Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of the Study Region
2.2. Selection of Burn and Reference Plots and Sampling Methodology
2.3. Description of Spectral Indices and Processing
2.3.1. SI Using Visible and Near Infrared Domains of the Electromagnetic Spectrum
2.3.2. SI Using Near Infrared and Shortwave Infrared Domains of the Electromagnetic Spectrum
2.3.3. SI Using Different Shortwave Infrared Domains of the Electromagnetic Spectrum
2.3.4. Image Transformation Techniques Using Multiple Bands
2.4. Analysis and Metrics
3. Results and Discussion
3.1. SI General Response to Fire in NWY
3.2. SI Response by Vegetation Type
3.3. Summary of Results, Which SI Should We Choose?
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Yang, X.; Skidmore, A.K.; Melick, D.; Zhou, Z.; Xu, J. Towards an efficacious method of using Landsat TM imagery to map forest in complex mountain terrain in Northwest Yunnan, China. Trop. Ecol. 2007, 48, 227–239. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C.X. Mapping a burned forest area from Landsat TM data by multiple methods. Geomat. Nat. Hazards Risk 2016, 7, 384–402. [Google Scholar] [CrossRef]
- Martin Pilar, M.; Chuvieco, E. Cartografía De Grandes Incendios Forestales En La Península Ibérica a Partir De Imágenes Noaa-Avhrr. Ser. Geogr. 1998, 7, 109–128. [Google Scholar]
- Kavzoglu, T.; Erdemir, M.Y.; Tonbul, H. Evaluating performances of spectral indices for burned area mapping using object-based image analysis. In Proceedings of Spatial Accuracy; Bailly, J.-S., Griffith, D., Josselin, D., Eds.; International Spatial Accuracy Research Association: Montpellier, France, 2016; pp. 162–168. [Google Scholar]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sens. 2014, 6, 12360–12380. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- De Carvalho Júnior, O.A.; Guimarães, R.F.; Silva, C.R.; Gomes, R.A.T. Standardized time-series and interannual phenological deviation: New techniques for burned-area detection using long-term MODIS-NBR dataset. Remote Sens. 2015, 7, 6950–6985. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of different spectral indices in the red—Near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W. Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper. Int. J. Remote Sens. 2011, 32, 3521–3537. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, L.; Zhou, Y.; Wang, S.; Zhu, J.; Wang, F. A comparison of forest fire burned area indices based on HJ satellite data. Nat. Hazards 2016, 81, 971–980. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Loboda, T.V.; French, N.H.F.; Hight-Harf, C.; Jenkins, L.; Miller, M.E. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Environ. 2013, 134, 194–209. [Google Scholar] [CrossRef]
- Lu, B.; He, Y.; Tong, A. Evaluation of spectral indices for estimating burn severity in semiarid grasslands. Int. J. Wildland Fire 2016, 25, 147–157. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Melchiori, A.E.; Cândido, P.; Libonati, R.; Morelli, F.; Setzer, A.; de Jesus, S.C.; Garcia Fonseca, L.M.; Körting, T.S. Spectral indices and multi-temporal change image detection algorithms for burned area extraction in the Brazilian Cerrado. In Proceedings of the Anais XVII Simpósio Brasileiro de Sensoriamento Remoto—SBSR, João Pessoa-PB, Brasil, 25–29 April 2015; pp. 643–650. [Google Scholar]
- Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Borre, J.V.; Goossens, R. Burned area detection and burn severity assessment of a heathland fire in belgium using airborne imaging spectroscopy (APEX). Remote Sens. 2014, 6, 1803–1826. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.K.; Haywood, A.; Nguyen, T. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suárez-Seoane, S.; de Luis-Calabuig, E. Does fire regime affect both temporal patterns and drivers of vegetation recovery in a resilient Mediterranean landscape? A remote sensing approach at two observation levels. Int. J. Wildland Fire 2012, 21. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.C.; Wulder, M.A. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2016, 37, 138–149. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006.
