Assessing the Impacts of Urbanization on Albedo in Jing-Jin-Ji Region of China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Surface Albedo Data Set
2.3. Vegetation Index Data
2.4. Nighttime Light Data
2.5. GlobeLand30 Landcover Data
3. Methods
3.1. Urban Area Extraction
3.2. Breakpoint Analysis
3.3. Interannual Variation Rate Calculation
3.4. Contribution Analysis
4. Results
4.1. Albedo Variations and Spatial Patterns
4.2. Urbanization Spatial Patterns
4.3. Sensitivity of Urbanization and Vegetation to Albedo
4.4. Effects of the Influential Factors on Changes in Albedo
4.5. Urbanization in Representative Cities
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessment of the modis 16-day albedo product for snow: Comparisons with greenland in situ measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]
- Cess, R.D. Biosphere-albedo feedback and climate modeling. J. Atmos. Sci. 1978, 35, 1765–1768. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Lofgren, B.M. Surface albedo–climate feedback simulated using two-way coupling. J. Clim. 1995, 8, 2543–2562. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2009, 94, 275–286. [Google Scholar] [CrossRef]
- Menon, S.; Akbari, H.; Mahanama, S.; Sednev, I.; Levinson, R. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Sailor, D.J. Simulated urban climate response to modifications in surface albedo and vegetative cover. J. Appl. Meteorol. 1995, 34, 1694–1704. [Google Scholar] [CrossRef]
- Daan, B.; Gabriela, S.-S.; Harm, B.; Monique, M.P.D.H.; Trofim, C.M.; Frank, B. The response of arctic vegetation to the summer climate: Relation between shrub cover, ndvi, surface albedo and temperature. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Hannesp, S.; Davidneil, B. Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units. For. Ecol. Manag. 2010, 260, 278–286. [Google Scholar]
- Meng, X.H.; Evans, J.P.; Mccabe, M.F. The influence of inter-annually varying albedo on regional climate and drought. Clim. Dyn. 2014, 42, 787–803. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; Van den Rroeke, M.R.; Van den Wal, R.S.W.; Smeets, C.J.P.P.; Van den Berg, W.J.; Serreze, M.C.; Box, J.E. The role of albedo and accumulation in the 2010 melting record in greenland. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Caiazzo, F.; Malina, R.; Staples, M.D.; Wolfe, P.J.; Yim, S.H.L.; Barrett, S.R.H. Quantifying the climate impacts of albedo changes due to biofuel production: A comparison with biogeochemical effects. Environ. Res. Lett. 2014, 9, 69–75. [Google Scholar] [CrossRef]
- Stull, E.; Sun, X.; Zaelke, D. Enhancing urban albedo to fight climate change and save energy. Sustain. Dev. Law Policy 2010, 11, 5–6. [Google Scholar]
- Aida, M. Urban albedo as a function of the urban structure—A model experiment. Bound. Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Guo, N.; Jianrong, B.I.; Wang, G. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the loess plateau. Adv. Atmos. Sci. 2009, 26, 692–700. [Google Scholar] [CrossRef]
- Chen, X.H. Relationship between surface albedo and some meteorological factors. J. Chengdu Inst. Meteorol. 1999, 14, 233–238. [Google Scholar]
- Ialongo, I.; Buchard, V.; Brogniez, C.; Casale, G.R. Aerosol single scattering albedo retrieval in the uv range: An application to omi satellite validation. Atmos. Chem. Phys. 2010, 10, 331–340. [Google Scholar] [CrossRef]
- Li, G.; Xiao, J. Diurnal variation of surface albedo and relationship between surface albedo and meteorological factors on the western qinghai-tibet plateau. Sci. Geogr. Sin. 2007, 27, 63–67. [Google Scholar] [CrossRef]
- Dana, K.J.; Nayar, S.K.; Ginneken, B.V.; Koenderink, J.J. Reflectance and texture of real-world surfaces. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997. [Google Scholar]
- Baret, F. Reflection of radiant energy from soils. Adv. Space Res. 1993, 13, 130–138. [Google Scholar]
- Bowers, S.A.; Smith, S.J. Spectrophotometric determination of soil water content. Soilence Soc. Am. J. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Karnieli, A.; Ben-Dor, E.; Królewicz, S. Shortwave radiation affected by agricultural practices. Remote Sens. 2018, 10, 419. [Google Scholar] [CrossRef]
