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Abstract: After Landsat 8 was launched in 2013, it was observed that for Thermal Infrared sensor
(TIRS) bands, radiance from outside of an instrument’s field-of-view produced a non-uniform
ghost signal across the focal plane that varied depending on the out-of-scene content (i.e., the stray
light effect). A new stray light correction algorithm (SLCA) is currently operational and has been
implemented into the United States Geological Survey (USGS) ground system since February 2017.
The SLCA has also been applied to reprocess historical Landsat 8 scenes. After approximately two
years of SLCA implementation, more land surface temperature (LST) validation studies are required
to check the effect of correction in the estimation of LST from different retrieval algorithms. For this
purpose, three different LST estimation method algorithms (i.e., the radiative transfer equation (RTE),
single-channel algorithm (SCA), and split-window algorithm (SWA)) have been assessed. The study
site is located on the campus of the University of Balearic Islands on the island of Mallorca (Spain)
in the western Mediterranean Sea. The site is considered a heterogeneous area that is composed of
different types of surfaces, such as buildings, asphalt roads, farming areas, sloped terrains, orange
fields, almond trees, lawns, and some natural vegetation regions. Data from 21 scenes, which were
acquired by the Landsat 8-TIRS sensor and extracted from a 100 × 100 m2 pixel, were used to
retrieve the LST with different algorithms; then, they were compared with in situ LST measurements
from a broadband thermal infrared radiometer located on the same Landsat 8 pixel. The results
show good performances of the three methods, with the SWA showing the lowest observed RMSE
(within 1.6–2 K), whereas the SCA applied to the TIRS band 10 (10 µm) was also appropriate, with a
RMSE ranging within 2.0–2.3 K. The LST estimates using the RTE algorithm display the highest
observed RMSE values (within 2.0–3.6 K) of all of the compared methods, but with an almost unbiased
value of −0.1 K for the case of techniques applied to band 10 data. The SWAs are the preferred
method to estimate the LST in our study area. However, further validation studies around the world
are required.

Keywords: land surface temperature; thermal infrared data; LST validation; heterogeneous site;
Landsat 8-TIRS

1. Introduction

Land surface temperature (LST) is the direct driving element in the exchange of longwave
radiation and turbulent heat fluxes at the surface–atmosphere interface. LST is a key parameter in
the physical processes of different surfaces at several scales. It needs to be widely exploited and
validated at high spatial resolutions [1,2]. The satellite Landsat 8, launched in 2013, whose onboard
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Thermal Infrared sensor (TIRS) operates at two spectral thermal infrared (TIR) bands (10 (10 µm) and
11 (12 µm)), provides LST estimates at a spatial resolution of 100 m and a temporal revisit of 16 days,
which needs ongoing validation [3].

Shortly after launching, it was observed for the Landsat 8-TIRS (L8-TIRS) bands that radiance from
outside of the instrument’s field-of-view produced a non-uniform ghost signal across the focal plane
that varied depending on the out-of-scene content (http://landsat.usgs.gov/mission_headlines2014.php).
This stray light effect was approximately 8% or higher in the emittance received in band 11, which was
twice than that of band 10 [4]. In general, the error is larger when the area surrounding the scene
is warmer, and smaller when the surrounding area is cooler than the affected pixel. The resulting
absolute radiometric error can be as high as 4–5% in band 10 and 8–9% in band 11 (versus the 2%
requirement) [5]. A fix for this error was tried by removing an average absolute error for each TIR
band (0.29 Wsr−1 m−2 µm−1 for band 10 and 0.51 Wsr−1 m−2 µm−1 for band 11) [6], since the
magnitude of these effects appeared to be correlated with the magnitude of the radiance outside
the field-of-view of the instrument. However, the following investigation determined that this stray
light problem was entering the optical system and adding a non-uniform signal to the focal plane
detectors. After obtaining a detailed understanding of the problem, a correction algorithm was
developed to adaptively correct the stray light artifacts on a scene-by-scene basis [5]. A radiometric
cross-calibration of L8-TIRS bands was performed with Geostationary Operational Environmental
Satellites (GOES-N) series imagers to estimate the out-of-field stray light radiance for TIRS, producing
significantly improved results over the uncorrected product [7].