- Weiss, D.J.; Walsh, S.J. Remote Sensing of Mountain Environments. Geogr. Compass 2009, 3, 1–21. [Google Scholar] [CrossRef]
- Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D.; Moffiet, T. Evaluation of different topographic corrections for landsat TM data by prediction of foliage projective cover (FPC) in topographically complex landscapes. Remote Sens. 2013, 5, 6767–6789. [Google Scholar] [CrossRef]
- Gitas, I.Z.; Devereux, B.J. The role of topographic correction in mapping recently burned Mediterranean forest areas from LANDSAT TM images. Int. J. Remote Sens. 2006, 27, 41–54. [Google Scholar] [CrossRef]
- Sola, I.; González-Audícana, M.; Álvarez-Mozos, J. Multi-criteria evaluation of topographic correction methods. Remote Sens. Environ. 2016, 184, 247–262. [Google Scholar] [CrossRef]
- Tan, B.; Masek, J.G.; Wolfe, R.; Gao, F.; Huang, C.; Vermote, E.F.; Sexton, J.O.; Ederer, G. Improved forest change detection with terrain illumination corrected Landsat images. Remote Sens. Environ. 2013, 136, 469–483. [Google Scholar] [CrossRef]
- Su, W.; Shi, Z.; Zhou, R.; Zhao, Y.; Zhang, G. The role of fire in the Central Yunnan Plateau ecosystem, southwestern China. For. Ecol. Manag. 2015, 356, 22–30. [Google Scholar] [CrossRef]
- Qin, X.; Li, Z.; Zhang, Z. Distribution Pattern of Fires in China Based on Satellite Data. In Proceedings of the 2010 Second lITA International Conference on Geoscience and Remote Sensing, Qingdao, China, 28 August 2010; pp. 503–506. [Google Scholar]
- Li, J.; Song, Y.; Huang, X.; Li, M. Comparison of forest burned areas in mainland China derived from MCD45A1 and data recorded in yearbooks from 2001 to 2011. Int. J. Wildland Fire 2014, 24, 103–113. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef]
- Tang, C.Q.; Ohsawa, M. Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. J. Plant Res. 2009, 122, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Q. The Subtropical Vegetation of Southwestern China: Plant Distribution, Diversity and Ecology; Plant and Vegetation; Springer: Dordrecht, The Netherlands, 2015; Volume 11, ISBN 978-9401-797-405. [Google Scholar]
- Vermote, E.F.; Tanr, D.; Deuz, J.L.; Herman, M.; Morcrette, J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS Symposium; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Pinty, B.; Verstraete, M.M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- López García, M.J.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Koutsias, N.; Karteris, M. Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image. Int. J. Remote Sens. 2000, 21, 673–687. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Martín, M.P.; Gómez, I.; Chuvieco, E. Burnt Area Index (BAIM) for burned area discrimination at regional scale using MODIS data. For. Ecol. Manag. 2006, 234. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A phisically-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol. 2007, 3, 64–90. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef]
- Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 2015, 158, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H.; Wang, L. An automatic method for burn scar mapping using support vector machines. Int. J. Remote Sens. 2009, 30, 577–594. [Google Scholar] [CrossRef]
- Stroppiana, D.; Pinnock, S.; Pereira, J.M.C.; Grégoire, J.M. Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia. Remote Sens. Environ. 2002, 82, 21–37. [Google Scholar] [CrossRef]
- Lasaponara, R. Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecol. Model. 2006, 196, 265–270. [Google Scholar] [CrossRef]
- Mazher, A. Comparative analysis of mapping burned areas from landsat TM images. J. Phys. Conf. Ser. 2013, 439. [Google Scholar] [CrossRef]
- Rogan, J.; Yool, S.R. Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arizona and New Mexico. Remote Sens. 2001, 22, 3101–3121. [Google Scholar] [CrossRef]
- Mbow, C.; Goïta, K.; Bénié, G.B. Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystems. Remote Sens. Environ. 2004, 91, 1–13. [Google Scholar] [CrossRef]
- Chompuchan, C.; Lin, C.Y. Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal Landsat imagery. Ecol. Indic. 2017, 79, 196–206. [Google Scholar] [CrossRef]
- Key, C.H. Ecological and Sampling Constraints on Defining Landscape Fire Severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information. Remote Sens. Environ. 2011, 115, 1464–1477. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Drake, N.A.; Wooster, M.J.; Hudak, A.T.; Holden, Z.A.; Gibbons, C.J. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: Comparison of methods and application to MODIS. Int. J. Remote Sens. 2007, 28, 2753–2775. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lo, H.M.; Chou, W.C.; Lin, W.T. Vegetation recovery assessment at the Jou-Jou Mountain landslide area caused by the 921 Earthquake in Central Taiwan. Ecol. Model. 2004, 176, 75–81. [Google Scholar] [CrossRef]
- Meng, R.; Dennison, P.E.; Huang, C.; Moritz, M.A.; D’Antonio, C. Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 2015, 171, 311–325. [Google Scholar] [CrossRef]
- Parker, B.M.; Lewis, T.; Srivastava, S.K. Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sens. Environ. 2015, 170, 340–349. [Google Scholar] [CrossRef]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Picotte, J.J.; Robertson, K. Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sens. 2011, 3, 1680–1690. [Google Scholar] [CrossRef]
- Cheng, J.; Xie, M. The analysis of regional climate change features over Yunnan in recent 50 years. Prog. Geogr. 2008, 27, 19–26. [Google Scholar]