- Cierniewski, J.; Karnieli, A.; Kaźmierowski, C.; Królewicz, S.; Piekarczyk, J.; Lewińska, K.; Goldberg, A.; Wesołowski, R.; Orzechowski, M. Effects of soil surface irregularities on the diurnal variation of soil broadband blue-sky albedo. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Piech, K.R.; Walker, J.E. Interpretation of soils. Photogramm. Eng. 1974, 40, 87–94. [Google Scholar]
- Mikhaĭlova, N.A.; Orlov, D.S.; Rozanov, B.G. Opticheskie Svoĭstva Pochv I Pochvennykh Komponentov; Nauka: Moskva, Russia, 1986. [Google Scholar]
- Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 2017, 23. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature. 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Carlson, T.N.; Arthur, S.T. The impact of land use—Land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in southwest china karst area—A case study of guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Matson, M.; Mcclain, E.P.; McGinnis, D.F., Jr.; Pritchard, J.A. Satellite detection of urban heat islands. Mon. Weather Rev. 1978, 106, 1725–1734. [Google Scholar] [CrossRef]
- Price, J.C. Assessment of the urban heat island effect through the use of satellite data. Mon. Weather Rev. 1979, 107, 1554–1557. [Google Scholar] [CrossRef]
- Gallo, K.P.; Owen, T.W. Satellite-based adjustments for the urban heat island temperature bias. J. Appl. Meteorol. 1999, 38, 806–813. [Google Scholar] [CrossRef]
- Xu, H.; Chen, B. Remote sensing of the urban heat island and its changes in xiamen city of se china. J. Environ. Sci. 2004, 16, 276–281. [Google Scholar]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Spångmyr, M. Global Effects of Albedo Change Due to Urbanization; Lund University: Lund, Sweden, 2010. [Google Scholar]
- Hamdi, R.; Schayes, G. Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol. 2008, 28, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Liu, J.; Gao, F.; Strahler, A.H. Aqua and terra modis albedo and reflectance anisotropy products. In Land Remote Sensing and Global Environmental Change; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2010; pp. 549–561. [Google Scholar]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q. Changes in vegetation photosynthetic activity trends across the asia–pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of dmsp/ols nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Chen, D.; Wei, Z.; Dai, L.; Li, X. Determining the contributions of urbanisation and climate change to npp variations over the last decade in the yangtze river delta, China. Sci. Total Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Leeuwen, W.V.; Miura, T.; Glenn, E. Modis Vegetation Indices; Springer: New York, NY, USA, 2010. [Google Scholar]
- LI, Y.; Shi, B. Analysis of population distribution in beijing-tianjin-hebei region in 2000–2013 (In Chinese). Youth Times 2016, 13, 85–86. [Google Scholar]
- Jiang, D.; Zhuang, D.; Xu, X.; Lei, Y. Integrated evaluation of urban development suitability based on remote sensing and gis techniques—A case study in jingjinji area, china. Sensors 2008, 8, 5975–5986. [Google Scholar]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Benas, N.; Chrysoulakis, N. Estimation of the land surface albedo changes in the broader mediterranean area, based on 12 years of satellite observations. Remote Sens. 2015, 7, 16150–16163. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from modis data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Piao, S.; Philippe, C.; Pierre, F.; Catherine, O.; François-Marie, B.; Huijuan, N.; Liming, Z.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.; Zhou, X.; Sparrow, M.; Ma, M.; Sun, Z.; Jiang, W. Validation of the modis global land surface albedo product using ground measurements in a semidesert region on the tibetan plateau. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Van Leeuwen, W. Modis Vegetation Index (mod 13) Algorithm Theoretical Basis Document. Universities of Arizona and Virginia, USA. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 6 July 2018).
