Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Dam Instrumentation
3.2. InSAR
4. Results
4.1. InSAR Time Series
4.2. Co-Seismic Displacement from GPS and Levelling Measurements
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Alsinawi, S.; Ghalib, H. Historical seismicity of Iraq. Bull. Seismol. Soc. Am. 1975, 65, 541–547. [Google Scholar]
- BBC News Middle East. Iran-Iraq earthquake: Hundreds killed as border region hit. BBC News Middle East, 13 November 2017. [Google Scholar]
- Cordell, M.C. Dokan and Derbendikhan Dam Inspections; SMEC International Pty. Ltd.: Malvern East, Australia, 2006. [Google Scholar]
- USGS (2017) Interactive map. 13 November 2017. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg#map (accessed on 13 November 2017).
- ESRI. DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, Swisstopo, and the GIS User Community; ESRI: Redlands, CA, USA, 2018. [Google Scholar]
- Jansen, R.B. Dams and Public Safety (A Water Resources Technical Publication); United States Government Printing Office; U.S. Department of the Interior, Bureau of Reclamation Interior, U.S.D: Denver, CO, USA, 1983.
- Seco, E.P.; Pedro, S. Understanding Seismic Embankment Dam Behavior Through Case Histories. In Proceedings of the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, USA, 24–29 May 2010. [Google Scholar]
- Newmark, N.M. Effects of Earthquakes on Dams and Embankments. Géotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Anastasiadis, A.; Klimis, N.; Makra, K.; Margaris, B. On seismic behavior of a 130m high rockfill dam: An integrated approach. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Serff, N.; Seed, H.B.; Makdisi, F.I.; Chang, C.-Y. Earthquake-Induced Deformations of Earth Dams; EERC 76-4; College of Engineering; University of Claifornia: Oakland, CA, USA, 1976; pp. 9–10. [Google Scholar]
- Jansen, R.B.; Parrett, N.F.; Ingram, D.E. Safety Evaluation of Existing Dams; United Department of the Interior Bureau of Reclamation: Denever, CO, USA, 1995. [Google Scholar]
- Milillo, P.; Bürgmann, R.; Lundgren, P.; Salzer, J.; Perissin, D.; Fielding, E.; Biondi, F.; Milillo, G. Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq. Sci. Rep. 2016, 6, 37408. [Google Scholar] [Green Version]
- Trevi. Trevi Signs the Contract for the Maintenance Works of Mosul Dam. 2018. Available online: http://www.trevispa.com/en/MosulDam/trevi-signs-the-contract-for-the-maintenance-works-of-mosul-dam (accessed on 18 July 2018).
- Annunziato, A.; Andredakis, I.; Probst, P. Impact of Flood by a Possible Failure of the Mosul Dam; EUR 27923 EN; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Deng, J.H.; Tham, L.G. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 2005, 65, 205–221. [Google Scholar] [CrossRef]
- Sadeghi, S.; Yassaghi, A. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: Constraints on Arabia-Eurasia oblique convergence. Solid Earth 2016, 7, 659–672. [Google Scholar] [CrossRef]
- Bills, B.G.; Ferrari, A.J. A harmonic analysis of lunar topography. Icarus 1977, 31, 244–259. [Google Scholar] [CrossRef]
- Zisk, S. A new, earth-based radar technique for the measurement of lunar topography. Earth Moon Planets 1972, 4, 296–306. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Jordan, R. The Seasat-A synthetic aperture radar system. IEEE J. Ocean. Eng. 1980, 5, 154–164. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J.; Madsen, S.N. Topographic Mapping From ERS-1 And Seasat Radar Interferometry. In Proceedings of the IGARSS ’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; pp. 387–388. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F.; Monti Guarnieri, A. Multibaseline SAR Interferometry for Automatic DEM Reconstruction (DEM). In Proceedings of the Third ERS Symposium on Space at the Service of our Environment, Florence, Italy, 14–21 March 1997. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Wang, T.; Lu, L.; Zhou, W.; Li, D. Reconstruction of DEMs From ERS-1/2 Tandem Data in Mountainous Area Facilitated by SRTM Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2325–2335. [Google Scholar] [CrossRef]
- Wegmüller, U.; Santoro, M.; Werner, C.; Strozzi, T.; Wiesmann, A.; Lengert, W. DEM generation using ERS–ENVISAT interferometry. J. Appl. Geophys. 2009, 69, 51–58. [Google Scholar] [CrossRef]
- Neelmeijer, J.; Motagh, M.; Bookhagen, B. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia. ISPRS J. Photogramm. Remote Sens. 2017, 130, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Ebmeier, S.K.; Biggs, J.; Mather, T.A.; Elliott, J.R.; Wadge, G.; Amelung, F. Measuring large topographic change with InSAR: Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet. Sci. Lett. 2012, 335–336, 216–225. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.; Rossi, M.; Adragna, F. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 1994, 369, 227–230. [Google Scholar] [CrossRef]
- Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: The 2014 South Napa earthquake. Eur. J. Remote Sens. 2017, 49, 1–13. [Google Scholar] [CrossRef]
- Avallone, A.; Cirella, A.; Cheloni, D.; Tolomei, C.; Theodoulidis, N.; Piatanesi, A.; Briole, P.; Ganas, A. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history. Sci. Rep. 2017, 7, 10358. [Google Scholar] [CrossRef] [PubMed]
- Ganas, A.; Kourkouli, P.; Briole, P.; Moshou, A.; Elias, P.; Parcharidis, I. Coseismic Displacements from Moderate-Size Earthquakes Mapped by Sentinel-1 Differential Interferometry: The Case of February 2017 Gulpinar Earthquake Sequence (Biga Peninsula, Turkey). Remote Sens. 2018, 10, 1089. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Zebker, H.A.; Webb, F.H.; Fielding, E.J. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. J. Geophys. Res. Ser. 1996, 101. [Google Scholar] [CrossRef]
- Beauducel, F.; Briole, P.; Froger, J.-L. Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): Deformation or tropospheric effect? J. Geophys. Res. Solid Earth 2000, 105, 16391–16402. [Google Scholar] [CrossRef]
- Remy, D.; Bonvalot, S.; Briole, P.; Murakami, M. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan). Earth Planet. Sci. Lett. 2003, 213, 299–310. [Google Scholar] [CrossRef]
- Spaans, K.; Hooper, A. InSAR processing for volcano monitoring and other near-real time applications. J. Geophys. Res. Solid Earth 2016, 121, 2947–2960. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Holley, R.; Burren, R.; Shilston, D.; Waring, D.; Meikle, C. Long-term differential InSAR monitoring of the Lampur Sidoarjo mud volcano (Java, Indonesia) using ALOS PALSAR imagery. In Proceedings of the 8th International Symposium on Land Subsidence, Querétaro, Mexico, 17–22 October 2010. [Google Scholar]
- Biggs, J.B.; Ebmeier, S.K.; Aspinall, W.P.; Lu, Z.; Pritchard, M.E.; Sparks, R.S.; Mather, T.A. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 2014, 5, 3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F.; Casagli, N.; Farina, P.; Young, B. Permanent Scatterers technology: A powerful state of the art tool for historic and future monitoring of landslides and other terrain instability phenomena. In Proceedings of the 2005 International Conference on Landslide Risk Management, Vancouver, BC, Canada, 31 May–3 June 2005. [Google Scholar]
- Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Nat. Hazards 2011, 59, 1377–1396. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Tomás, R.; Li, Z.; Liu, P.; Singleton, A.; Hoey, T.; Cheng, X. Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry. Geophys. J. Int. 2014, 197, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Darvishi, M.; Schlögel, R.; Bruzzone, L.; Cuozzo, G. Integration of PSI, MAI, and Intensity-Based Sub-Pixel Offset Tracking Results for Landslide Monitoring with X-Band Corner Reflectors—Italian Alps (Corvara). Remote Sens. 2018, 10, 409. [Google Scholar] [CrossRef]
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the Feasibility of a National InSAR Ground Deformation Map of Great Britain with Sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [PubMed]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Fidolini, F.; Casagli, N. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Di Traglia, F.; Intrieri, E.; Nolesini, T.; Bardi, F.; Del Ventisette, C.; Ferrigno, F.; Frangioni, S.; Frodella, W.; Gigli, G.; Lotti, A.; et al. The ground-based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity. Bull. Volcanol. 2014, 76. [Google Scholar] [CrossRef]
- Nolesini, T.; Frodella, W.; Bianchini, S.; Casagli, N. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy) Case Study. Remote Sens. 2016, 8, 746. [Google Scholar] [CrossRef]
- Frodella, W.; Ciampalini, A.; Bardi, F.; Salvatici, T.; Di Traglia, F.; Basile, G.; Casagli, N. A method for assessing and managing landslide residual hazard in urban areas. Landslides 2017, 15, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Z.; Mills, J. A new approach to selecting coherent pixels for ground-based SAR deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2018, 144, 412–422. [Google Scholar] [CrossRef]
- Tomás, R.; Cano, M.; García-Barba, J.; Vicente, F.; Herrera, G.; Lopez-Sanchez, J.M.; Mallorquí, J. Monitoring an earthfill dam using differential SAR interferometry: La Pedrera dam, Alicante, Spain. Eng. Geol. 2013, 157, 21–32. [Google Scholar] [CrossRef]
