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Abstract: Evaporation (E) and transpiration (T) information is crucial for precise water resources
planning and management in arid and semiarid areas. Two-source energy balance (TSEB) methods
based on remotely-sensed land surface temperature provide an important modeling approach
for estimating evapotranspiration (ET) and its components of E and T. Approaches for accurate
decomposition of the component temperature and E/T partitioning from ET based on TSEB
requires careful investigation. In this study, three TSEB models are used: (i) the TSEB model
with the Priestley-Taylor equation, i.e., TSEB-PT; (ii) the TSEB model using the Penman-Monteith
equation, i.e., TSEB-PM, and (iii) the TSEB using component temperatures derived from vegetation
fractional cover and land surface temperature (VFC/LST) space, i.e., TSEB-TC-TS. These models are
employed to investigate the impact of component temperature decomposition on E/T partitioning
accuracy. Validation was conducted in the large-scale campaign of Heihe Watershed Allied
Telemetry Experimental Research-Multi-Scale Observation Experiment on Evapotranspiration
(HiWATER-MUSOEXE) in the northwest of China, and results showed that root mean square
errors (RMSEs) of latent and sensible heat fluxes were respectively lower than 76 W/m2 and
50 W/m2 for all three approaches. Based on the measurements from the stable oxygen and hydrogen
isotopes system at the Daman superstation, it was found that all three models slightly overestimated
the ratio of E/ET. In addition, discrepancies in E/T partitioning among the three models were
observed in the kernel experimental area of MUSOEXE. Further intercomparison indicated that
different temperature decomposition methods were responsible for the observed discrepancies in
E/T partitioning. The iterative procedure adopted by TSEB-PT and TSEB-PM produced higher
LEC and lower TC when compared to TSEB-TC-TS. Overall, this work provides valuable insights
into understanding the performances of TSEB models with different temperature decomposition
mechanisms over semiarid regions.
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1. Introduction

Evapotranspiration (ET) observations and modeling are crucial in water cycle studies [1–4].
Water scarcity is one of the main factors constraining agricultural development in arid or semiarid
areas. The knowledge of ET, as well as the mechanism of ET partitioning into evaporation (E) and
transpiration (T), is very important for precise quantification of the water balance in water resources
planning and management, optimizing crop production, identifying crop stress and drought impacts,
and evaluating the effects of climate change on water yields [5–9]. As satellite remote sensing is widely
used to obtain information on the regional water and heat balance, it has been used to derive several
global multi-decadal ET datasets that arouse extensive concern [10–15].

Over the last few decades, several remote sensing-based ET models have been proposed to
estimate regional surface heat fluxes via satellite-derived land surface temperature (LST) [5,6,16–20].
Specifically, a one-source model, such as the Surface Energy Balance Algorithm for Land
(SEBAL) [16,17], Simplified Surface Energy Balances Index (S-SEBI) [21], Surface Energy Balance
System (SEBS) [20,22], and Mapping EvapoTranspiration at high Resolution with Internalized
Calibration (METRIC) [5,6], often use LST and empirical resistance corrections to estimate surface heat
fluxes. Two-source models, such as the two-source energy balance model (TSEB) [19], the two-source
time-integrated model (TSTIM) [23], Pixel Component Arranging and Comparing Algorithm
(PCACA) [24], and the enhanced two-source evapotranspiration model for land (ETEML) [25] were
developed to make use of LST to estimate a sensible heat flux (H) and latent heat flux (LE) for the
soil and canopy separately. Other alternative practical approaches have been proposed based on
vegetation fractional cover and LST (VFC/LST) space [26,27]. Related research includes the work by
Moran et al. [28], Jiang and Islam [29,30], Stisen et al. [31], and Shu et al. [32]. Extensive reviews of
remote sensing-based methodologies on surface heat flux estimation can be found in the works of
Courault et al. [33], Kalma et al. [34] and Li et al. [35].

As an appealing modeling scheme, two-source energy balance models can estimate
evapotranspiration (ET), evaporation (E), and transpiration (T) of vegetated surfaces, which has
important applications in water resources management for irrigated crops in arid and semiarid
areas [36]. To estimate E and T separately, the soil temperature (TS) and canopy temperature (TC)
need to be accurately measured or derived, making temperature decomposition the core of the
two-source modeling approach. Generally, four categories of methods have been developed to
decompose remotely-sensed temperature into soil and canopy temperatures. (1) The first category
calculates soil and vegetation component temperatures using dual- or multi-angular thermal infrared
measurements [37]. For instance, a dual-source model using bi-angular thermal infrared measurements
was developed by Jia [38] and Jia et al. [39]. However, currently limited sensors have bi- or
multi-angular thermal infrared channels and thus constrained the availability of remote sensing data
source in this category of method. (2) The second category assumed that LST is the sum of vegetation
and soil temperatures weighted by the vegetation fractional cover (f c), i.e., LST ≈ fcTC + TS(1 − fc).
This kind of method assumed that the LST of a highly vegetated pixel in the neighborhood would
be a reasonable approximation of TC, and a selected neighborhood area of the target pixel based on
certain thresholds in the corresponding NDVI image [40,41]. As TC is approximately determined,
TS can be derived accordingly using TS = (LST − fcTC)/(1 − fc). (3) The third category retrieves
component temperatures using an iterative procedure based on an energy balance and resistance
network. Typically, the TSEB model proposed by Norman et al. [19] uses a system of temperature
gradient-resistance equations that are solved by an iterative procedure, in which an initial estimate of
plant transpiration is determined by the Priestley-Taylor equation (TSEB-PT). The procedure terminates
when soil evaporation (LEs) exceeds zero, and Tc and Ts are recalculated until energy balance closure
is reached. Recently, TSEB was revised by Colaizzi et al. [42] and Colaizzi et al. [43] using the
Penman-Monteith equation (TSEB-PM) instead of the Priestley-Taylor equation in order to characterize
vegetation transpiration, and this revised version was found to be more applicable for advective
semiarid climates. (4) The fourth category derives component temperatures based on VFC/LST
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space [24,28,44,45]. Moran et al. [28] introduced a water deficit index (WDI) based on the VFC/LST
trapezoid space and extended the application of a crop water stress index (CWSI) over fully- to
partially-vegetated surface areas. Zhang et al. [24] proposed a method to retrieve land surface
component temperatures based on the interpretation of soil wetness isolines within a VFC/LST
trapezoidal space. The main assumption of this method is that the isolines in the VFC/LST trapezoid
space is mainly controlled by soil water availability and the isolines within a VI/LST trapezoidal
space are used to decompose the composite temperature into component temperatures. This method
was recently revised and adopted by Sun et al. [46], Long and Singh [47], Yang and Shang [48],
Yang et al. [25], and Sun [49] to develop two-source models.

Combined with satellite remote sensing, the TSEB models have been extensively used to
estimate regional ET. However, how the accuracy of ET estimations from TSEB models is affected
by its component temperature estimation and E/T partitioning are rarely reported, and requires
careful study. The objective of this study is to evaluate the capabilities of three TSEB models in
predicting surface fluxes under various ranges of soil moisture contents, and then analyze how
the different performances of three models are attributed to the different adopted schemes in
component temperature decomposition and E/T partitioning. Section 2 presents the description
of the three two-source models: TSEB-PT, TSEB-PM, and TSEB-TC-TS. Section 3 introduces the
pertinent experiment campaign in the study area, i.e., Heihe Watershed Allied Telemetry Experimental
Research-The Multi-Scale Observation Experiment on Evapotranspiration (HiWATER-MUSOEXE)
Campaign, remotely-sensed data used for driving the TSEB models, and the ground measurements for
the models’ assessment. Section 4 first reports the fluxes estimation accuracies from three TSEB models
with retrievals from ASTER imagery. In Section 4.2, E/T partitioning is intercompared within three
models and evaluated against the benchmark obtained using the stable oxygen and hydrogen isotopes
technique. In the remainder of Section 4, intercomparison using component temperatures generated
from three models was conducted to further investigate the uncertainty in E/T partitioning. Section 5
discusses the advantages and limitations in this work, and the final section provides a conclusion.