The stray light correction algorithm (SLCA) is currently operational, and has been implemented
into the United States Geological Survey (USGS) ground system starting February 2017; since then,
it has been applied to all new Landsat 8 acquisitions. Furthermore, the SLCA was also applied
to Landsat 8 scenes prior to February 2017; such scenes have been treated in a new processing
system, which was updated to existing Collection 1. Nevertheless, the Landsat team does not
recommend the use of band 11 for the split-window technique until additional work is done to
assess whether this correction is adequate (https://landsat.usgs.gov/april-25-2017-tirs-stray-light-
correction-implemented-collection-1-processing). However, after almost two years since the SLCA
implementation, validations of LST estimation from different retrieval algorithms are mandatory to
assess if the SLCA is performing well in treating the contaminated outside FOV radiance. We assessed
the performance of three different methods for estimating LST to check the effectiveness of such
corrections: the radiative transfer equation (RTE), single-channel algorithm (SCA), and split-window
algorithm (SWA).

2. LST Algorithms

2.1. Radiative Transfer Equation

The retrieval of LST from L8-TIRS bands 10 and 11 is based on the inversion of the RTE,
which corrects the top of atmosphere (TOA) spectral radiance measurements performed by such
TIR bands, and is caused by atmospheric attenuation and surface emission. The RTE from a single TIR
band is expressed as:

LTOA,i =
[
εiBi(LST)− (1− εi)L↓hem,i

]
τi + L↑atm,i (1)

where LTOA,i (in Wsr−1 m−2 µm−1) represents the TOA radiance measured by the TIR sensor; εi
represents the surface emissivity; Bi(LST) represents the Planck function of a blackbody emitting
at the surface temperature (LST); and L↓hem,i, τi and L↑atm,i represent the atmospheric parameters
corresponding to hemispheric downwelling radiance, atmospheric transmissivity, and upwelling
radiance, respectively. The subscript i refers to the channel-effective quantity of each parameter in
the RTE (i.e., bands 10 and 11). LTOA,i in Equation (1) is calculated with the conversion of the digital
number (DN) measured from both TIR bands to radiance as [8]:

http://landsat.usgs.gov/mission_headlines2014.php
https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-collection-1-processing
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LTOA,i = 0.0003342 ∗ DN + 0.1 (2)

Once the variable Bi(LST) in the RTE is cleared, the LST is obtained in both TIRS bands with
the expressions proposed in the Landsat 8 Science Data Users Handbook [8] to convert radiance to
temperature (in K):

LST =
k2

ln
[

k1
Bi(LST) + 1

] (3)

where k1 and k2 are assigned values of 774.89 Wm−2 sr−1 µm−1 and 1321.08 K for band 10
and 480.89 Wm−2 sr−1 µm−1 and 1201.14 K for band 11, respectively. The noise-equivalent
change-in-temperature (NE∆T) for bands 10 and 11 is, respectively, 0.8 K and 0.71 K (at 240 K),
0.4 K (for both bands at 300 K), and 0.27 K and 0.29 K (at 360 K) according to the specification in
Irons et al. [3].

2.2. Single-Channel Algorithm

The SCA uses the information from each single TIR channel to retrieve the LST with the least
necessary input information. Here, only two SCAs are applied in the L8-TIRS band 10 to be tested
and validated.

The first SCA used in this study was proposed and developed by Jiménez-Muñoz et al. [9]
(hereafter JM2014), which estimates the LST as follows:

LST = γ

[
1

ε10
(ψ1LTOA,10 + ψ2) + ψ3

]
+ δ (4)

where ε10 and LTOA,10 represent the surface emissivity and TOA radiance, respectively, for the L8-TIRS
band 10, and γ and δ are two parameters expressed as:

γ =
T2

10
bγLTOA,10

(5)

δ = T10 −
T2

10
bγ

(6)

where T10 represents the at-sensor brightness temperature for the L8-TIRS band 10, and bγ = 121.47 is
a constant parameter.

