Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared
Abstract
:1. Introduction
2. Materials and Methods
2.1. The UoL Full Physics Retrieval Algorithm
2.1.1. Estimating PBL Water Vapour
- CO2 and temperature profile scaling factors,
- aerosol extinction profiles for two differing aerosol types and one cirrus type,
- surface pressure and surface albedo, and
- the spectral slope for each band.
- for aerosol and cirrus a diagonal matrix with an a priori 1 uncertainty of a factor of 10 for each level.
- temperature and CO2 scaling, the values 3.16 K and 0.316 ppm are used in the a priori covariance respectfully.
- a 1 value of 4 hPa is used for surface pressure, and
- surface albedo and its slope are essentially unconstrained.
2.1.2. Uncertainties in GOSAT PBL Water Vapour
2.2. Assessment of PBL Water Vapour with Radiosondes
2.2.1. The Analyzed RadioSoundings Archive
- The first step is to apply physically coherent quality control tests to the raw radiosonde reports to (i) detect and eliminate gross errors, (ii) format problems, (iii) redundant radiosonde levels, (iv) unrealistic jumps, (v) physically implausible values, and (vi) temporal and vertical inconsistencies in temperature, dew point temperatures. Some of these tests benefit from the climatological Thermodynamic Initial Guess Retrieval (TIGR) data set (Chedin et al. [49], Chevallier et al. [50]).
- In the second step, quality control tests are applied to ensure that every radiosonde report kept after the first step is also fully compatible with the forward radiative transfer simulations. This requirement ensures discretization in pressure which is relevant to forward models. This is achieved by retaining profiles with (i) temperature measurements available at least up to 30 hPa, (ii) water vapour measurements available at pressure levels up to and above 350 hPa, and (iii) that the surface pressure be not smaller than 850 hPa over land and 950 hPa over sea.
- In the third step, whenever and wherever required information is missing, existing radiosonde measurements are combined with other reliable data sources in order to complete the description of the atmospheric state up to 0.0026 hPa. Temperature and water vapour profiles are extrapolated using ERA-Interim (Dee et al. [51]) outputs between 30 hPa and 0.1 hPa for temperature and between 300 hPa and 0.1 hPa for water vapour. Above 0.1 hPa, these same profiles are extrapolated up to 0.0026 hPa using a climatology of ACE/Scisat Level 2 (L2) products. In addition to temperature and water vapour, ozone profiles are also added to support forward model calculations. Since most of the radiosonde reports do not provide information on ozone, profiles from ERA Interim are spatially and temporally collocated with with the considered radiosonde station. When not available from the radiosonde report, surface temperature is taken from the surface station archive of ECMWF.
- For the fourth and final step, the temperature, water vapour, ozone profiles are interpolated onto a multi-level pressure grid between sea level pressure and 0.0026 hPa. This is nominally 43 pressure levels, however where necessary lower levels are removed to correspond with a radiosonde stations in altitude.
2.2.2. Collocation of GOSAT with ARSA
2.2.3. Testing the Suitability as a Proxy for PBL Water Vapour
- the PCTP, the lowest pressure level where the CDOF equal-or-less than 1,
- the Mixing Layer Height (MLH) calculated from the original ARSA radiosonde profile (MLH1),
- the MLH calculated from the ARSA radiosonde profile which has been linearly interpolated (in log H2O and log pressure space) on to the GOSAT retrieval pressure levels (MLH2).
3. Results
3.1. GOSAT PBL Water Vapour Uncertainty Budget
3.2. Seasonal Distributions of GOSAT PBL Water Vapour
3.3. Comparisons at ARSA Ground Truth Sites
- GOSAT PBL biases range from 5.00 ± 0.01% in the winter to −2.00 ± 0.01% in the autumn, with an offset between 0.05 to 0.11 g kg−1.
- Seasonal mean squared error (MSE) values range from 0.05 to 0.08 g2 kg−2, which correspond to standard deviation values of 0.2 to 0.25 g kg−1.