- Stubbendieck, J.; Volesky, J.; Ortmann, J. Grassland management with prescribed fire. Extension 2007, 1–6. [Google Scholar]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region—An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
Plot ID | Lat | Long | ESA LC | Size Sq. km | MODIS Year, DOY | LS_pre | LS_post | LS_1 | LS_2 | LS_3 | LS_4 | LS_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plot_01 | 27.74 | 98.69 | broad | 2.15 | 2006 007 | 20051028 | 20060201 | 20070220 | 20080310 | 20090209 | 20100212 | 20110303 |
Plot_02 | 27.54 | 99.31 | broad | 1.26 | 19990214 | 19990302 | 20000217 | 20010118 | 20020105 | 20030108 | 20040111 | |
Plot_03 | 27.41 | 99.02 | shrub | 0.7 | 2006 005 | 20051028 | 20060201 | 20070103 | 20080310 | 20090209 | 20100212 | 20110303 |
Plot_04 | 27.46 | 99.85 | needle | 0.74 | 2005 334 | 20051113 | 20060201 | 20070103 | 20080310 | 20090209 | 20100212 | 20110303 |
Plot_05 | 26.69 | 99.12 | shrub | 7.25 | 2006 011 | 20051028 | 20060201 | 20070103 | 20080310 | 20090209 | 20100212 | 20110303 |
Plot_06 | 26.55 | 100.35 | broad | 1.1 | 19980204 | 19980409 | 19990223 | 20000414 | 20010212 | 20020303 | 20030306 | |
Plot_07 | 25.87 | 100.08 | shrub | 2.08 | 2003 065 | 20030218 | 20030306 | 20040221 | 20050207 | 20060226 | 20070301 | 20080216 |
Plot_08 | 25.87 | 100.77 | needle | 0.33 | 20030306 | 20030509 | 20040425 | 20050428 | 20060517 | 20070301 | 20080404 | |
Plot_09 | 26.42 | 100.84 | needle | 3.43 | 19950212 | 19950316 | 19960302 | 19970201 | 19980204 | 19990223 | 20000210 | |
Plot_10 | 26.11 | 100.37 | grass | 2.28 | 20021029 | 20030101 | 20040104 | 20050106 | 20060125 | 20061227 | 20080216 | |
Plot_11 | 26.28 | 100.44 | grass | 1.67 | 20030306 | 20030322 | 20040221 | 20050207 | 20060226 | 20070301 | 20080216 | |
Plot_12 | 26.28 | 100.58 | grass | 1.44 | 20030101 | 20030218 | 20040104 | 20050106 | 20060125 | 20061227 | 20080216 |
Index Full Name | Abbreviation | Equation | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [46] | |
Global Environmental Monitoring Index | GEMI | where | [47] |
Burn Area Index | BAI | [9] | |
Normalized Burn Ratio | NBR | [33,48,49] | |
Normalized Difference Moisture Index | NDMI | [50] | |
Burned Area Index Modified–LSWIR | BAIML | [51] | |
Burned Area Index Modified-sSWIR | BAIMs | ||
Mid Infrared Burn Index | MIRBI | [52] | |
TassCap Brightness | BRI | [53,54] | |
TassCap Greenness | GRE | ||
TassCap Wetness | WET |
M-Statistic-All Fire Plots (Mean) | RSR-All Fire Plots (Mean) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Index | Pre | Post | 1y | 2y | 3y | 4y | 5y | Post | 1y | 2y | 3y | 4y | 5y |
BAI | 0.08 | 1.12 | 0.28 | 0.28 | 0.16 | 0.17 | 0.15 | MS | 0.21 | 0.17 | 0.10 | 0.09 | 0.08 |
GEMI | 0.12 | 1.08 | 0.35 | 0.30 | 0.20 | 0.18 | 0.16 | MS | 0.36 | 0.31 | 0.21 | 0.19 | 0.16 |
NBR | 0.07 | 0.88 | 0.60 | 0.55 | 0.53 | 0.48 | 0.39 | MS | 0.59 | 0.52 | 0.49 | 0.48 | 0.38 |