This SCA proposed by Jiménez-Muñoz et al. [9] approximates the atmospheric function
Ψj (j = 1, 2 and 3) defined in Equation (4), which is dependent on the atmospheric water vapor content
(W), from a second-order polynomial fit that is expressed in matrix notation as follows: ψ1

ψ2

ψ3

 =

 0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514


 W2

W
1

 (7)

The second SCA validated in this study was proposed by Wang et al. [10] (hereafter FW2015).
This algorithm expresses the LST equation that is dependent on T10 as:

LST =
[a10(1− C10 − D10) + (b10(1− C10 − D10) + C10 + D10)T10 − D10Ta]

C10
(8)

where Ta represents the effective mean atmospheric temperature, and a10 and b10 are regressed
coefficients dependent on the T10 range, which are used to approximate the derivative of the
Planck radiance function for the L8-TIRS band 10. Table 1 shows values for such coefficients in
the corresponding T10 ranges.
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Table 1. Determination of coefficients a10 and b10 for the L8-TIRS band 10 (after Wang et al. [10]).

Temperature Range (◦C) a10 b10 R2

50–70 −70.1775 0.4581 0.9997
30–50 −62.7182 0.4339 0.9996
−20–30 −55.4276 0.4086 0.9996

C10 and D10 are internal parameters for the algorithm, which are given as follows:

C10 = τ10ε10 (9)

D10 = (1− τ10)[1 + (1− ε10)τ10] (10)

where τ10 represents the atmospheric transmissivity filtered for the L8-TIRS band 10.

2.3. Split-Window Algorithm

The SWA takes advantage of the radiance attenuation produced by the atmospheric absorption at
two different spectral regions, which are typically located between 10–12 µm.

The first SWA described in this study was also proposed by Jiménez-Muñoz et al. [9] (i.e., JM2104),
which defines an LST expression as:

LST = T10 + 1.378(T10 − T11) + 0.183(T10 − T11)
2 − 0.268 + (54.3− 2.238W)(1− ε) + (16.4W − 129.2)∆ε (11)

where T11 represents the at-sensor brightness temperature and radiance for the L8-TIRS band 11, and ε

and ∆ε represent the mean and difference emissivity values for L8-TIRS bands 10 and 11, respectively.
A second LST expression for the SWA used in this work was proposed by Du et al. [11] based on

the generalized SWA of Wan and Dozier [12]. This LST equation is expressed as:

LST = b0 +

(
b1 + b2

1− ε

ε
+ b3

∆ε

ε2

)
T10 + T11

2
+

(
b4 + b5

1− ε

ε
+ b6

∆ε

ε2

)
T10 − T11

2
+ b7(T10 − T11)

2 (12)

where coefficients bk (k = 0–7) are dependent on W. Ref. Du et al. [11] defined these coefficients for
specific W ranges (hereafter D2015_A) or, in a generalized manner, for a whole range of W from 0 to
6.3 cm (hereafter D2015_G). Table 2 shows the values for the bk coefficients in Equation (12) estimated
both ways.

Table 2. Coefficients bk (k = 0–7) in different atmospheric water vapor content subranges (after Du et al. [11]).

W (cm) b0 b1 b2 b3 b4 b5 b6 b7

0–2.5 −2.78009 1.01408 0.15833 −0.34991 4.04487 3.55414 −8.88394 0.09152
2.5–3.5 11.00824 0.95995 0.17243 −0.28852 7.11492 0.42684 −6.62025 −0.06381
3.5–4.5 9.6261 0.96202 0.13834 −0.17262 7.87883 5.1791 −13.26611 −0.07603
4.5–5.5 0.61258 0.99124 0.10051 −0.09664 7.85758 6.86626 −15.00742 −0.01185
5.5–6.5 −0.34808 0.98123 0.05599 −0.03518 11.96444 9.0671 −14.74085 −0.20471
0–6.5 −0.41165 1.00522 0.14543 −0.27297 4.06655 −6.92512 −18.27461 0.24468

