scholar]
- Yang, M.; Xu, L.; White, M.; Schuurmans, D.; Yu, Y.-L. Relaxed clipping: A global training method for robust regression and classification. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December; pp. 2532–2540.
- Rodríguez, G. Generalized Linear Models. Available online: http://data.princeton.edu/wws509/notes/a2s4.html (accessed on 8 June 2018).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Champman and Hall: London, UK, 1989. [Google Scholar]
- UNRCDPRK. Joint Assessment North Hamgyong Floods 2016; UN Resident Coordinator for DPR Korea: Pyeongyang, Korea, 2016; pp. 2–30. [Google Scholar]
- Lee, S.H. Situation of Degraded Forest Land in DPRK and Strategies for Forestry Cooperation between South and North Korea. J. Agric. Life Sci. 2004, 38, 101–113. [Google Scholar]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Ye, W.S.; Lee, H.S.; Lee, K.S. Application of the GIS in the Hydrologic Effects Caused by the Second Collective Facility Area Development in Mt. Kyeryong National Park. J. Environ. Impact Assess. 1994, 3, 57–68. [Google Scholar]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Shankman, D.; Liang, Q. Landscape Changes and Increasing Flood Frequency in China’s Poyang Lake Region. Prof. Geogr. 2003, 55, 434–445. [Google Scholar] [CrossRef]
- Water Resources Management Information System. Flood Record. Available online: http://www.wamis.go.kr/WKF/WKF_FDDATIQ_LST.aspx?code=10536 (accessed on 29 June 2017).
- Oberstadler, R.; HÖNsch, H.; Huth, D. Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: A case study in Germany. Hydrol. Process. 1997, 11, 1415–1425. [Google Scholar] [CrossRef]
- Nakmuenwai, P.; Yamazaki, F.; Liu, W. Automated Extraction of Inundated Areas from Multi-Temporal Dual-Polarization RADARSAT-2 Images of the 2011 Central Thailand Flood. Remote Sens. 2017, 9, 78. [Google Scholar] [CrossRef]
Data | Period or Year | Spatial Resolution | Source | ||
---|---|---|---|---|---|
RS | Optical | Landsat 8 | 28 May 2016 | 30 m | USGS |
GeoEye-1 | 16 October 2015 15 September 2016 | 1.65 m | Google Earth | ||
Radar | Sentinel-1 | 6 August 2016 30 August 2016 | Range 5 m Azimuth 20 m | ESA | |
GIS | Elevation map | 1:25,000 | NGII Digital topographic data | ||
Slope map | |||||
DNS map | |||||
Landform map | |||||
Flow accumulation map | |||||
Flow direction map |
Model No. | AIC | McFadden’s R2 | AUC | Binomial Deviance |
---|---|---|---|---|
Model 1 | 5594 | 0.27 | 0.87 | 1860.31 |
Model 2 | 3635 | 0.55 | 0.94 | 1118.90 |
Model 3 | 3452 | 0.58 | 0.96 | 1028.13 |
Model 4 | 3542 | 0.56 | 0.95 | 1089.82 |
Model 5 | 3408 | 0.58 | 0.96 | 1022.68 |
Model 6 | 3391 | 0.58 | 0.96 | 1016.07 |
Model 7 | 2722 | 0.67 | 0.97 | 820.23 |
Model 8 | 2705 | 0.67 | 0.97 | 821.65 |
Model 9 | 2706 | 0.67 | 0.97 | 821.94 |
Model 10 | 2705 | 0.67 | 0.97 | 822.93 |
Coefficients of Logistic Regression | |
---|---|
(Intercept) | 2.840 |
ELEVATION | −4.254 × 10−4 |
SLOPE | −0.325 |
DNS | −6.535 × 10−4 |
LANDFORM@Flat | 0 |
LANDFORM@Peak | −18.170 |
LANDFORM@Ridge | −4.598 |
LANDFORM@Shoulder | −0.024 |
LANDFORM@Spur | −3.164 |
LANDFORM@Slope | −1.540 |
LANDFORM@Hollow | −1.315 |
LANDFORM@Footslope | 0.115 |
LANDFORM@Valley | −0.025 |
LANDFORM@Pit | 0.017 |
Observed Model | Flood (km2) | No Flood (km2) | Total (km2) | User Accuracy (%) |
---|---|---|---|---|
Flood (km2) | 6.88 | 0.86 | 7.74 | 89.0 |
No flood (km2) | 0.59 | 4.22 | 4.81 | 87.8 |
Total (km2) | 7.47 | 5.08 | 12.55 | |
Producer accuracy (%) | 92.2 | 83.2 | ||
Kappa: 0.8 Overall accuracy: 88.5 |
Area of FDA-Visual Interpretation | Area of FDA-Model | Matching Ratio |
---|---|---|
35.5 km2 | 38.3 km2 | 92.6% |
UNCDPRK Report NK Government | Study Results | |
---|---|---|
Part of Hoeryeong City | 2700 (UNCDPRK) | 2577 |
Hoeryeong City | >10,000 (NK) | 10,726 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Lee, K.-s. Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea. Remote Sens. 2018, 10, 1036. https://doi.org/10.3390/rs10071036
Lim J, Lee K-s. Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea. Remote Sensing. 2018; 10(7):1036. https://doi.org/10.3390/rs10071036
Chicago/Turabian StyleLim, Joongbin, and Kyoo-seock Lee. 2018. "Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea" Remote Sensing 10, no. 7: 1036. https://doi.org/10.3390/rs10071036
APA StyleLim, J., & Lee, K. -s. (2018). Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea. Remote Sensing, 10(7), 1036. https://doi.org/10.3390/rs10071036