2. Theory and Methodology

2.1. TSEB-PT Model

The TSEB model was originally developed by Norman et al. [19] to make use of remotely-sensed
radiometric surface temperatures to estimate soil evaporation and canopy transpiration. This model
has been modified by Kustas and Norman [50,51] through improving the soil surface resistance
formulation and net radiation partitioning between the soil and canopy components. The net radiation
is partitioned between the vegetated canopy and soil, and can be expressed as:

Rn = Rns + Rnc = H + LE + G (1)

where Rn is net radiation (W/m2), Rns and Rnc are the net radiation for soil and vegetation canopy
(W/m2), respectively; H and LE are the sensible and latent heat fluxes (W/m2), respectively, and G is
the soil heat flux (W/m2). The energy balance for the soil and vegetated canopy can be expressed as:

Rns = Hs + LEs + G (2)

Rnc = Hc + LEc (3)

where Hs and Hc are the sensible heat fluxes for the soil and canopy respectively (W/m2), LEs and
LEc are the latent heat fluxes for the soil and canopy, respectively (W/m2). G is parameterized with
the phase-difference approach proposed by Santanello and Friedl [52]:

G = Rns

{
a· cos

[
2π
b
(t + c)

]}
(4)
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where t is the solar time angle (s), a is the amplitude parameter (dimensionless), b is the period length
(s), and c is the shift (s). In this study, parameters a, b, and c take the values of 0.3, 86,400, and 10,800
following Colaizzi et al. [43] and Song et al. [53].

In this study, the series resistance network form was applied, in which Hc, Hs, and the sum of
both terms are calculated as:

Hc = ρCP
TC − TAC

rx
(5)

Hs = ρCP
TS − TAC

rs
(6)

H = ρCP
TAC − TA

rA
(7)

where ρ is the air density (kg/cm3), CP is the specific heat of air (J/kg/K), TS is the soil temperature
(K), TC is the canopy temperature (K), TAC and TA are the air temperature within the canopy boundary
layer and air temperature (K), respectively, rA is the aerodynamic resistance (s/m), rx is the resistance
in the boundary layer near the canopy (s/m), and rs is the resistance to heat flux in the boundary layer
above the soil surface (s/m). rA, rx, and rs are calculated according to Norman et al. [19] and Kustas
and Norman [50].

The TSEB-PT model uses a modified Priestley-Taylor formulation to parameterize the canopy
transpiration:

LEc = αPT fG
∆

∆ + γ
Rnc (8)

where αPT is the Priestley-Taylor parameter (dimensionless), fG is the fraction of green vegetation
(dimensionless), ∆ is the slope of the saturation vapor pressure versus temperature curve (kPa/◦C),
and γ is the psychrometric constant (kPa/◦C). An initial estimate of TC can be derived as follows:

Tc = TA +
RncrA

ρCP

[
1.0 − αPT fG

∆
∆ + γ

]
(9)

Accordingly, TS is calculated with an initial estimate of TS, and then rs can be estimated
with the temperature gradient between the soil and canopy described in Kustas and Norman [51].
From Equations (5) to (8), the component sensible heat flux HS can be calculated and latent heat
fluxes from canopy LEC and soil surface LES are solved as residual terms. In order to obtain a realistic
estimation of surface heat fluxes under water stressed conditions, the αPT is iteratively decreased
until LEs exceeds zero. The detailed description of the TSEB model and the parameterization of the
resistance network can be found in Norman et al. [19] and Kustas and Norman [51].

2.2. TSEB-PM Model

The TSEB model was revised by Colaizzi et al. [42] and Colaizzi et al. [43] using the
Penman-Monteith equation instead of the Priestley-Taylor formulation to account for the impact
of advection over semiarid climates. This revised version of the TSEB model is termed TSEB-PM.
The effects of varying the vapor pressure deficit can thus be taken into account in the TSEB-PM model.
The canopy transpiration is characterized using the Penman-Monteith equation:

LEc = fG

(
∆Rnc

∆ + γ∗ +
ρCP(es − ea)

rA(∆ + γ∗)

)
(10)

and Tc is initialized as follows:

TC = TA +
RncrAγ∗

ρCP(∆ + γ∗)
− es − ea

∆ + γ∗ (11)
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where γ∗ = γ(1 + rc/rA), rc is the bulk canopy resistance (s/m), rA is the aerodynamic resistance
between the canopy and the air above the canopy (s/m), and ea and es are the actual and saturation
vapor pressure of the air (kPa), respectively. Similar to TSEB-PT, the TSEB-PM model was iteratively
implemented as described in Section 2.1. During the iterative procedure, rc increases from 10 s/m with
an increment of 20 s/m and terminates at 5000 s/m, or until LEs exceeds zero. The comprehensive
introduction of the TSEB-PM can be found in Colaizzi et al. [42] and Colaizzi et al. [43].

2.3. TSEB-TC-TS Model

TSEB was modified by Kustas and Norman [54] to calculate turbulent heat fluxes using canopy
and soil component temperatures that were measured or derived from other methods. This modified
TSEB model is called TSEB-TC-TS in this study. The Priestley-Taylor iteration procedure is not applied
in TSEB-TC-TS, but the remainder of the physical framework of TSEB-TC-TS is identical to that of
TSEB-PT. The within-canopy temperature (TAC) is estimated from derived component temperatures
as follows:

TAC =

TA
rA

+ Ts
rs
+ TC

rx
1

rA
+ 1

rs
+ 1

rx

(12)

Consequently, the component sensible heat fluxes HS and HC are directly calculated from
Equations (5) and (6), and the component latent heat fluxes LEC and LES are calculated as residual
terms from Equations (2) and (3).

The VFC/LST space is adopted to retrieve component temperatures by Zhang et al. [24],
Zhang et al. [55], Sun et al. [40], Merlin et al. [44], and Merlin et al. [45]. Based on the theoretical
determination of the dry and wet edges of the VFC/LST space, this method was further revised
and adopted by Long and Singh [47] and Yang and Shang [48] to develop two-source models. In the
traditional method, the VFC/LST trapezoid is mainly determined manually based on the 2-D VFC/LST
scatter plot, which would cause great uncertainty. Recently, Yang et al. [25] improved this method
and proposed to make use of the VFC/LST trapezoid space for each pixel. Different from traditional
method, the four theoretical points for each pixel are determined based on an energy balance model
and the Penman-Monteith equations. In this study, this pixel-wise surface temperature decomposition
method is adopted. The employed VFC/LST space is determined with four theoretical points using
the following equations from Moran et al. [28].

For the vertex of dry bare soil, the difference between LST and Ta can be derived as follows:

(TS − Ta)max =
[
ra(Rn − G)/ρaCp

]
(13)

For the vertex of saturated bare soil,

(TS − Ta)min =
[
(ra(Rn − G))/

(
ρaCp

)
][γ/(∆ + γ)]−[VPD/(∆ + γ)

]
(14)

For the vertex of well-watered fully-cover vegetation,

(TC − Ta)min =
[
(ra(Rn − G))/

(
ρaCp

)][
γ
(
1 + rcp/ra

)
/
(
∆ + γ

(
1 + rcp/ra

))
]− [VPD/

(
∆ + γ

(
1 + rcp/ra

))]
(15)

For the vertex of water-stressed fully-cover vegetation,

(TC − Ta)max =
[
(ra(Rn − G))/

(
ρaCp

)]
[γ(1 + rcx/ra)/(∆ + γ(1 + rcx/ra))]− [VPD/(∆ + γ(1 + rcx/ra))] (16)

where VPD (kPa) is the vapor pressure deficit of the air at temperature Ta, γ is the psychrometric
constant (kPa/◦C), and ra is aerodynamic resistance (s/m) estimated with the equations proposed by
Thom [56]. rcp is the canopy resistance at potential evapotranspiration (s/m), and rcx is the maximum
canopy resistance (s/m). As such, a VFC/LST trapezoid space is determined for each pixel and the
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measurements of (LST-Ta) and the fractional vegetation cover would be located within the trapezoid
space.