3. Study Site and Data

3.1. Study Site

The study site is located on the campus of the University of the Balearic Islands (UIB) at a height
of 80 m above sea level in the Palma Basin on Mallorca Island (Figure 1). Mallorca is located in the
western Mediterranean Sea, 200 km to the east of the Iberian Peninsula. The UIB campus has an
approximate areal coverage of 1 km × 1 km, and it is composed of many different types of surfaces,
such as buildings and asphalt roads. Half the surface of the UIB area is composed of some natural
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vegetation, which includes wild grasses, between October and May; it usually becomes dormant in the
summertime, when there is some bare ground as well.

A complete surface energy budget (SEB) station was installed at the UIB Campus in 2015 (yellow
dot in Figure 1). In April 2016, it was supplemented with a broadband TIR radiometer (IR120, Campbell
Scientific, Logan, UT, USA) operating in the 8–14 µm spectral range, with a field of view of 36◦. This TIR
radiometer is located at a height of 1 m above ground level and takes continuous ground reference LST
measurements of the wild grass for a diameter of 2 m, with the measurements being stored as 1-min
averages. The radiometer was calibrated in the laboratory against the reference blackbody model
LANDCAL P80P. In 2016, this P80P blackbody participated in a comparison campaign organized by
the Committee on Earth Observation Satellites in the National Physical Laboratory (NPL). The P80P
blackbody agreed with the NPL reference radiometer within ±0.05 ◦C in the 0–50 ◦C range [13]. In our
own laboratory calibration of the IR-120 radiometer, when compared with a reference temperature set
for our blackbody within 0–60 ◦C, the results showed a RMSE on the retrieved LST from the IR-120
radiometer data of ±0.4 ◦C.
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Figure 1. Location of the Universitat de les Illes Balears Campus in Mallorca Island (left) and a detailed
image of the area of study (right), where the different types of surface can be observed. The yellow
dot indicates the surface energy balance station, and the yellow square represents the L8-TIRS pixel,
which includes the surface energy budget (SEB) station. A ground-based photograph (top right) shows
the field of wild grass.

In situ LST (in ◦C) is calculated from the measured upwelling longwave irradiance (L↑,
in Wm−2) as:

LST =

[
L↑ −

(
1− ε8−14 µm

)
L↓

σε8−14 µm

]1/4

(13)

where ε8–14 µm = 0.97 is the selected value for the broadband emissivity surface [14] corresponding
to senescent sparse shrubs, and σ = 5.67·10−8 Wm−2 K−4 represents the Stefan–Boltzmann constant.
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The reflected downwelling irradiance (L↓, also in Wm−2) is calculated using an approximation as a
function of the temperature and the humidity of air at the screen level [15].

In situ LST measured with the broadband TIR radiometer was compared with the LST estimated
from the different algorithms, with the L8-TIRS data extracted from the 100 × 100 m2 pixel that
included the SEB location (yellow square in Figure 1). Since more than 95% of the surface inside this
square is wild grass vegetation, which was the same observed surface from the IR120 broadband
radiometer, and a circular geolocation error uncertainty requirement of 12 m is assumed for both
the reflective and emitted radiance data [3], it was presumed that both the IR120 and L8-TIRS LST
estimations are comparable. Recent studies have also validated the LST estimated from several orbiting
TIR sensors against data from this SEB station, concluding that with respect to in situ temperature field
measurements, the LST obtained from Landsat 7-ETM + showed a RMSE of ±1.7–1.8 K and, for the
Terra-ASTER, a RMSE of ±1.3 K [16,17].

3.2. Data

A total of 21 Landsat 8-TIRS clear-sky scenes of the UIB Campus site were used in this study in
the years 2016–2017 (see Table 3). The location of the island of Mallorca is privileged because it is
covered by the paths of two different Landsat 8 orbits (i.e., paths/rows 197/32 and 196/33), providing
images every seven or nine days, instead of every sixteen days as happens for locations covered only
by one orbit.