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. Modis Vegetation Index User’s Guide (Mod13 Series); Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2010. [Google Scholar]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series modis 250 m vegetation index data for crop classification in the us central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of china. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from dmsp/ols nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in china using dmsp-ols nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Cao, Z.; Zhifeng, W.U.; Kuang, Y.; Huang, N. Correction of dmsp/ols night-time light images and its application in china. J. Geo-Inf. Sci. 2015, 3498, 1010–1016. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of dmsp-ols low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of dmsp-ols night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and applications of globeland30: A review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]
- Chen, J.; Jin, C.; Liao, A.; Xing, C.; Chen, L.; Chen, X.; Shu, P.; Gang, H.; Zhang, H.; Chaoying, H.E. Concepts and key techniques for 30 m global land cover mapping. Acta Geod. Cartogr. Sin. 2014, 43, 551–557. [Google Scholar]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. Globeland30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of globeland30 at a national level&58; methodology and results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar]
- Antrop, M. Landscape change and the urbanization process in europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Gong, P.; Howarth, P.J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm. Eng. Remote Sens. 1990, 56, 67–73. [Google Scholar]
- Wehrwein, G.S. The rural-urban fringe. Econ. Geogr. 1942, 18, 217–228. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Xu, X.; Ciais, P.; Macbean, N.; Myneni, R.B.; Li, L. Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Glob. Ecol. Biogeogr. 2015, 24, 621–631. [Google Scholar] [CrossRef]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of earth. Science 2017, 356, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. Environ. 2003, 88, 170–186. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: New York, NY, USA, 1987. [Google Scholar]
- Meng, D.; Mo, X. Assessing the effect of climate change on mean annual runoff in the songhua river basin, China. Hydrol. Process. 2012, 26, 1050–1061. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. A measurement based sensitivity analysis of the penman-monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor. Appl. Climatol. 1998, 60, 141–149. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Schwalm, C.R.; Ciais, P.; Zhang, Y.; Fisher, J.B.; Michalak, A.M.; Wang, W.; Poulter, B.; Huntzinger, D.N. Response of water use efficiency to global environmental change based on output from terrestrial biosphere models. Glob. Biogeochem. Cycles 2017, 31, 1639–1655. [Google Scholar] [CrossRef]
- Kondo, A.; Ueno, M.; Kaga, A.; Yamaguchi, K. The influence of urban canopy configuration on urban albedo. Bound. Layer Meteorol. 2001, 100, 225–242. [Google Scholar] [CrossRef]
- Oke, T.R. Review of Urban Climatology, 1973–1976; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Oke, T. Climatic impacts of urbanization. In Interactions of Energy and Climate; Springer: New York, NY, USA, 1980. [Google Scholar]
- Wilmers, F. Effects of vegetation on urban climate and buildings. Energy Build. 1991, 15, 507–514. [Google Scholar] [CrossRef]
- Djen, C.S. The urban climate of Shanghai. Atmos. Environ. Part B 1992, 26, 9–15. [Google Scholar] [CrossRef]
- Aida, M.; Gotoh, K. Urban albedo as a function of the urban structure—A two-dimensional numerical simulation. Bound. Layer Meteorol. 1982, 23, 415–424. [Google Scholar] [CrossRef]