Based on the VFC/LST trapezoid space determined above, the composite radiometric surface
temperature of each pixel can be decomposed to soil and canopy component temperatures [24,25,55]:

TS − Ta = (LST − Ta)− Ks ∗ fc (17)

TC − Ta = Ks ∗ (1 − fc) + (LST − Ta) (18)

where Ks is the slope of the isoline that passes through the point located in VFC/LST space, and can be
derived by interpolating the slope of the warm edge and that of the cold edge. The detailed description
of this method can be found in Yang et al. [25]. Once TS and TC are determined, the component fluxes
in TSEB-TC-TS can be estimated.

In addition to TS and TC, TSEB models can estimate evaporation (E) and transpiration (T) of
vegetated surface, such information can be used to calculate component water stress of vegetation
and soil. Following the equations from Yang et al. [25], the crop water stress index for the canopy
component (CWSIc) and soil water deficit index for soil component (SWDIS) are calculated as follows:

CWSIC = 1 − LEc/EPc (19)

SWDIs = 1 − LEs/EPs (20)

EPc and EPs are the potential transpiration rate and potential soil evaporation rate, respectively.

3. Study Area and Data Processing

3.1. HiWATER-MUSOEXE Campaign and Ground-Based Measurements

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was performed at the
Heihe River Basin of northwestern China with airborne, satellite-borne, and ground-based remote
sensing experiments at various scales during 2012–2015 [57]. As one of most important thematic
experiments of the HiWATER, the Multi-Scale Observation Experiment on Evapotranspiration
(MUSOEXE) over the Zhangye oasis provided multiscale data sets of meteorological elements and land
surface parameters that facilitate the development and validation of ET models over heterogeneous
surfaces [58,59]. Figure 1 shows the distribution of flux towers and the land use classifications in
the MUSOEXE.

MUSOEXE involved a multi-scale observation campaign over heterogeneous surfaces by using
an observation matrix composed of 21 stations. Each station was equipped with a set of eddy
covariance (EC) system and automatic weather system (AWS). Turbulent heat fluxes are measured
with EC system and the raw data were processed using EdiRe software and averaged over 30 min.
Wind speed, wind direction, air temperature, vapor pressure, net radiation, and atmospheric pressure
were measured in AWS with 10-min intervals. The soil heat fluxes were measured using three heat
flux plates located 6 cm below the ground’s surface at each site. In order to better represent the surface
soil heat flux, the Thermal Diffusion Equation and Correction (TDEC) method proposed by Yang
and Wang [60] was applied to correct the observed soil heat flux with the observed soil moisture and
temperature profile. The residual method [61] was adopted to adjust sensible and latent heat fluxes by
forcing the energy balance closure.

The isotopic composition of atmospheric water vapor provided rich information on the
hydrological cycle and gaseous exchange processes between the terrestrial vegetation and atmosphere.
Due to technical and instrumental limitations, the measurements of the isotopic composition of water
vapor were limited to discrete campaigns and discrete samples. During the HiWATER program,
the isotopic composition of water vapor from the surface air was measured in a corn cropland
(100.3722◦E, 38.8555◦N) at Daman superstation using a flux gradient method, using a cavity ring-down
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spectroscopy (CRDS) water vapor isotope analyzer. Considering water vapor as a mixture of ET
from an ecosystem that carried unique isotopic signals from plant transpiration and soil evaporation
separately, the measured isotopic composition of water was used to partition ET into evaporation and
transpiration. Details of the isotope experiment and its calibration procedure are given by Huang and
Wen [62] and Wen et al. [63]. In this study, the ratio of T over ET was collected to evaluate the reliability
of three TSEB models on evaporation and transpiration partitioning.
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Figure 1. The distribution of flux towers and the land use classifications in MUSOEXE over the Zhangye
oasis. The yellow rectangular in the left shows the kernel experimental area in MUSOEXE, and the
subset figure in the lower right shows the location of MUSOEXE (marked in red triangle) in the Heihe
River Basin (marked by pink polygon) and in China.

3.2. Remote Sensing Data and Derivation of Related Variables

In this study, nine scenes from the Advance Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) on board Terra during the experiment period were collected. These nine scenes
were acquired on 15 June, 24 June, 10 July, 2 August, 11 August, 18 August, 27 August, 3 September,
and 12 September of 2012 (DOYs: 167, 176, 192, 215, 224, 231, 240, 247, 256, respectively). The LST and
the land surface albedo were provided by “Heihe Plan Science Data Center, National Natural Science
Foundation of China” (http://www.heihedata.org). The LST data were retrieved by Li et al. [64] using
a temperature/emissivity separation (TES) algorithm proposed by Gillespie et al. [65], combined with
the water vapor scaling atmospheric correction method [66]. Land surface albedo was retrieved from a
Charge Coupled Device (CCD) camera on HJ-1 satellite by Sun et al. [67].

Three data sets including the visible, near-infrared (NIR) bands of ASTER and albedo from
HJ-1, were all re-sampled to 90 m to be consistent with the thermal infrared band in spatial
resolution. In addition, the leaf area index (LAI), crop height, and fractional vegetation cover for
HiWATER-MUSOEXE were derived based on the empirical relationships proposed by Yang et al. [68].

4. Results

4.1. Validation of Three TSEB Models over MUSOEXE

TSEB-PT, TSEB-PM, and TSEB-TC-TS were applied to the Zhangye oasis using ground-based and
satellite-derived observations introduced in Section 3, and the model performances were evaluated
using flux measurements from the MUSOEXE observation matrix. As a first step of model validation,
the flux estimates were averaged over the upwind source area for each flux tower [69], and flux

http://www.heihedata.org
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measurements were linearly interpolated to temporally match the time of satellite overpass. Figure 2
shows the validation scatter plot for each energy balance component (Rn, G, LE, and H) from
TSEB-PT, TSEB-PM, and TSEB-TC-TS estimations. Validation statistics comparing the three models’
performances are summarized in Table 1. Results show that estimated Rn from all three models
were in good agreement with tower observations, and the absolute mean biases in estimated Rn

for three models are all below 10 W/m2. Besides, all models slightly overestimated G, with the
RMSEs all slightly exceeding 37 W/m2. Despite the different parameterization schemes used in three
models (for instance, both TSEB-PT and TSEB-PM use the iterative procedure to calculate component
surface temperatures, whereas TSEB-TC-TS employs the theoretical VFC/LST trapezoid for component
temperature decomposition), they all exhibited comparable skills in estimation of H and LE, which
can be indicated by the similar RMSEs (≈44.9–47.9 W/m2 for H, and ≈61.8–75.3 W/m2 for LE) from
Table 1.
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Figure 2. Validation of energy balance components of TSEB-PT, TSEB-PM, and TSEB-TC-TS during
the HiWATER experiment at times of ASTER overpass. Energy balance components are (a) Rn, (b) G,
(c) LE and (d) H.

Table 1. Validation statistics of TSEB-PM, TSEB-PT and TSEB-TC-TS estimations.