- Wang, Z.; Perissin, D. Cosmo SkyMed AO projects—3D reconstruction and stability monitoring of the Three Gorges Dam. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3831–3834. [Google Scholar]
- Milillo, P.; Perissin, D.; Salzer, J.T.; Lundgren, P.; Lacava, G.; Milillo, G.; Serio, C. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 221–229. [Google Scholar] [CrossRef]
- Blom, R.; Fielding, E.; Gabriel, A.; Goldstein, R. Radar Interferometry for Monitoring of Oil Fields and Dams: Lost Hills, California and Aswan, Egypt. In National Geological Society of America Meeting; National Geological Society of America Meeting: Denver, CO, USA, 1999. [Google Scholar]
- Emadali, L.; Motagh, M.; Haghshenas Haghighi, M. Characterizing post-construction settlement of the Masjed-Soleyman embankment dam, Southwest Iran, using TerraSAR-X SpotLight radar imagery. Eng. Struct. 2017, 143, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Milillo, P.; Porcu, M.C.; Lundgren, P.; Soccodato, F.; Salzer, J.; Fielding, E.; Burgmann, R.; Milillo, G.; Perissin, D.; Biondi, F. The Ongoing Destabilization of the Mosul Dam as Observed by Synthetic Aperture Radar Interferometry. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 6279–6282. [Google Scholar]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C. Gamma sar processor and interferometry software. In Proceedings of the 3rd ERS Scientific Symposium, Florence, Italy, 17–20 March 1997. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Goldstein, R.; Zebker, H.; Werner, C. Satellite radar interferometry- Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.J.; Cross, P. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3220–3230. [Google Scholar]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Chen, J.; Penna, N.T. Temporal correlation of atmospheric delay and its mitigation in InSAR time series. Proceedings of EGU General Assembly 2018, Veinna, Austria, 8–13 April 2018. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Online Service for InSAR (GACOS). Proceedings of EGU General Assembly 2018, Veinna, Austria, 8–13 April 2018. [Google Scholar]
- Herndon, R.l. Settlement Analysis; U.S. Army Corps of Engineers: Washington, DC, USA, 1990; p. 205.
Track No. | Flight Direction | Heading (ϒ)° | LOS Inc (θ)° | A | Compression Factor | ||
---|---|---|---|---|---|---|---|
UPS | DNS | UPS | DNS | ||||
6 | Ds | −167.0 | 45.6 | 53.0 | 233.0 | 0.29 | 0.90 |
174 | As | −13.0 | 32.3 | 53.0 | 233.0 | 0.11 | 0.81 |
79 | Ds | −167.0 | 34.9 | 53.0 | 233.0 | 0.15 | 0.84 |
72 | As | −13.0 | 43.6 | 53.0 | 233.0 | 0.27 | 0.89 |
BM | Latitude (Decimal Degrees) | Longitude (Decimal Degrees) | Orthometric Elevation (m) | East Displacement (m) | North Displacement (m) | Vertical Displacement (m) | Distance from M4 (m) | LOS Displacement (m) | Gradient (mm/m) |
---|---|---|---|---|---|---|---|---|---|
M4 | 35.11375536 | 45.70548463 | 477.959 | 0.103 | 0.069 | −0.144 | 0 | −0.187 | |
M5 | 35.11370024 | 45.70557167 | 479.410 | 0.121 | 0.066 | −0.154 | 10.01 | −0.207 | −2.0 |
M6 | 35.11362193 | 45.70569536 | 481.547 | 0.143 | 0.068 | −0.185 | 24.24 | −0.244 | −2.6 |
M7 | 35.1133471 | 45.70612983 | 482.839 | 0.193 | 0.119 | −0.342 | 74.21 | −0.395 | −3.0 |
BM12 | 35.11307236 | 45.70656465 | 479.039 | 0.173 | 0.149 | −0.470 | 124.2 | −0.474 | −1.6 |
BM13 | 35.11279793 | 45.70699924 | 478.886 | 0.169 | 0.205 | −0.509 | 174.14 | −0.505 | −0.6 |
BM14 | 35.11252439 | 45.70743219 | 480.342 | 0.127 | 0.225 | −0.462 | 223.91 | −0.445 | 1.2 |
BM15 | 35.11224962 | 45.70786674 | 479.169 | 0.103 | 0.236 | −0.391 | 273.88 | −0.380 | 1.3 |
BM16 | 35.11197574 | 45.70830231 | 483.574 | 0.057 | 0.232 | −0.249 | 323.86 | −0.247 | 2.7 |
BM17 | 35.11169989 | 45.70873661 | 489.682 | 0.013 | 0.139 | −0.123 | 373.89 | −0.117 | 2.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Husseinawi, Y.; Li, Z.; Clarke, P.; Edwards, S. Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake. Remote Sens. 2018, 10, 1426. https://doi.org/10.3390/rs10091426
Al-Husseinawi Y, Li Z, Clarke P, Edwards S. Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake. Remote Sensing. 2018; 10(9):1426. https://doi.org/10.3390/rs10091426
Chicago/Turabian StyleAl-Husseinawi, Yasir, Zhenhong Li, Peter Clarke, and Stuart Edwards. 2018. "Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake" Remote Sensing 10, no. 9: 1426. https://doi.org/10.3390/rs10091426
APA StyleAl-Husseinawi, Y., Li, Z., Clarke, P., & Edwards, S. (2018). Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake. Remote Sensing, 10(9), 1426. https://doi.org/10.3390/rs10091426