- Kanda, M.; Kawai, T.; Nakagawa, K. A simple theoretical radiation scheme for regular building arrays. Bound. Layer Meteorol. 2005, 114, 71–90. [Google Scholar] [CrossRef]
- MacLachlan, A.; Biggs, E.; Roberts, G.; Boruff, B. Urbanisation-induced land cover temperature dynamics for sustainable future urban heat island mitigation. Urban Sci. 2017, 1, 38. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The long-term effect of increasing the albedo of urban areas. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Wang, M.; Yan, X.; Liu, J.; Zhang, X. The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing–Tianjin–Hebei metropolitan area. Theor. Appl. Climatol. 2013, 114, 407–416. [Google Scholar] [CrossRef]
- Oke, T. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.; Castellani, B.; Rossi, F.; Cotana, F. The impact of albedo increase to mitigate the urban heat island in terni (Italy) using the wrf model. Sustainability 2016, 8, 999. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Ciantis, S.D.; Anderini, E.; Rossi, F. Planning for cooler urban canyons: Comparative analysis of the influence of façades reflective properties on urban canyon thermal behavior. Sol. Energy 2018, 162, 14–27. [Google Scholar] [CrossRef]
- Rossi, F.; Anderini, E.; Castellani, B.; Nicolini, A.; Morini, E. Integrated improvement of occupants’ comfort in urban areas during outdoor events. Build. Environ. 2015, 93, 285–292. [Google Scholar] [CrossRef]
- Taha, H.; Akbari, H.; Rosenfeld, A.; Huang, J. Residential cooling loads and the urban heat island—The effects of albedo. Build. Environ. 1988, 23, 271–283. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Fu, C. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China. Adv. Atmos. Sci. 2008, 25, 757–764. [Google Scholar] [CrossRef]
- Roxy, M.S.; Sumithranand, V.B.; Renuka, G. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at astronomical observatory, Thiruvananthapuram, South Kerala. J. Earth Syst. Sci. 2010, 119, 507–517. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Xu, X.; Gregory, J.; Kirchain, R. Climate impacts of surface albedo: Review and comparative analysis. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
Land Cover Types | Mean | Std | Percentage in 2000 | Percentage in 2010 | Variation |
---|---|---|---|---|---|
cultivated lands | 0.118 | 0.018 | 77.32% | 70.99% | −6.33% |
forests | 0.115 | 0.020 | 6.88% | 6.64% | −0.23% |
grasslands | 0.122 | 0.022 | 0.03% | 0.03% | 0.00% |
shrublands | 0.137 | 0.011 | 0.69% | 6.11% | 5.42% |
wetlands | 0.101 | 0.026 | 0.46% | 0.45% | −0.01% |
water bodies | 0.104 | 0.025 | 2.55% | 2.39% | −0.15% |
artificial surfaces | 0.113 | 0.023 | 12.06% | 13.37% | 1.31% |
barelands | 0.127 | 0.016 | 0.02% | 0.02% | 0.00% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Zhao, X.; Zhou, T.; Jiang, B.; Wu, D.; Tang, B. Assessing the Impacts of Urbanization on Albedo in Jing-Jin-Ji Region of China. Remote Sens. 2018, 10, 1096. https://doi.org/10.3390/rs10071096
Tang R, Zhao X, Zhou T, Jiang B, Wu D, Tang B. Assessing the Impacts of Urbanization on Albedo in Jing-Jin-Ji Region of China. Remote Sensing. 2018; 10(7):1096. https://doi.org/10.3390/rs10071096
Chicago/Turabian StyleTang, Rongyun, Xiang Zhao, Tao Zhou, Bo Jiang, Donghai Wu, and Bijian Tang. 2018. "Assessing the Impacts of Urbanization on Albedo in Jing-Jin-Ji Region of China" Remote Sensing 10, no. 7: 1096. https://doi.org/10.3390/rs10071096
APA StyleTang, R., Zhao, X., Zhou, T., Jiang, B., Wu, D., & Tang, B. (2018). Assessing the Impacts of Urbanization on Albedo in Jing-Jin-Ji Region of China. Remote Sensing, 10(7), 1096. https://doi.org/10.3390/rs10071096