NDVI | 0.05 | 0.82 | 0.49 | 0.43 | 0.37 | 0.34 | 0.28 | MS | 0.60 | 0.53 | 0.46 | 0.46 | 0.36 |
BRI | 0.03 | 0.39 | 0.13 | 0.14 | 0.16 | 0.16 | 0.14 | MS | −0.39 | −0.37 | −0.50 | −0.49 | −0.39 |
GRE | 0.12 | 1.24 | 0.36 | 0.34 | 0.23 | 0.23 | 0.20 | MS | 0.38 | 0.33 | 0.24 | 0.22 | 0.18 |
WET | 0.05 | 0.11 | 0.31 | 0.36 | 0.37 | 0.36 | 0.29 | 0.32 | 0.93 | 0.95 | MS | 0.98 | 0.78 |
BAIML | 0.13 | 0.74 | 0.50 | 0.47 | 0.40 | 0.43 | 0.32 | MS | 0.31 | 0.20 | 0.15 | 0.16 | 0.11 |
BAIMs | 0.09 | 0.75 | 0.41 | 0.34 | 0.27 | 0.31 | 0.23 | MS | 0.36 | 0.23 | 0.17 | 0.18 | 0.14 |
MIRBI | 0.12 | 1.29 | 0.20 | 0.07 | 0.06 | 0.07 | 0.03 | MS | 0.20 | 0.06 | −0.06 | −0.06 | −0.03 |
NDMI | 0.04 | 0.64 | 0.55 | 0.54 | 0.54 | 0.51 | 0.38 | MS | 0.77 | 0.73 | 0.72 | 0.71 | 0.55 |
M-Statistic | Residual Burn Ratio | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coniferous Needleleaved Forest | ||||||||||||
Spectral Index | Post | 1y | 2y | 3y | 4y | 5y | Post | 1y | 2y | 3y | 4y | 5y |
BAI | 1.13 | 0.70 | 0.55 | 0.38 | 0.43 | 0.33 | MS | 0.65 | 0.41 | 0.32 | 0.29 | 0.24 |
GEMI | 1.11 | 0.56 | 0.42 | 0.30 | 0.31 | 0.24 | MS | 0.57 | 0.41 | 0.33 | 0.31 | 0.24 |
NBR | 1.32 | 1.12 | 1.13 | 1.05 | 0.97 | 0.81 | MS | 0.79 | 0.67 | 0.63 | 0.67 | 0.53 |
NDVI | 1.36 | 0.82 | 0.78 | 0.88 | 0.87 | 0.61 | MS | 0.72 | 0.64 | 0.58 | 0.63 | 0.43 |
BRI | 0.26 | 0.16 | 0.29 | 0.30 | 0.36 | 0.25 | −0.69 | 0.44 | 0.81 | 0.91 | MS | 0.70 |
GRE | 1.27 | 0.63 | 0.54 | 0.36 | 0.41 | 0.34 | MS | 0.63 | 0.50 | 0.39 | 0.39 | 0.30 |
WET | 0.48 | 0.71 | 0.70 | 0.74 | 0.75 | 0.70 | 0.58 | 0.94 | 0.92 | 0.95 | MS | 0.82 |
BAIML | 0.75 | 0.85 | 0.98 | 0.77 | 0.85 | 0.70 | MS | 0.78 | 0.47 | 0.43 | 0.46 | 0.35 |
BAIMs | 0.75 | 0.82 | 0.87 | 0.66 | 0.74 | 0.60 | 0.87 | MS | 0.63 | 0.59 | 0.59 | 0.51 |
MIRBI | 1.31 | 0.39 | 0.26 | 0.06 | 0.09 | 0.04 | MS | 0.35 | 0.22 | 0.06 | 0.08 | 0.03 |
NDMI | 1.09 | 1.10 | 0.98 | 0.99 | 0.92 | 0.78 | MS | 0.96 | 0.81 | 0.80 | 0.84 | 0.68 |
Broadleaved Forest | ||||||||||||
BAI | 1.09 | 0.46 | 0.53 | 0.29 | 0.27 | 0.26 | MS | 0.32 | 0.31 | 0.17 | 0.15 | 0.15 |
GEMI | 1.13 | 0.59 | 0.60 | 0.39 | 0.34 | 0.35 | MS | 0.52 | 0.63 | 0.45 | 0.39 | 0.37 |
NBR | 0.81 | 0.81 | 0.76 | 0.88 | 0.69 | 0.60 | MS | 0.81 | 0.81 | 0.81 | 0.74 | 0.59 |
NDVI | 1.13 | 0.77 | 0.81 | 0.78 | 0.74 | 0.71 | MS | 0.75 | 0.76 | 0.64 | 0.61 | 0.57 |
BRI | 0.30 | 0.21 | 0.09 | 0.17 | 0.20 | 0.17 | MS | −0.69 | −0.32 | −0.72 | −0.79 | −0.63 |
GRE | 1.27 | 0.68 | 0.71 | 0.47 | 0.43 | 0.43 | MS | 0.58 | 0.66 | 0.49 | 0.43 | 0.41 |
WET | 0.21 | 0.39 | 0.44 | 0.50 | 0.45 | 0.38 | 0.41 | 0.84 | 0.84 | MS | 0.94 | 0.74 |
BAIML | 0.75 | 0.73 | 0.72 | 0.77 | 0.73 | 0.59 | MS | 0.51 | 0.35 | 0.25 | 0.23 | 0.15 |
BAIMs | 0.77 | 0.64 | 0.56 | 0.50 | 0.52 | 0.34 | MS | 0.54 | 0.40 | 0.25 | 0.23 | 0.15 |
MIRBI | 1.07 | 0.41 | 0.34 | 0.09 | 0.03 | 0.06 | MS | 0.37 | 0.30 | 0.10 | 0.03 | 0.05 |