The atmospheric variables L↓hem,i, τi, L↑atm,i, and W used in some of the algorithms defined in
Section 2 were calculated with the MODerate resolution atmospheric TRANsmission (MODTRAN)
radiative transfer code v. 5.2. [18] using the synthetic atmospheric profile provided by a web-tool
calculator [19] based on the National Centers for Environmental Prediction (NCEP) model [20].

W, which represents the mass of water vapor in an atmospheric column per unit area, can be
expressed in units of g/cm2 or directly cm, and it is defined as:

W =
1
g

P0∫
0

r(z)dP (14)

where g is the gravity acceleration (9.8 m/s2), P0 is the atmospheric pressure at surface level, and P = 0
is the pressure value at TOA, r is the mixing ratio within water vapor and dry air (g/kg), and z is the
geopotential height of the different levels offered by the synthetic atmospheric profile provided by
Kalnay et al. [20].

Compared with sounding data, the NCEP profile was demonstrated to be the best option to
retrieve atmospheric variables with respect to other synthetic atmospheric profiles [21]. To retrieve a
more accurate synthetic atmospheric profile, the web-tool calculator allows for establishing the surface
conditions of the selected location. These surface parameters consist of altitude (km), pressure (mb),
air temperature (◦C), and relative humidity (%), and they were provided in this study at the
corresponding UTC time by instrumentation installed in the SEB station. The uncertainties associated
with the atmospheric profiles used in this study induced a corresponding average uncertainty in the
atmospheric parameters L↓hem,i, L↑atm,i, τi, and W of ±0.06 Wm−2 sr−1 µm−1, ±0.09 Wm−2 sr−1 µm−1,
±0.005, and ±0.3 cm, respectively [17].

The surface emissivities used in some algorithms defined in Section 2 were extracted from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity
Database (GED) [22]. This database offers surface emissivity values at 100-m spatial resolution for the
five TIR channels of the ASTER sensor [23] after applying the temperature and emissivity separation
method [24] to the ASTER data from 2000 to 2008. In this study, the emissivities used to correct the
surface emission at the L8-TIRS bands 10 and 11 were extracted from the ASTER GED product at
channels 13 (10.25–10.95 µm) and 14 (10.95–11.65 µm), respectively. Such emissivities for the studied
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area showed an average value of 0.968 (band 13) and 0.960 (band 14), with a standard deviation
of 0.015.

Table 3. Landsat 8 cloudless (n = 21) scenes acquired over the University of the Balearic Islands (UIB)
campus from 2016 to 2017 used in the validation study. LST: land surface temperature.

Number Date (yyyymmdd) UTC Time (hhmm) Ground LST (K) Landsat 8 Filename

1 20160424 1030 299.8 LC08_L1TP_197032_20160424_20170326_01_T1
2 20160503 1024 305.6 LC08_L1TP_196033_20160503_20170325_01_T1
3 20160604 1024 317.2 LC08_L1TP_196033_20160604_20170324_01_T1
4 20160627 1030 317.3 LC08_L1TP_197032_20160627_20170323_01_T1
5 20160706 1025 322.2 LC08_L1TP_196033_20160706_20170323_01_T1
6 20160729 1031 323.2 LC08_L1TP_197032_20160729_20170322_01_T1
7 20160814 1031 322.1 LC08_L1TP_197032_20160814_20170322_01_T1
8 20160823 1025 319.3 LC08_L1TP_196033_20160823_20170322_01_T1
9 20161118 1031 293.9 LC08_L1TP_197032_20161118_20170318_01_T1