Flux
Component

TSEB-PM TSEB-PT TSEB-TC-TS

RMSE
(W/m2)

Bias
(W/m2) R RMSE

(W/m2)
Bias

(W/m2) R RMSE
(W/m2)

Bias
(W/m2) R

Rn 37.6 −8.5 0.84 37.4 −7.2 0.84 35.5 −5.7 0.76
G 37.9 11.5 0.37 37.5 12.8 0.34 37.7 12.7 0.33
LE 70.6 −2.1 0.86 75.3 −0.2 0.85 61.8 3.2 0.82
H 44.9 −14.3 0.84 47.5 −16.2 0.83 47.9 −8.6 0.81

The spatial distributions of H and LE over the Zhangye oasis based on TSEB-PT, TSEB-PM,
and TSEB-TC-TS for the satellite overpass on July 10 of 2012 are shown in Figure 3. Generally, the spatial
patterns of surface fluxes were similar between the three models. In addition, the contrasting features



Remote Sens. 2018, 10, 1149 9 of 20

over the oasis and the surrounding sandy and Gobi desert were clearly observed from all three models.
Specifically, the Zhangye oasis, which mainly comprises of irrigated farmland, exhibited an average LE
over 400 W/m2. On the contrary, across the sandy and Gobi desert, LE was typically below 300 W/m2

and H was over 100 W/m2.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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In summary, all three employed models performed similarly in estimating H and LE despite using
different schemes for modeling canopy transpiration and deriving component surface temperatures.
With substantial ground observations from the tower-based network, the performances of the three
models over MUSOEXE were proven reliable. The difference in derived component temperatures
and partitioned evaporation and transpiration among the three models are analyzed in the following
two sections.

4.2. Intercomparison of E/T Partitioning from Three TSEB Models

The spatial distributions of canopy transpiration (LEc) and soil evaporation (LEs) based on
TSEB-PT, TSEB-PM, and TSEB-TC-TS on 10 July of 2012 are shown in Figure 4. The spatial patterns of
LEc and LEs derived from the three models are similar, and the range of LEc for irrigated farmland
was about ≈350–500 W/m2. With respect to LEs, the difference derived from the three models can be
visually discerned from Figure 4. In comparison with TSEB-PT and TSEB-PM, TSEB-TC-TS tended to
produce higher LEs, especially over the sparsely vegetated area around the residential area and the
sandy Gobi desert.

In this study, both CWSIc and SWDIs were further derived to compare the performances of
the three TSEB models on detecting vegetation and soil water stresses. The spatial distributions of
CWSIc and SWDIs on 10 July 2012 based on three models are shown in Figure 5. The sandy and
Gobi desert pixels are masked in CWSIc images in order to more clearly reveal the difference of the
three TSEB models in detecting vegetation water stress over the oasis. TSEB-PM and TSEB-PT show
similar performances regarding the detection of vegetation stress with both CWSIc values close to zero.
On the contrary, TSEB-TC-TS seemed to detect a higher level of vegetation water stress, with a CWSIc
peak at 0.45. In addition, the spatial heterogeneity was more prominent in TSEB-TC-TS, since the
CWSIc gradient in the oasis and urban areas are clearly seen from the upper right subplot of Figure 5.
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With respect to SWDIs, the spatial distributions were quite similar between the three TSEB models.
The SWDIs values for the oasis was smaller than the surrounding sandy and Gobi desert, and the
contrasting features over the oasis and the surrounding sandy and Gobi desert were clearly observed
from SWDIs subplots from all three models.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 
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Figure 5. The spatial distribution of CWSIc (first row) and SWDIs (second row) over the Zhangye oasis
based on TSEB-PM, TSEB-PT, and TSEB-TC-TS for the satellite overpass time on 10 July 2012. The white
areas correspond to the sandy and Gobi desert, and these pixels are masked.
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The ratios of LEC/LE (i.e., T/ET) measured using the stable oxygen and hydrogen isotopes
technique during HiWATER-MUSOEXE are utilized to evaluate the performances of three TSEB
models on partitioning E and T. Figure 6 shows the intercomparison of LEC/LE between the three
models and ground measurements. The ratios of LEC/LE were underestimated on DOYs of 176, 192,
215, 224, 231, and 240, while slight overestimation of LEC/LE occurred on DOYs of 247 and 256 in
all three models. The LEC/LE ratios derived from three models were very close in most cases at this
site. The mean observed LEC/LE ratio was 84.7%, while the mean estimated LEC/LE ratios were
76.7%, 76.9% and 77.0% for TSEB-PT, TSEB-PM, TSEB-TC-TS. All three models seemed to slightly
underestimate the LEC/LE ratio. However, the observed LEC/LE ratios exhibited a decline during
September (DOYs of 247 and 256), mainly due to leaf senescence, which was not characterized by all
three models.
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Figure 6. Comparison of LEC/LE (%) between the three TSEB models and ground measurements by
stable oxygen and hydrogen isotopes technique at Daman superstation.

In order to further investigate the difference regarding E and T partitioning between the three
models, a pixel-based comparison of LEC and LES in the kernel experimental area of MUSOEXE
was conducted and shown in Figure 7, with color shading indicating pixel density. The statistics
for a pixel-based comparison of LEC and LES in the kernel experimental area are summarized in
Table 2. Most points are under the 1:1 line in Figure 7a,b, which suggests that TSEB-PM tended
to produce higher LEC than TSEB-PT and TSEB-TC-TS. The mean differences (MDs) for the pairs
of TSEB-PT/TSEB-PM and TSEB-TC-TS/TSEB-PM were 2.9 W/m2 and 18.1 W/m2, respectively
(mean differences were calculated by subtracting the former model of the pair from the latter
model). LEC estimated from TSEB-PT was comparatively higher than that from TSEB-TC-TS, with MD
being 15.2 W/m2 for the TSEB-TC-TS/TSEB-PT pair. Correspondingly, comparing to TSEB-PT and
TSEB-TC-TS, TSEB-PM tended to underestimate LEs as shown in Figure 7e,f, with MDs of −4.2 W/m2

and −2.8 W/m2 for the pairs of TSEB-PT/TSEB-PM and TSEB-TC-TS/TSEB-PM, respectively. The LES

estimations from TSEB-PT and TSEB-TC-TS for the kernel experimental area were similar, with a
correlation coefficient R being approximately 1.0, MD being 1.4 W/m2, and the mean absolute
difference (MAD) being 6.2 W/m2. Since the component temperature decomposition has a major
impact on E/T partitioning, to explore the mechanism underlying the observed difference on LEC (LES)
from three models, a further intercomparison on the derived component temperature is conducted in
the next section.
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Figure 7. The intercomparison of LEC (first row) and LES (second row) derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area on 10 July 2012. The intercompared LEC pairs are (a)
TSEB-PM vs. TSEB-PT; (b) TSEB-PM vs. TSEB-TC-TS; (c) TSEB-PT vs. TSEB-TC-TS. The intercompared
LEs pairs are (d) TSEB-PM vs. TSEB-PT; (e)TSEB-PM vs. TSEB-TC-TS; (f) TSEB-PT vs. TSEB-TC-TS.

Table 2. Statistics summarizing the intercomparison of LEC and LES derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area.

TSEB-PT vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PT

LEc

RMSE (W/m2) 18.8 33.9 23.2
MD * (W/m2) 2.9 18.1 15.2
MAD (W/m2) 13.2 24.6 16.5

R 1.00 0.98 0.99

LEs

RMSE (W/m2) 10.8 16.2 7.6
MD (W/m2) −4.2 −2.8 1.4

MAD (W/m2) 6.1 11.1 6.2
R 0.99 0.99 1.00

* MD is calculated by subtracting the former model of the pair from the latter model.