- There is a large disparity between number of data points in each seasonal class. The highest number of collocations is found for summer months with 4373 cases, in stark contrast to winter months where there are only 975 cases found for the 8 year period.
- While there is a maximum spread of 0.25 g kg−1 in the seasonal results, correlation coefficients between GOSAT and ARSA PBL values are all greater than 0.9.
3.4. Consistency of Validation Approach
4. Discussion
4.1. Global Distributions of PBL Water Vapour
4.2. Validation at Global Radiosonde Sites
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMSR | Advanced Microwave Scanning Radiometer |
ARSA | Analyzed RadioSoundings Archive |
ATOVS | Advanced TIROSOperational Vertical Sounder |
BLH | Boundary Layer Height |
CAI | Cloud and Aerosol Imager |
CDR | Climate Data Record |
CDOF | Cumulative Degrees-of-Freedom |
ECMWF | European Centre for Medium-Range Weather Forecast |
ECV | Essential Climate Variable |
ERA-Interim | ECMWF Reanalysis Interim |
GAIA-CLIM | Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring |
GOME | Global Ozone Monitoring Experiment |
GOSAT | Greenhouse Gases Observing SATellite |
HadISDH | Met Office Hadley Centre led project utilising ISD Humidity data |
HIRS | High-resolution Infra Red Sounder |
HOAPS | The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data |
IAGOS | In-service Aircraft for a Global Observing System |
IASI | Infrared Atmospheric Sounding Interferometer |
ILS | Instrument Lineshape function |
ITCZ | Inter Tropical Convergence Zone |
JAXA | Japanese space agency |
L1 | Level 1 (data product) |
L2 | Level 2 (data product) |
LIDORT | Linearized Discrete Ordinate Radiative Transfer |
LMDZ | Laboratoire de Météorologie Dynamique Zoom |
MERIS | MEdium Resolution Imaging Spectrometer |
MHS | Microwave Humididty Sounder |
MLH | Mixing Layer Height |
MODIS | Moderate Resolution Imaging Spectroradiomete |
MSE | Mean Squared Error |
MW | Microwave |
NDACC | Network for the Detection of Atmospheric Composition Change |
NIES | National Institute for Environmental Studies |
NIR | Near Infrared |
NWP | Numerical Weather Prediction |
OCO-2 | Orbiting Carbon Observatory 2 |
OLS | Ordinary Least Squares |
PBL | Planetary Boundary Layer |
PCA | Priciple Component Analysis |
PCTP | Partial Column Top Pressure |
q2m | 2 metre surface specific humidity |
SCIAMACHY | SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY |
SWIR | Short Wave Infrared |
TANSO-FTS | Thermal And Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer |
TCCON | Total Carbon Column Observing Network |
TCWV | Total Column Water Vapour |
TIGR | Thermodynamic Initial Guess Retrieval |
TIR | Thermal Infrared |
TIROS | Television and Infrared Operational Satellite |
TOA | Top-of-Atmosphere |
TOVS | TIROS Operational Vertical Sounder |
UoL-FP | University of Leicester full physics retrieval |
VIS | Visible |
VMR | Volume Mixing Ratio |
References
- Sherwood, S.; Roca, R.; Weckwerth, T.; Andronova, N. Tropospheric water vapor, convection, and climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Dessler, A.; Zhang, Z.; Yang, P. Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.S.; Soden, B.; Sohn, B.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 2012; Volume 13. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.; Lee, D.; Mendoza, B.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Prieto, D.; van Oevelen, P.; Rast, M.; Senevirantne, S.; Stephens, G. ESA-GEWEX earth observation and water cycle science priorities. In Proceedings of the ‘Earth Observation for Water Cycle Science’, Frascati, Italy, 23–26 October 2015. [Google Scholar]