10 20170206 1031 287.8 LC08_L1TP_197032_20170206_20170216_01_T1
11 20170310 1031 298.9 LC08_L1TP_197032_20170310_20170317_01_T1
12 20170319 1025 299.2 LC08_L1TP_196033_20170319_20170328_01_T1
13 20170404 1025 300.2 LC08_L1TP_196033_20170404_20170414_01_T1
14 20170411 1031 306.0 LC08_L1TP_197032_20170411_20170415_01_T1
15 20170506 1025 306.6 LC08_L1TP_196033_20170506_20170515_01_T1
16 20170614 1031 325.4 LC08_L1TP_197032_20170614_20170628_01_T1
17 20170623 1025 320.2 LC08_L1TP_196033_20170623_20170630_01_T1
18 20170709 1025 321.3 LC08_L1TP_196033_20170709_20170717_01_T1
19 20170817 1031 324.6 LC08_L1TP_197032_20170817_20170826_01_T1
20 20170826 1025 322.6 LC08_L1TP_196033_20170826_20170913_01_T1
21 20170902 1031 316.9 LC08_L1TP_197032_20170902_20170916_01_T1

4. Results and Discussion

The validation study proposed here is summarized in the results of Figure 2, which shows the
comparison of LSTs estimated by different algorithms. These algorithms have in situ values measured
at the SEB station as the Landsat 8 overpasses; together with the respective trendline equations and
determination coefficients R2, these values indicate a good agreement between measured and estimated
LST data (statistically significant with a p-value smaller than 0.05). SWAs show the largest R2 values;
for instance, the D2015_G [11] algorithm, with general coefficients bk, has a trendline with a slope close
to 1 (0.993) and an offset close to 0 (3.54 K).

The results of Figure 2 focused in the SWA, in terms of the regression coefficient, provide evidence
that the D2015_A [11], with bk coefficients dependent on W (Table 2), and JM2014 [9] algorithms show
good correlations (R2 = 0.98). In the same figure, good regression coefficients for the SCAs of JM2014 [9]
and FW2015 [10] (R2 = 0.97) and RTE (R2 = 0.96) are also seen for all of the results applied to the data
of L8-TIRS band 10. The RTE applied to the data of L8-TIRS band 11 clearly shows the weakest results
with a correlation of R2 = 0.94, which underestimates the LST for higher temperatures.

To complete the validation study, statistical uncertainties such as bias, mean absolute error (MAE),
and root mean square error (RMSE) for the data in Figure 2 are displayed in Table 4.

Centering the attention in the results of Figure 2 and Table 4 concerning the RTE method applied
for band 11, it is seen that the results are worse than for the other cases. This does not imply that
such SLCA does not correct the undesired radiation included in each pixel. Indeed, uncertainties in
atmospheric parameters L↓hem,i, L↑atm,i, τi, and εi (see Section 3.2), established a total uncertainty on the
LST estimated after applying RTE to L8-TIRS band 11 of ±2 K, and of ±1.8 K for band 10.
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Figure 2. Comparison of in situ field land surface temperature (LST) measured with the IR120
radiometer (x axis) vs. Landsat 8-TIRS LST (y axis) estimated from 21 scenes (Table 4) used in this
study with the (a) RTE for TIRS bands 10 and 11; (b) SCA applied to TIRS band 10 proposed by
Jiménez-Muñoz et al. [9] (JM2014) and Wang et al. [10] (FW2015) and (c) SWA also proposed by
Jiménez-Muñoz et al. [9] (JM2014) and Du et al. [11] with general coefficients bk (D2015_G) or with
specific bk coefficients dependent on W (D2015_A). A trendline equation and regression coefficient R2

are also included for each algorithm.
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Table 4. Uncertainty statistical values for the bias, mean absolute error (MAE), and root mean square
error (RMSE) (all in K) of the regressed data in Figure 2 for the n = 21 scenes acquired over the UIB
Campus from 2016 to 2017. RTE: radiative transfer equation, SCA: single-channel algorithm, SWA:
split-window algorithm.

RTE SCA SWA

Band 10 Band 11 JM2014 FW2015 D2015_A D2015_G JM2014

Bias (K) –0.1 2.0 0.8 0.7 –1.1 –1.4 0.4
MAE (K) 1.8 3.0 1.6 1.9 1.3 1.6 1.4
RMSE (K) 2.3 3.6 2.2 2.3 1.8 2.0 1.6

Based on arguments exposed above, it cannot be concluded that the RMSE or MAE values
obtained for the RTE LST results are owed completely to a bad performance of the SLCA, since there
are other factors affecting the precision of such methods.