4.3. Intercomparison of Tc and Ts Derived from Three TSEB Models

Intercomparison of the component temperatures derived from the three models is shown in
Figure 8. The TC derived from TSEB-PM showed a relatively homogenous pattern over the Zhangye
oasis and the average of TC approximated 301 K. On the contrary, TC derived from TSEB-PT
and TSEB-TC-TS showed a much larger spatial variability, and the contrast between farmland and
residential area is more discernable in both models. However, the spatial contrast between farmland
and residential area was less significant for the TSEB-TC-TS derived Ts (Figure 8).
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Figure 8. The spatial distribution of TC (first row) and Ts (second row) over HiWATER-MUSOEXE
derived from TSEB-PT, TSEB-PM, and TSEB-TC-TS on 10 July 2012.

A pixel-based comparison of decomposed TC and TS in the kernel experimental area was
conducted and is shown in Figure 9. It is noticed that the component temperatures were much
more scattered compared to the component fluxes in the scatter plot of Figure 7. The statistics
for the pixel-based comparison of TC and TS in the kernel experimental area are listed in Table 3.
Generally, TSEB-TC-TS estimates higher TC compared to TSEB-PT and TSEB-PM, and TSEB-PT tended
to overestimate TC in relation to TSEB-PM, with the MD of TSEB-PT/TSEB-PM pair being −0.2 K.

Table 3. Statistics summarizing the intercomparison of TC and TS derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area.

TSEB-PT vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PT

Tc

RMSE (K) 1.4 2.4 1.0
MD (K) −0.2 −0.48 −0.3

MAD (K) 0.8 1.5 0.6
R 0.13 −0.09 0.97

Ts

RMSE (K) 2.0 3.4 1.6
MD (K) −0.6 −0.3 0.3

MAD (K) 1.5 2.7 1.3
R 0.95 0.80 0.94

Different strategies for deriving TC and TS were responsible for the observed differences in surface
fluxes between the three modeling approaches. As previously stated, both TSEB-PT and TSEB-PM
applied an iterative approach to derive component temperatures. Although the identical temperature
decomposition method was applied to TSEB-PT and TSEB-PM, the component temperatures derived
from both models showed a significant difference, with correlation coefficient R being only 0.13 for TC.
Different from TSEB-PT and TSEB-PM, TSEB-TC-TS adopted the VFC/LST trapezoid space to estimate
the component temperatures, which would explain the distinct characteristics shown in Figure 8.
Specifically, for the irrigated farmland, the component temperatures derived from TSEB-TC-TS were
comparable to those derived from the other two models. Due to the lack of constraint on adjusting the
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canopy transpiration, the vegetation component temperature from TSEB-PT and TSEB-PM would be
very close to pixels in well-watered and fully-covered vegetation areas.
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TSEB-PM applied an iterative approach to derive component temperatures. Although the identical 
temperature decomposition method was applied to TSEB-PT and TSEB-PM, the component 
temperatures derived from both models showed a significant difference, with correlation coefficient 
R being only 0.13 for TC. Different from TSEB-PT and TSEB-PM, TSEB-TC-TS adopted the VFC/LST 
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characteristics shown in Figure 8. Specifically, for the irrigated farmland, the component 
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The scientific rationale can be explained as follows. Based on the VFC/LST space, Figure 10
illustrates the temperature decomposition methods adopted in TSEB-PT, TSEB-PM, and TSEB-TC-TS.
Both TSEB-PT and TSEB-PM applied an iterative approach to derive the component temperatures
and this approach assumed vegetation transpiration at the potential rate as an initial value. Due to
the lack of constraint on adjusting the canopy transpiration, the vegetation component temperature
from TSEB-PT and TSEB-PM would be very close to Point C (Figure 10) in well-watered and fully
vegetated areas. Among TSEB-PM and TSEB-PT, the former employs the Penman-Monteith equation
to consider the varying VPD under advective semiarid climates, and this would lead to higher LEC

compared to TSEB-PT. Consequently, the soil component temperature from TSEB-PM was higher
than that from TSEB-PT. Different from TSEB-PM and TSEB-PT, TSEB-TC-TS adopted the VFC/LST
trapezoid space to estimate component temperatures. TSEB-TC-TS assumed that the vegetation and
soil share the same water pool, and the slope of each isoline in the VFC/LST space could be derived
by interpolating the slopes of both dry and cold edges. The temperature decomposition methods
adopted in the three TSEB models is illustrated in Figure 10, the soil surface temperatures derived
from TSEB-PM, TSEB-PT, and TSEB-TC-TS are denoted by Ts1, Ts2, and Ts3, and the vegetation canopy
temperatures derived from the same three models are denoted by Tv1, Tv2, and Tv3. It is clear that Tv1

and Tv2 were underestimated compare to Tv3, and this led to a higher T/ET partition for TSEB-PM
and TSEB-PT compared to TSEB-TC-TS, which consequently overestimated LEC when compared to
TSEB-TC-TS. A component temperatures decomposition method based on isolines in the VFC/LST
space provided a further constraint for vegetation transpiration and would be a good substitution for
an iterative approach.
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and TSEB-TC-TS, respectively, and Tv1, Tv2, and Tv3 denote the vegetation canopy temperatures
derived from the same three models.

5. Discussion

5.1. Reliability of the Employed TSEB Models in Estimating Surface Fluxes

The HiWATER–MUSOEXE data have been used extensively to validate the land surface flux
models, including one-source and two-source models [70–72]. Using the same set of ground-based
observations, Ma et al. [70] applied a revised SEBS model to estimate regional heat fluxes in the Heihe
River Basin, and their assessment indicates that the RMSEs of the modeled H and LE are 56.9 W/m2

and 74.8 W/m2, respectively. Huang et al. [71] integrated a Normalized Difference Water Index
(NDWI) as a water stress index into SEBS through the modification of the parameter kB−1, and showed
RMSEs of 79.8 W/m2 in H and 84.1 W/m2 in LE for the revised SEBS. In this study, three two-source
models were applied to the middle reach of the Heihe River Basin. The RMSEs of H and LE from
TSEB-PT are 47.5 and 75.3 W/m2, respectively, the RMSEs of H and LE from TSEB-PM are 44.9 and
70.6 W/m2, respectively, and the values from TSEB-TC-TS are 47.9 and 61.8 W/m2, respectively.
Overall, the performances of two-source modeling approaches were reliable in relation to previously
published studies.

5.2. Discrepancies in E/T Partitioning between the Three TSEB Models

Despite the comparable skills of ET estimations within the three TSEB models, different
assumptions and formulations were adopted by the three different models, and discrepancies in
E/T partitioning among the three models were observed in the kernel experimental area of MUSOEXE.
In this study, both CWSIC and SWDIS were derived to compare the performances of three models
regarding the detection of vegetation and soil water stresses. The results indicated that different from
TSEB-PT and TSEB-PM, TSEB-TC-TS had the potential to detect vegetation water stress. In addition,
the E/T partitioning efficacies of the three TSEB modeling approaches were evaluated using the
measurements from the stable oxygen and hydrogen isotopes system. It was found that all three models
tended to slightly underestimate the ratio of T/ET at the Daman site. Aside from the intercomparison
between the three two-source models, it was found that TSEB-PM tended to generate a higher LEc
estimation than the other two models, especially for the partially vegetated areas. LES derived from
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TSEB-PT and TSEB-TC-TS were quite similar. The differences in component temperatures derived from
the three models, as well as the aerodynamic resistance, were responsible for this divergence. Besides,
the declined LEC/LE ratios observed due to leaf senescence by the end of the growing season was
not well characterized by all three models. This indicated the necessity of adding a green vegetation
fraction in the future work, as suggested by Kustas et al. [73].