NDMI | 0.64 | 0.73 | 0.77 | 0.81 | 0.69 | 0.55 | 0.94 | 0.93 | 0.99 | MS | 0.94 | 0.74 |
Shrubland | ||||||||||||
BAI | 1.02 | 0.00 | 0.00 | 0.09 | 0.11 | 0.11 | MS | 0.00 | 0.00 | −0.04 | −0.05 | −0.05 |
GEMI | 1.00 | 0.23 | 0.11 | 0.01 | 0.05 | 0.07 | MS | 0.23 | 0.10 | 0.01 | −0.05 | −0.06 |
NBR | 1.02 | 0.49 | 0.38 | 0.29 | 0.22 | 0.15 | MS | 0.48 | 0.34 | 0.26 | 0.20 | 0.13 |
NDVI | 0.71 | 0.32 | 0.22 | 0.14 | 0.05 | 0.03 | MS | 0.45 | 0.32 | 0.20 | 0.07 | 0.05 |
BRI | 0.44 | 0.20 | 0.20 | 0.20 | 0.17 | 0.17 | MS | −0.47 | −0.41 | −0.46 | −0.37 | −0.34 |
GRE | 1.15 | 0.25 | 0.12 | 0.02 | 0.05 | 0.05 | MS | 0.25 | 0.11 | 0.02 | −0.04 | −0.05 |
WET | 0.08 | 0.34 | 0.42 | 0.32 | 0.30 | 0.23 | 0.24 | MS | 0.98 | 0.84 | 0.82 | 0.57 |
BAIML | 0.77 | 0.32 | 0.24 | 0.10 | 0.09 | 0.01 | MS | 0.14 | 0.08 | 0.02 | 0.02 | 0.00 |
BAIMs | 0.78 | 0.17 | 0.03 | 0.05 | 0.06 | 0.09 | MS | 0.10 | 0.01 | −0.02 | −0.02 | −0.04 |
MIRBI | 1.42 | 0.21 | 0.11 | 0.24 | 0.30 | 0.18 | MS | 0.16 | −0.06 | −0.15 | −0.18 | −0.09 |
NDMI | 0.69 | 0.43 | 0.42 | 0.34 | 0.29 | 0.17 | MS | 0.65 | 0.58 | 0.46 | 0.42 | 0.24 |
Grassland | ||||||||||||
BAI | 1.90 | 0.05 | 0.11 | 0.08 | 0.15 | 0.17 | MS | 0.02 | 0.05 | 0.03 | 0.05 | 0.06 |
GEMI | 1.54 | 0.13 | 0.07 | 0.04 | 0.04 | 0.07 | MS | −0.10 | −0.06 | −0.03 | 0.03 | 0.04 |
NBR | 1.12 | 0.37 | 0.32 | 0.21 | 0.07 | 0.04 | MS | −0.28 | −0.23 | −0.14 | −0.07 | −0.03 |
NDVI | 0.72 | 0.12 | 0.13 | 0.06 | 0.00 | 0.05 | MS | −0.17 | −0.19 | −0.08 | 0.00 | 0.05 |
BRI | 1.18 | 0.03 | 0.07 | 0.03 | 0.09 | 0.05 | MS | 0.04 | 0.08 | 0.04 | 0.09 | 0.04 |
GRE | 1.69 | 0.22 | 0.15 | 0.09 | 0.05 | 0.01 | MS | −0.21 | −0.12 | −0.07 | 0.04 | 0.01 |
WET | 0.47 | 0.16 | 0.10 | 0.04 | 0.06 | 0.04 | MS | 0.43 | 0.24 | 0.10 | 0.14 | 0.09 |
BAIML | 0.87 | 0.17 | 0.12 | 0.09 | 0.05 | 0.01 | MS | −0.05 | −0.04 | −0.02 | 0.01 | 0.00 |
BAIMs | 0.91 | 0.11 | 0.03 | 0.05 | 0.06 | 0.07 | MS | −0.05 | −0.01 | −0.02 | 0.02 | 0.03 |
MIRBI | 1.94 | 0.02 | 0.15 | 0.20 | 0.11 | 0.01 | MS | −0.01 | −0.11 | −0.14 | −0.07 | −0.01 |
NDMI | 0.57 | 0.40 | 0.19 | 0.04 | 0.01 | 0.01 | MS | −0.63 | −0.29 | −0.05 | 0.02 | −0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornacca, D.; Ren, G.; Xiao, W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. https://doi.org/10.3390/rs10081196
Fornacca D, Ren G, Xiao W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sensing. 2018; 10(8):1196. https://doi.org/10.3390/rs10081196
Chicago/Turabian StyleFornacca, Davide, Guopeng Ren, and Wen Xiao. 2018. "Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China" Remote Sensing 10, no. 8: 1196. https://doi.org/10.3390/rs10081196
APA StyleFornacca, D., Ren, G., & Xiao, W. (2018). Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sensing, 10(8), 1196. https://doi.org/10.3390/rs10081196