It is worth noting that the stray-light effect is more pronounced if the surrounding LST values are
warmer that the LST of the studied pixel. This is not the case of Mallorca Island; it is surrounded by
the Mediterranean Sea, which is colder than land in the daytime. Therefore, the stray-light effect is of a
lesser impact in our study site than for other parts of the Earth. However, for high LST values, it is
observed that the LST retrieved with the RTE for band 11 presented lower values than the temperatures
observed by the IR120 radiometer. This could be related to a worse performance of the SLCA at this
LST range.

It is interesting to check from the results of Table 4 that the RMSE and MAE of the LST estimated
with the RTE applied to band 10 is of the same order than the LST estimated with the SCA proposed
by Jiménez-Muñoz et al. [9] and Wang et al. [10], which is applied also to the data measured in band
10. More specifically, these data show an almost unbiased value (−0.1 K). However, SCA values
are preferred, because both algorithms only need the known parameters ε10 and the W (case of
Jiménez-Muñoz et al. [9] method) or the τ10 (case of Wang et al. [10] method). Moreover, the RMSE
observed in this study for the SCAs and RTE applied to L8-TIRS band 10 data are in good agreement
with other LST validation studies recently published [25,26].

Uncertainties in this study for the SCA are in good agreement with those originally expected for
the same algorithm. For example, in Jiménez-Muñoz et al. [9], the authors found RMSE and R2 ranges
of 2–4 K and 0.981–0.996, respectively, and in Wang et al. [10], the RMSE was slightly lower (0.6–0.8 K)
than those observed in this study.

The emissivity of different components of the UIB campus ranges between 0.960–0.982 (according
to the ASTER database) for both L8_TIRS bands 10 and 11. This emissivity variation does not show
a clear correlation with the LST bias. Instead, W variations (between 0.96–3.64 cm for the 21 dates
studied here) affected the LST bias, with the latter increasing from negative to positive values with the
increase of W. Figure 3 shows the regressions of the LST bias with the W estimated by synthetic NCEP
profiles derived from the methods and algorithms used in this study.

From Figure 3, it can be interpreted that the RTE method does not directly consider the effect of
W on the estimated LST, which is already taken into account in the atmospheric parameters L↓hem,i, τi,

and L↑atm,i. The LST bias for band 10 increases with W from negative values of approximately −2 K
to positive values near 0 K (Figure 3a), indicating an overestimation of LST for dry atmospheres (W
within 1–1.5 cm), and unbiased values for wetter atmospheres. For band 11, the behavior is opposite,
and the LST estimates are almost unbiased under dry conditions, and have a significant positive bias
(underestimation of the LST) for wet atmospheres.

It can also be deduced from Figure 3 that both SCA algorithms (Figure 3b) overestimate LST
slightly for low W values, and provide underestimated values with increasing W. The SCA proposed
by Jiménez-Muñoz et al. [9] (i.e., JM2014), which is directly related to W (Equation (7)), has a bias that
increases smoothly with W, indicating that the method accurately estimates LST.
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Figure 3. A regression of the LST bias (LSTIR120-LSTalgorithm) with the water vapor content (W in cm)
for the 21 dates used in this study with the (a) RTE for TIRS bands 10 and 11, (b) SCA applied to TIRS
band 10 proposed by Jiménez-Muñoz et al. [9] (JM2014) and Wang et al. [10] (FW2015) and (c) SWA also
proposed by Jiménez-Muñoz et al. [9] (JM2014) and Du et al. [11] with general coefficients bk (D2015_G)
or with specific bk coefficients dependent on W (D2015_A). A trendline equation is also included for
each algorithm.
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Finally, for SWAs (Figure 3c), two different behaviors are observed. The JM2014 algorithm,
which is a function of W (Equation (11)), has an LST bias that increases from negative (approximately
−2 K) to positive values (approximately +2 K). This bias indicates an overestimation for dry
atmospheres (W within 1 cm) and an underestimation for wet ones (W approximately 3–4 cm),
while being relatively unbiased for intermediate values of W.