- Schröder, M.; Lockhoff, M.; Shi, L.; August, T.; Bennartz, R.; Borbas, E.; Brogniez, H.; Calbet, X.; Crewell, S.; Eikenberg, S.; et al. GEWEX Water Vapor Assessment (G-VAP); WCRP Report 16/2017; World Climate Research Programme (WCRP): Geneva, Switzerland, 2017; p. 216. [Google Scholar]
- Gao, B.C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Rossow, W. Retrieval of surface and atmospheric parameters over land from SSM/I: Potential and limitations. Q. J. R. Meteorol. Soc. 1999, 125, 2379–2400. [Google Scholar] [CrossRef]
- Feng, X.; Wu, B.; Yan, N. A method for deriving the boundary layer mixing height from modis atmospheric profile data. Atmosphere 2015, 6, 1346–1361. [Google Scholar] [CrossRef]
- Seemann, S.W.; Li, J.; Menzel, W.P.; Gumley, L.E. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol. 2003, 42, 1072–1091. [Google Scholar] [CrossRef]
- Millán, L.; Lebsock, M.; Fishbein, E.; Kalmus, P.; Teixeira, J. Quantifying marine boundary layer water vapor beneath low clouds with near-infrared and microwave imagery. J. Appl. Meteorol. Climatol. 2016, 55, 213–225. [Google Scholar] [CrossRef]
- Gao, B.; Goetz, A.; Westwater, E.R.; Conel, J.; Green, R. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms. J. Appl. Meteorol. 1993, 32, 1791–1801. [Google Scholar] [CrossRef]
- Bartsch, B.; Bakan, S.; Fischer, J. Passive remote sensing of the atmospheric water vapour content above land surfaces. Adv. Space Res. 1996, 18, 25–28. [Google Scholar] [CrossRef]
- Albert, P.; Bennartz, R.; Fischer, J. Remote sensing of atmospheric water vapor from backscattered sunlight in cloudy atmospheres. J. Atmos. Ocean. Technol. 2001, 18, 865–874. [Google Scholar] [CrossRef]
- Albert, P.; Bennartz, R.; Preusker, R.; Leinweber, R.; Fischer, J. Remote sensing of atmospheric water vapor using the moderate resolution imaging spectroradiometer. J. Atmos. Ocean. Technol. 2005, 22, 309–314. [Google Scholar] [CrossRef]
- Willette, K.M.; Williams, C.N., Jr.; Dunn, R.J.; Thorne, P.; Bell, S.; de Podesta, M.; Jones, D.; Parker, D.E. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 2014, 10, 1983–2006. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Bony, S.; Dufresne, J.L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 2014, 505, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef]
- Willett, K.M.; Jones, P.D.; Gillett, N.P.; Thorne, P.W. Recent changes in surface humidity: Development of the HadCRUH dataset. J. Clim. 2008, 21, 5364–5383. [Google Scholar] [CrossRef]
- Simmons, A.; Willett, K.; Jones, P.; Thorne, P.; Dee, D. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Santanello, J.A., Jr.; Friedl, M.A.; Kustas, W.P. An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteorol. 2005, 44, 917–932. [Google Scholar] [CrossRef]
- Wagner, T.; Heland, J.; Zöger, M.; Platt, U. A fast H2O total column density product from GOME—Validation with in-situ aircraft measurements. Atmos. Chem. Phys. 2003, 3, 651–663. [Google Scholar] [CrossRef]
- Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U. Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Noël, S.; Buchwitz, M.; Bovensmann, H.; Hoogen, R.; Burrows, J.P. Atmospheric water vapor amounts retrieved from GOME satellite data. Geophys. Res. Lett. 1999, 26, 1841–1844. [Google Scholar] [CrossRef] [Green Version]
- Noël, S.; Buchwitz, M.; Bovensmann, H.; Burrows, J. Validation of SCIAMACHY AMC-DOAS water vapour columns. Atmos. Chem. Phys. 2005, 5, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- Noël, S.; Mieruch, S.; Bovensmann, H.; Burrows, J. Preliminary results of GOME-2 water vapour retrievals and first applications in polar regions. Atmos. Chem. Phys. 2008, 8, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, E.; Morino, I.; Deutscher, N.M.; Yoshida, Y.; Uchino, O.; Connor, B.J.; De Mazière, M.; Griffith, D.W.; Hase, F.; Heikkinen, P.; et al. Comparison of XH2O retrieved from GOSAT short-wavelength infrared spectra with observations from the TCCON network. Remote Sens. 2016, 8, 414. [Google Scholar] [CrossRef]