5.3. Impact of Temperature Decomposition Accuracies on ET Estimations

To separately estimate E and T, component temperatures are indispensable in the TSEB modeling
approach and the temperature decomposition method is the core in E/T partitioning process. In this
study, two categories of temperature decomposition methods were intercompared: (1) an iterative
procedure based on an energy balance resistance network; and (2) a VFC/LST space method with the
assumption that the isolines could be used to decompose composite temperatures. The iterative
procedure is commonly adopted in the TSEB model and this approach is verified by different
researchers [69,74,75]. The VFC/LST-based approach and related contextual-based method are applied
by different researchers, such as Zhang et al. [24], Zhang et al. [55], Merlin et al. [44], Merlin et al. [45],
Long and Singh [47], Yang et al. [48], Song et al. [53], and Sun [49].

Further intercomparison indicated that the differences in component temperatures derived from
two categories of models were responsible for the discrepancy in ET estimates. As there was no
constraint for canopy transpiration to terminate the procedure when LES exceeded zero in the iterative
procedure, this procedure adopted by TSEB-PT and TSEB-PM may have derived a higher LEc and
lower Tc compared to TSEB-TC-TS. This is consistent with the findings of Anderson et al. [76],
who pointed out the same case under conditions of moderate stomatal closure for TSEB model. In this
study, we found the temperature decomposition based on VFC/LST added a further constraint on
vegetation transpiration, and this category of method could be a substitute for the iterative method.
Besides, it was found that TSEB-TC-TS performed better at detecting the vegetation stress than the
other two models. Although a similar temperature decomposition approach was applied to TSEB-PT
and TSEB-PM, a significant difference was observed between them. For instance, the R between the
two models was only 0.13 for the derived TC. Two reasons may be responsible for this: (1) TSEB-PM
applied the Penman-Monteith equation to characterize the canopy transpiration and thus took into
account the effect of varying VPD over different underlying surfaces, which was a different case than
in TSEB-PT. (2) Resistances were involved in the iterative procedure and the resistance would impact
the temperature decomposition. In this study, the theoretically defined VFC/LST trapezoid space was
adopted to estimate the component temperatures in TSEB-TC-TS. A small amount of points may have
been located outside the trapezoid, and this was mainly caused by ill-parameterized aerodynamic
resistance. However, this portion was limited to 1% of the total pixels. Future studies are required to
further investigate the influence of resistance on the component temperature decomposition.

6. Conclusions

In this study, three two-source modeling approaches were evaluated using the ground-based
observations from the HiWATER-MUSOEXE campaign. Validated with tower observations, the RMSEs
of H and LE were lower than 50 W/m2 and 76 W/m2, respectively, and the results demonstrated that
the three TSEB models were capable of predicting reliable surface heat fluxes. The measurements from
the stable oxygen and hydrogen isotopes system were used to evaluate the capabilities of three models
in E and T partitioning, and it was found that all three models appeared to slightly underestimate the
ratio of T/ET.

A further intercomparison of the component temperature decomposition among the three models
was conducted to explore the underlying mechanism for the observed differences. Results indicated
that the interactive methods applied in TSEB and TSEB-PM may have produced higher LEC and
lower TC compared to TSEB-TC-TS due to lack of constraint on vegetation transpiration. Based on the
soil moisture isoline in the VFC/LST space, the VFC/LST-based temperature decomposition method
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added a further constraint on vegetation transpiration, and could be used as a substitution for the
interactive procedure adopted in the original TSEB model.

Author Contributions: Conceptualization, Y.Y. and J.Q.; Data curation, Y.Y. and J.Q.; Formal analysis, Y.Y. and J.Q.;
Funding acquisition, Y.Y. and J.Q.; Investigation, Y.Y. and J.Q.; Methodology, Y.Y. and J.Q.; Project administration,
R.Z., S.H., S.C., H.W., J.L., and Y.F.; Validation, Y.Y.; Visualization, J.Q.; Writing–original draft, Y.Y.; Writing–review
& editing, J.Q.

Funding: This research was funded by the National Natural Science Foundation of China (grant numbers 41501415,
41501450, 51420105014), the IWHR Research & Development Support Program (grant number. JZ0145B032017),
the 13th five-year plan of National Scientific Research and Development (2017YFC0405803, 2017YFC1502406),
the Natural Science Foundation of Guangdong Province, China (grant number 2016A030310154), the Fundamental
Research Funds for the Central Universities (grant number 16lgpy06).

Acknowledgments: We are very thankful to the researchers in HiWATER-MUSOEXE for their efforts on data
acquisition and sharing. The data set used in this study is provided by Heihe Plan Science Data Center,
National Natural Science Foundation of China (http://www.heihedata.org).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer: New York,
NY, USA, 1982.

2. Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005.
3. Eagleson, P.S. Ecohydrology: Darwinian Expression of Vegetation Form and Function; Cambridge University

Press: Cambridge, UK, 2002.
4. Kabat, P. Vegetation, Water, Humans and the Climate: A New Perspective on an Internactive System; Springer

Science & Business Media: Berlin, Germany, 2004.
5. Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.;

Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration
(metric)—applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [CrossRef]

6. Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with
internalized calibration (metric)—model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [CrossRef]

7. Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground
methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [CrossRef]

8. Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling.
Agric. For. Meteorol. 2009, 149, 2071–2081. [CrossRef]

9. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50. [CrossRef]

10. Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.;
Betts, A.K.; Dirmeyer, P.A. Global intercomparison of 12 land surface heat flux estimates. J. Geophys.
Res. Atmos. 2011, 116. [CrossRef]

11. McCabe, M.; Kustas, W.; Anderson, M.; Kongoli, C.; Ershadi, A.; Hain, C.R. Global-scale estimation of land
surface heat fluxes from space: Current status, opportunities, and future directions. In Remote Sensing of
Energy Fluxes and Soil Moisture Content; CRC Press: Boca Raton, FL, USA, 2013; pp. 447–462.

12. Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based
on modis and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [CrossRef]

13. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a modis global terrestrial evapotranspiration algorithm.
Remote Sens. Environ. 2011, 115, 1781–1800. [CrossRef]

14. Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.;
Maignan, F. Benchmark products for land evapotranspiration: Landflux-eval multi-data set synthesis.
Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [CrossRef]

15. Zhang, Y.; Leuning, R.; Chiew, F.H.S.; Wang, E.; Zhang, L.; Liu, C.; Sun, F.; Peel, M.C.; Shen, Y.; Jung, M.
Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 2012, 13, 379–391.
[CrossRef]

http://www.heihedata.org
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
http://dx.doi.org/10.1080/07352680701402503
http://dx.doi.org/10.1016/j.agrformet.2009.05.016
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.1029/2010JD014545
http://dx.doi.org/10.1016/j.rse.2007.04.015
http://dx.doi.org/10.1016/j.rse.2011.02.019
http://dx.doi.org/10.5194/hess-17-3707-2013
http://dx.doi.org/10.1175/JHM-D-11-012.1


Remote Sens. 2018, 10, 1149 18 of 20

16. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance
algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [CrossRef]

17. Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van der Wal, T. A remote
sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. J. Hydrol. 1998, 212, 213–229.
[CrossRef]

18. Boegh, E.; Soegaard, H.; Thomsen, A. Evaluating evapotranspiration rates and surface conditions using
landsat tm to estimate atmospheric resistance and surface resistance. Remote Sens. Environ. 2002, 79, 329–343.
[CrossRef]

19. Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes
in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293.
[CrossRef]

20. Su, Z. The surface energy balance system (sebs) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci.
2002, 6, 85–100. [CrossRef]

21. Roerink, G.J.; Su, Z.; Menenti, M. S-sebi: A simple remote sensing algorithm to estimate the surface energy
balance. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 147–157. [CrossRef]

22. Su, Z. Hydrological applications of remote sensing. Surface fluxes and other derived variables–surface
energy balance. In Encyclopedia of Hydrological Sciences; John Wiley and Sons: Hoboken, NJ, USA, 2005.

23. Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time-integrated model
for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216.
[CrossRef]

24. Zhang, R.H.; Sun, X.M.; Wang, W.M.; Xu, J.P.; Zhu, Z.L.; Tian, J. An operational two-layer remote sensing
model to estimate surface flux in regional scale: Physical background. Sci. China Ser. D 2005, 48, 225–244.

25. Yang, Y.; Su, H.; Zhang, R.; Tian, J.; Li, L. An enhanced two-source evapotranspiration model for land
(ETEML): Algorithm and evaluation. Remote Sens. Environ. 2015, 168, 54–65. [CrossRef]

26. Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture
from satellite imagery. Sensors 2007, 7, 1612–1629. [CrossRef]

27. Petropoulos, G.; Carlson, T.N.; Wooster, M.J.; Islam, S. A review of Ts/Vi remote sensing based methods for
the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 2009, 33, 224–250.
[CrossRef]

28. Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between
surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [CrossRef]

29. Jiang, L.; Islam, S. Estimation of surface evaporation map over southern great plains using remote sensing
data. Water Resour. Res. 2001, 37, 329–340. [CrossRef]

30. Jiang, L.; Islam, S. An intercomparison of regional latent heat flux estimation using remote sensing data.
Int. J. Remote Sens. 2003, 24, 2221–2236. [CrossRef]

31. Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal
inertia to estimate regional evapotranspiration—Applied to msg-seviri data in the senegal river basin.
Remote Sens. Environ. 2008, 112, 1242–1255. [CrossRef]

32. Shu, Y.; Stisen, S.; Jensen, K.H.; Sandholt, I. Estimation of regional evapotranspiration over the north china
plain using geostationary satellite data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 192–206. [CrossRef]

33. Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data:
From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [CrossRef]

34. Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using
remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [CrossRef]

35. Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies
for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [CrossRef]
[PubMed]

36. Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of landsat thermal imagery in monitoring
evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [CrossRef]

37. Rauwerda, J.; Roerink, G.J.; Su, Z. Estimation of Evaporative Fractions by the Use of Vegetation and Soil Component
Temperature Determined by Means of Dual-Looking Remote Sensing; Alterra: Osborne Park, WA, USA, 2002.

38. Jia, L. Modeling Heat Exchanges at the Land-Atmosphere Interface Using Multi-Angular Thermal Infrared
Measurements; Wageningen University: Wageningen, The Netherlands, 2004.

http://dx.doi.org/10.1016/S0022-1694(98)00253-4
http://dx.doi.org/10.1016/S0022-1694(98)00254-6
http://dx.doi.org/10.1016/S0034-4257(01)00283-8
http://dx.doi.org/10.1016/0168-1923(95)02265-Y
http://dx.doi.org/10.5194/hess-6-85-2002
http://dx.doi.org/10.1016/S1464-1909(99)00128-8
http://dx.doi.org/10.1016/S0034-4257(96)00215-5
http://dx.doi.org/10.1016/j.rse.2015.06.020
http://dx.doi.org/10.3390/s7081612
http://dx.doi.org/10.1177/0309133309338997
http://dx.doi.org/10.1016/0034-4257(94)90020-5
http://dx.doi.org/10.1029/2000WR900255
http://dx.doi.org/10.1080/01431160210154821
http://dx.doi.org/10.1016/j.rse.2007.08.013
http://dx.doi.org/10.1016/j.jag.2010.11.002
http://dx.doi.org/10.1007/s10795-005-5186-0
http://dx.doi.org/10.1007/s10712-008-9037-z
http://dx.doi.org/10.3390/s90503801
http://www.ncbi.nlm.nih.gov/pubmed/22412339
http://dx.doi.org/10.1016/j.rse.2011.08.025


Remote Sens. 2018, 10, 1149 19 of 20

39. Jia, L.; Li, Z.L.; Menenti, M.; Su, Z.; Verhoef, W.; Wan, Z. A practical algorithm to infer soil and foliage
component temperatures from bi-angular atsr-2 data. Int. J. Remote Sens. 2003, 24, 4739–4760. [CrossRef]

40. Sun, Z.; Wang, Q.; Matsushita, B.; Fukushima, T.; Ouyang, Z.; Watanabe, M. A new method to define the
vi-ts diagram using subpixel vegetation and soil information: A case study over a semiarid agricultural
region in the north China plain. Sensors 2008, 8, 6260–6279. [CrossRef] [PubMed]

41. Bisquert, M.; Sánchez, J.M.; López-Urrea, R.; Caselles, V. Estimating high resolution evapotranspiration from
disaggregated thermal images. Remote Sens. Environ. 2016, 187, 423–433. [CrossRef]

42. Colaizzi, P.D.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A.; Kustas, W.P.;
Anderson, M.C. Two-source energy balance model to calculate e, t, and et: Comparison of priestley-taylor
and penman-monteith formulations and two time scaling methods. Trans. ASABE 2014, 57, 479–498.

43. Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.;
O’Shaughnessy, S.A. Two-source energy balance model estimates of evapotranspiration using component
and composite surface temperatures. Adv. Water Resour. 2012, 50, 134–151. [CrossRef]

44. Merlin, O.; Escorihuela, M.J.; Mayoral, M.A.; Hagolle, O.; Al Bitar, A.; Kerr, Y. Self-calibrated
evaporation-based disaggregation of smos soil moisture: An evaluation study at 3 km and 100 m resolution
in Catalunya, Spain. Remote Sens. Environ. 2013, 130, 25–38. [CrossRef]

45. Merlin, O.; Rudiger, C.; Al Bitar, A.; Richaume, P.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS soil
moisture in southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [CrossRef]

46. Sun, Z.; Wang, Q.; Matsushita, B.; Fukushima, T.; Ouyang, Z.; Watanabe, M. Development of a simple remote
sensing evapotranspiration model (sim-reset): Algorithm and model test. J. Hydrol. 2009, 376, 476–485.
[CrossRef]

47. Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery.
Remote Sens. Environ. 2012, 121, 370–388. [CrossRef]

48. Yang, Y.; Shang, S. A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model
(htem) using satellite images: Algorithm and model test. J. Geophys. Res. Atmos. 2013, 118, 2284–2300.
[CrossRef]

49. Sun, H. A two-source model for estimating evaporative fraction (TMEF) coupling priestley-taylor formula
and two-stage trapezoid. Remote Sens. 2016, 8, 248. [CrossRef]

50. Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source
model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 1999, 94, 13–29.
[CrossRef]

51. Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric temperature
observations for sparse canopy covered surfaces. Agron. J. 2000, 92, 847–854. [CrossRef]

52. Santanello, J.A., Jr.; Friedl, M.A. Diurnal covariation in soil heat flux and net radiation. J. Appl. Meteorol.
2003, 42, 851–862. [CrossRef]

53. Song, L.; Liu, S.; Kustas, W.P.; Zhou, J.; Xu, Z.; Xia, T.; Li, M. Application of remote sensing-based two-source
energy balance model for mapping field surface fluxes with composite and component surface temperatures.
Agric. For. Meteorol. 2016, 230, 8–19. [CrossRef]

54. Kustas, W.P.; Norman, J.M. A two-source approach for estimating turbulent fluxes using multiple angle
thermal infrared observations. Water Resour. Res. 1997, 33, 1495–1508. [CrossRef]