The general findings from results of this validation study are that the SWA is the preferred method
for estimating the LST in our study site. The three SWA alternatives studied show lower RMSE and
MAE values than the other two techniques. The SWA results from JM2014 and D2015_A have the
lowest RMSE (within 1.6–1.8 K) and MAE (within 1.3–1.4 K) values, and perhaps the JM2014 method
is preferable for usage at our site, since it shows an almost unbiased value (0.4 K). D2015_G SWA is
also a convenient method, since it only needs the previous knowledge of the surface emissivity, unlike
the other two SWAs that need the W value.

Another important finding of this study is that for the D2015 method, the LST estimates improve
when bk coefficients (Table 2) are adjusted to W ranges. In both D2015_A and D2015_G, there is an
overestimation of LST for low W. The difference between these two D2015 approaches lies in a lack of
bias within D2015_A for high W values, whereas the D2015_G bias increases very smoothly with W.

It is seen that the results of the three methods show differences that are statistically significant
(p < 0.05, calculated from a student’s t-distribution). This provides evidence that the finding that SWA
performs closer to the in situ observations than the other two methods is robust, although the RMSE,
MAE, and bias of all methods are very similar.

However, more validation studies of SWA for L8-TIRS bands at different surfaces around the
Earth are required by the remote sensing community to reach definitive conclusions. Our uncertainty
results are also in accordance with (and maybe slightly higher than) those expected originally for the
SWA. As referenced in Jiménez-Muñoz et al. [9], the authors estimated the RMSE and R2 range values
of 0.6–1.2 K and 0.997–0.999, respectively, and in Du et al. [11], they expected RMSE values of 0.3–0.9 K
for D2015_A, and 0.5–3 K for D2015_G.

5. Conclusions

The stray-light effects on Landsat 8-TIRS bands 10 and 11 have been corrected with an algorithm
that is currently operational in the USGS ground system since February 2017. After two years,
LST validation studies are desired to assess the effectiveness of such SLCAs. LSTs estimated with
three different methods (i.e., the radiative transfer equation and the single-channel and split-window
algorithms) have been validated against ground measurements taken in a fixed station installed at the
University of Balearic Islands (Mallorca, Spain). The site showed a constant vegetation cover (wild grass
in winter and dormant vegetation in summertime) during the year, and a range of precipitable water
(W) of 0.7–3.6 cm.

The validation procedure shows good agreement between the measured and estimated LST data
from the three methods. However, from a RMSE and MAE point of view, the LSTs estimated from the
SWAs provided the smallest values in terms of the RMSE (1.6–2 K) and MAE (1.3–1.6 K), followed by
the SCAs and RTE applied to TIRS band 10, with an RMSE of approximately 2.3 K and an MAE within
1.6–1.9 K. From our bias estimation, the RTE technique applied to band 10 shows an almost unbiased
value (−0.1 K), followed by the SWA proposed by Jiménez-Muñoz et al. [9] (i.e., JM2014), with a bias
of 0.4 K. The SCAs show constant bias values of 0.7–0.8 K.

The weakest results were obtained for the RTE applied to TIRS band 11, with an RMSE of 3.6 K,
an MAE of 3 K, and a bias of 2 K. Nevertheless, it cannot be concluded that such inaccurate results
for the RTE at band 11 are due to the poor performance of the SLCA, since there are other factors
(i.e., atmospheric parameters and surface emissivity) considerably affecting the precision of such
methods. The LST estimations from the SCAs assessed in this study are in good agreement with other
LST validation works recently published.
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We can conclude that the SWAs is the preferred method to estimate the LST in our study area.
The results of the three methods compare well with in situ data, although the R2, RMSE, MAE, and bias
terms are very similar for all of the methods. The SWA has the lowest RMSE and MAE and the best R2
values. However, further validation studies based on Landsat 8-TIRS data at different surfaces around
the world are necessary to reach definitive conclusions.
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