- NIES. NIES GOSAT TANSO-FTS SWIR Level 2 Data Product Format Description; National Institute for Environmental Studies GOSAT Project; NIES-GOSAT-PO-006-21; National Institute for Environmental Studies: Tsukuba, Japan, 2017. [Google Scholar]
- Ohyama, H.; Kawakami, S.; Shiomi, K.; Morino, I.; Uchino, O. Intercomparison of XH2O Data from the GOSAT TANSO-FTS (TIR and SWIR) and Ground-Based FTS Measurements: Impact of the Spatial Variability of XH2O on the Intercomparison. Remote Sens. 2017, 9, 64. [Google Scholar] [CrossRef]
- Cogan, A.; Boesch, H.; Parker, R.; Feng, L.; Palmer, P.; Blavier, J.F.; Deutscher, N.M.; Macatangay, R.; Notholt, J.; Roehl, C.; et al. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Spurr, R. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light Scattering Reviews 3; Springer: Berlin, Germany, 2008; pp. 229–275. [Google Scholar]
- Spurr, R.; Natraj, V. A linearized two-stream radiative transfer code for fast approximation of multiple-scatter fields. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2630–2637. [Google Scholar] [CrossRef]
- Natraj, V.; Spurr, R.J. A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering–absorbing media. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 263–293. [Google Scholar] [CrossRef]
- Natraj, V.; Jiang, X.; Shia, R.l.; Huang, X.; Margolis, J.S.; Yung, Y.L. Application of principal component analysis to high spectral resolution radiative transfer: A case study of the O2 A band. J. Quant. Spectrosc. Radiat. Transf. 2005, 95, 539–556. [Google Scholar] [CrossRef]
- Somkuti, P.; Boesch, H.; Natraj, V.; Kopparla, P. Application of a PCA-Based Fast Radiative Transfer Model to XCO2 Retrievals in the Shortwave Infrared. J. Geophys. Res. Atmos. 2017, 122, 10477–10496. [Google Scholar] [CrossRef]
- Boesch, H.; Toon, G.; Sen, B.; Washenfelder, R.; Wennberg, P.; Buchwitz, M.; de Beek, R.; Burrows, J.; Crisp, D.; Christi, M.; et al. Spacebased Near-Infrared CO2 Retrievals: Testing the OCO Retrieval and Validation Concept Using SCIAMACHY Measurements over Park Falls, Wisconsin. J. Geophys. Res 2006, 111, D23302. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef]
- Kahn, R.; Banerjee, P.; McDonald, D. Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J. Geophys. Res. Atmos. 2001, 106, 18219–18238. [Google Scholar] [CrossRef] [Green Version]
- Baum, B.A.; Heymsfield, A.J.; Yang, P.; Bedka, S.T. Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteorol. 2005, 44, 1885–1895. [Google Scholar] [CrossRef]
- Eguchi, N.; Yokota, T.; Inoue, G. Characteristics of cirrus clouds from ICESat/GLAS observations. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Connor, B.; Bösch, H.; McDuffie, J.; Taylor, T.; Fu, D.; Frankenberg, C.; O’Dell, C.; Payne, V.H.; Gunson, M.; Pollock, R.; et al. Quantification of uncertainties in OCO-2 measurements of XCO2: Simulations and linear error analysis. Atmos. Meas. Tech. 2016, 9, 5227–5238. [Google Scholar] [CrossRef]
- Chedin, A.; Scott, N.; Wahiche, C.; Moulinier, P. The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. J. Clim. Appl. Meteorol. 1985, 24, 128–143. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.; Chédin, A. A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Scott, N.; Chedin, A. A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. 1981, 20, 802–812. [Google Scholar] [CrossRef]