55. Zhang, R.; Tian, J.; Su, H.; Sun, X.; Chen, S.; Xia, J. Two improvements of an operational two-layer model for
terrestrial surface heat flux retrieval. Sensors 2008, 8, 6165–6187. [CrossRef] [PubMed]

56. Thom, A.S. Momentum, mass and heat exchange of plant communities. Veg. Atmos. 1975, 1, 57–109.
57. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied

telemetry experimental research (hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol.
Soc. 2013, 94, 1145–1160. [CrossRef]

58. Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling
evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces.
Agric. For. Meteorol. 2016, 230, 97–113. [CrossRef]

59. Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy
flux measurement systems used during the hiwater-musoexe. J. Geophys. Res. Atmos. 2013, 118, 13–140.
[CrossRef]

http://dx.doi.org/10.1080/0143116031000101576
http://dx.doi.org/10.3390/s8106260
http://www.ncbi.nlm.nih.gov/pubmed/27873869
http://dx.doi.org/10.1016/j.rse.2016.10.049
http://dx.doi.org/10.1016/j.advwatres.2012.06.004
http://dx.doi.org/10.1016/j.rse.2012.11.008
http://dx.doi.org/10.1109/TGRS.2011.2175000
http://dx.doi.org/10.1016/j.jhydrol.2009.07.054
http://dx.doi.org/10.1016/j.rse.2012.02.015
http://dx.doi.org/10.1002/jgrd.50259
http://dx.doi.org/10.3390/rs8030248
http://dx.doi.org/10.1016/S0168-1923(99)00005-2
http://dx.doi.org/10.2134/agronj2000.925847x
http://dx.doi.org/10.1175/1520-0450(2003)042&lt;0851:DCISHF&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.agrformet.2016.01.005
http://dx.doi.org/10.1029/97WR00704
http://dx.doi.org/10.3390/s8106165
http://www.ncbi.nlm.nih.gov/pubmed/27873864
http://dx.doi.org/10.1175/BAMS-D-12-00154.1
http://dx.doi.org/10.1016/j.agrformet.2016.04.008
http://dx.doi.org/10.1002/2013JD020260


Remote Sens. 2018, 10, 1149 20 of 20

60. Yang, K.; Wang, J. A temperature prediction-correction method for estimating surface soil heat flux from soil
temperature and moisture data. Sci. China Ser. D Earth Sci. 2008, 51, 721–729. [CrossRef]

61. Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.;
Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000,
103, 279–300. [CrossRef]

62. Huang, L.; Wen, X. Temporal variations of atmospheric water vapor δd and δ18o above an arid artificial
oasis cropland in the Heihe river basin. J. Geophys. Res. Atmos. 2014, 119, 11456–11476. [CrossRef]

63. Wen, X.; Yang, B.; Sun, X.; Lee, X. Evapotranspiration partitioning through in-situ oxygen isotope
measurements in an oasis cropland. Agric. For. Meteorol. 2016, 230, 89–96. [CrossRef]

64. Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the viirs and modis
lst products in an arid area of northwest china. Remote Sens. Environ. 2014, 142, 111–121. [CrossRef]

65. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity
separation algorithm for advanced spaceborne thermal emission and reflection radiometer (aster) images.
IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [CrossRef]

66. Tonooka, H. Accurate atmospheric correction of aster thermal infrared imagery using the WVS method.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [CrossRef]

67. Sun, C.; Liu, Q.; Wen, J. An algorithm for retrieving land surface albedo from hj-1 CCD data. Remote Sens.
Land Resour. 2013, 25, 58–63.

68. Yang, Y.; Long, D.; Guan, H.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source
remote sensing evapotranspiration models during the musoexe-12 campaign: Revisit of model physics.
Water Resour. Res. 2015, 51, 3145–3165. [CrossRef]

69. Gonzalez-Dugo, M.P.; Neale, C.M.U.; Mateos, L.; Kustas, W.P.; Prueger, J.H.; Anderson, M.C.; Li, F.
A comparison of operational remote sensing-based models for estimating crop evapotranspiration.
Agric. For. Meteorol. 2009, 149, 1843–1853. [CrossRef]

70. Ma, Y.; Liu, S.; Zhang, F.; Zhou, J.; Jia, Z.; Song, L. Estimations of regional surface energy fluxes over
heterogeneous oasis–desert surfaces in the middle reaches of the Heihe river during hiwater-musoexe.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 671–675.

71. Huang, C.; Li, Y.; Gu, J.; Lu, L.; Li, X. Improving estimation of evapotranspiration under water-limited
conditions based on sebs and modis data in arid regions. Remote Sens. 2015, 7, 16795–16814. [CrossRef]

72. Yang, Y.; Qiu, J.; Su, H.; Bai, Q.; Liu, S.; Li, L.; Yu, Y.; Huang, Y. A one-source approach for estimating land
surface heat fluxes using remotely sensed land surface temperature. Remote Sens. 2017, 9, 43. [CrossRef]

73. Kustas, W.P.; Nieto, H.; Morillas, L.; Anderson, M.C.; Alfieri, J.G.; Hipps, L.E.; Villagarcía, L.; Domingo, F.;
Garcia, M. Revisiting the paper “using radiometric surface temperature for surface energy flux estimation
in mediterranean drylands from a two-source perspective”. Remote Sens. Environ. 2016, 184, 645–653.
[CrossRef]

74. Choi, M.; Kustas, W.P.; Anderson, M.C.; Allen, R.G.; Li, F.; Kjaersgaard, J.H. An intercomparison of three
remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa,
US) during smacex. Agric. For. Meteorol. 2009, 149, 2082–2097. [CrossRef]

75. Tang, R.; Li, Z.-L.; Jia, Y.; Li, C.; Chen, K.-S.; Sun, X.; Lou, J. Evaluating one-and two-source energy
balance models in estimating surface evapotranspiration from landsat-derived surface temperature and field
measurements. Int. J. Remote Sens. 2013, 34, 3299–3313. [CrossRef]

76. Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Houborg, R.; Starks, P.J.; Agam, N. A thermal-based remote
sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional
scales. Remote Sens. Environ. 2008, 112, 4227–4241. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11430-008-0036-1
http://dx.doi.org/10.1016/S0168-1923(00)00123-4
http://dx.doi.org/10.1002/2014JD021891
http://dx.doi.org/10.1016/j.agrformet.2015.12.003
http://dx.doi.org/10.1016/j.rse.2013.11.014
http://dx.doi.org/10.1109/36.700995
http://dx.doi.org/10.1109/TGRS.2005.857886
http://dx.doi.org/10.1002/2014WR015619
http://dx.doi.org/10.1016/j.agrformet.2009.06.012
http://dx.doi.org/10.3390/rs71215854
http://dx.doi.org/10.3390/rs9010043
http://dx.doi.org/10.1016/j.rse.2016.07.024
http://dx.doi.org/10.1016/j.agrformet.2009.07.002
http://dx.doi.org/10.1080/01431161.2012.716529
http://dx.doi.org/10.1016/j.rse.2008.07.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theory and Methodology 
	TSEB-PT Model 
	TSEB-PM Model 
	TSEB-TC-TS Model 

	Study Area and Data Processing 
	HiWATER-MUSOEXE Campaign and Ground-Based Measurements 
	Remote Sensing Data and Derivation of Related Variables 

	Results 
	Validation of Three TSEB Models over MUSOEXE 
	Intercomparison of E/T Partitioning from Three TSEB Models 
	Intercomparison of Tc and Ts Derived from Three TSEB Models 

	Discussion 
	Reliability of the Employed TSEB Models in Estimating Surface Fluxes 
	Discrepancies in E/T Partitioning between the Three TSEB Models 
	Impact of Temperature Decomposition Accuracies on ET Estimations 

	Conclusions 
	References