- Tournier, B.; Armante, R.; Scott, N. STRANSAC-93 et 4A-93: Developpement et Validation des Nouvelles Versions des Codes de Transfert Radiatif Pour Application au Projet IASI; Internal Rep. LMD; Ecole Polytechnique: Palaiseau, France, 1995. [Google Scholar]
- Armante, R.; Scott, N.; Crevoisier, C.; Capelle, V.; Crepeau, L.; Jacquinet, N.; Chédin, A. Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON. J. Mol. Spectrosc. 2016, 327, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Scott, N. Quality Assessment of Satellite and Radiosonde Data; EUMETSAT CM SAF Visiting Scientist Report; Satellite Application Facility on Climate Monitoring (CM SAF): Offenbach, Germany, 2015. [Google Scholar]
- Trent, T.; Schröder, M.; Remedios, J. GEWEX Water Vapor Assessment: Validation of AIRS Tropospheric Humidity Profiles with Characterised Radiosonde Soundings. J. Geophys. Res. Atmos. 2018. under review. [Google Scholar]
- Calbet, X.; Peinado-Galan, N.; Rípodas, P.; Trent, T.; Dirksen, R.; Sommer, M. Consistency between GRUAN sondes, LBLRTM and IASI. Atmos. Meas. Tech. 2017, 10, 2323. [Google Scholar] [CrossRef]
- Immler, F.; Dykema, J.; Gardiner, T.; Whiteman, D.; Thorne, P.; Vömel, H. Reference quality upper-air measurements: Guidance for developing GRUAN data products. Atmos. Meas. Tech. 2010, 3, 1217–1231. [Google Scholar] [CrossRef]
- Christi, M.; Stephens, G. Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Kuang, Z.; Margolis, J.; Toon, G.; Crisp, D.; Yung, Y. Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: An introductory study. Geophys. Res. Lett. 2002, 29, 11-1–11-4. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Garratt, J. The Atmospheric Boundary Layer; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1992; Volume 416, p. 444. [Google Scholar]
- Sorbjan, Z. Structure of the Atmospheric Boundary Layer; Number 551.51 SOR; Prentice Hall: Upper Saddle River, NJ, USA, 1989. [Google Scholar]
- Ao, C.; Chan, T.; Iijima, B.; Li, J.; Mannucci, A.; Teixeira, J.; Tian, B.; Waliser, D. Planetary boundary layer information from GPS radio occultation measurements. In Proceedings of the GRAS SAF Workshop on Applications of GPSRO Measurements, Reading, UK, 16–18 June 2008; pp. 123–131. [Google Scholar]
- Sokolovskiy, S.; Kuo, Y.H.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Basha, G.; Ratnam, M.V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F. Recent changes in the North American Arctic boundary layer in winter. J. Geophys. Res. Atmos. 1993, 98, 8851–8858. [Google Scholar] [CrossRef]
- Holzworth, G.C. Estimates of mean maximum mixing depths in the contiguous United States. Mon. Weather Rev. 1964, 92, 235–242. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Troen, I.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Boylan, P.; Wang, J.; Cohn, S.A.; Fetzer, E.; Maddy, E.S.; Wong, S. Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsonde data. J. Geophys. Res. Atmos. 2015, 120, 992–1007. [Google Scholar] [CrossRef] [Green Version]
- Zang, Z.; Wang, W.; Cheng, X.; Yang, B.; Pan, X.; You, W. Effects of Boundary Layer Height on the Model of Ground-Level PM2. 5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods. Atmosphere 2017, 8, 104. [Google Scholar] [CrossRef]
- Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 1936, 8, 3–62. [Google Scholar]
- Dunn, O.J. Estimation of the Means of Dependent Variables. Ann. Math. Stat. 1958, 29, 1095–1111. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Among Means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
- WMO OSCAR Satellite Programme: Greenhouse Gas Observing Satellite. Available online: https://www.wmo-sat.info/oscar/satelliteprogrammes/view/66 (accessed on 2 July 2018).
- Schröder, M.; Lockhoff, M.; Fell, F.; Forsythe, J.; Trent, T.; Bennartz, R.; Borbas, E.; Bosilovich, M.G.; Castelli, E.; Hersbach, H.; et al. The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. Earth Syst. Sci. Data 2018, 10, 1093. [Google Scholar] [CrossRef]
- Glumb, R.; Davis, G.; Lietzke, C. The tanso-fts-2 instrument for the gosat-2 greenhouse gas monitoring mission. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1238–1240. [Google Scholar]
- Smith, A.; Lott, N.; Vose, R. The integrated surface database: Recent developments and partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef]
- Andersson, A.; Graw, K.; Schröder, M.; Fennig, K.; Liman, J.; Bakan, S.; Hollmann, R.; Klepp, C. Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS 4.0; Satellite Application Facility on Climate Monitoring: Hessen, Germany, 2017. [Google Scholar] [CrossRef]
Index Number () | Non-Target Variable | -Function |
---|---|---|
1 | Carbon Dioxide (CO2) | 0.10 ppm |
2 | Methane (CH4) | 0.10 ppm |
3 | Surface Pressure (Psurf) | 4 hPa |
4 | Atmospheric Temperature (T) | 10.00 K |
5 | Aerosol Type 1 (mixture 4b, Kahn et al. [45]) | factor of 50 |
6 | Aerosol Type 2 (mixture 5b, Kahn et al. [45]) | factor of 50 |
7 | Cirrus Cloud | factor of 50 |
8 | Albedo (slope, offset) | 1.00, 1.75 (B1) |
1.00, 1.07 (B2) | ||
1.00, 1.13 (B3) |
Region | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
g/kg | % | g/kg | % | g/kg | % | g/kg | % | g/kg | % | |
Sahara Desert | 0.31 | 11.09 | 0.12 | 4.15 | 0.09 | 3.07 | 0.04 | 1.47 | 0.24 | 8.70 |
Amazon | 0.31 | 10.04 | 0.09 | 3.00 | 0.09 | 2.77 | 0.02 | 0.78 | 0.20 | 6.55 |
Europe | 0.30 | 16.84 | 0.10 | 5.80 | 0.07 | 4.22 | 0.03 | 1.47 | 0.20 | 11.49 |
Greenland | 0.29 | 37.36 | 0.07 | 9.49 | 0.04 | 4.72 | 0.01 | 1.24 | 0.12 | 15.46 |
Sun-Glint Pacific | 0.35 | 9.08 | 0.09 | 2.45 | 0.11 | 2.75 | 0.02 | 0.45 | 0.22 | 5.65 |
Region | % Contribution of Total | |||||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | Psurf | T | Aerosol Type 1 | Aerosol Type 2 | Cirrus Cloud | Albedo | |
Sahara Desert | 0.57 | 0.27 | 0.43 | 3.07 | 37.12 | 43.59 | 14.59 | 0.36 |
Amazon | 0.74 | 0.04 | 0.82 | 1.46 | 67.42 | 26.68 | 2.56 | 0.28 |
Europe | 0.4 | 0.23 | 0.27 | 5.35 | 37.72 | 35.84 | 20.1 | 0.1 |
Greenland | 0.81 | 0.3 | 1.38 | 11.25 | 19.12 | 11.97 | 55.01 | 0.17 |
Sun-Glint Pacific | 0.75 | 0.16 | 0.87 | 1.47 | 60.69 | 32.64 | 3.21 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trent, T.; Boesch, H.; Somkuti, P.; Scott, N.A. Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared. Remote Sens. 2018, 10, 1469. https://doi.org/10.3390/rs10091469
Trent T, Boesch H, Somkuti P, Scott NA. Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared. Remote Sensing. 2018; 10(9):1469. https://doi.org/10.3390/rs10091469
Chicago/Turabian StyleTrent, Tim, Hartmut Boesch, Peter Somkuti, and Noëlle A. Scott. 2018. "Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared" Remote Sensing 10, no. 9: 1469. https://doi.org/10.3390/rs10091469
APA StyleTrent, T., Boesch, H., Somkuti, P., & Scott, N. A. (2018). Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared. Remote Sensing, 10(9), 1469. https://doi.org/10.3390/rs10091469