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Abstract: Despite the fact that automatic target recognition (ATR) in Synthetic aperture radar (SAR)
images has been extensively researched due to its practical use in both military and civil applications,
it remains an unsolved problem. The major challenges of ATR in SAR stem from severe data scarcity
and great variation of SAR images. Recent work started to adopt convolutional neural networks
(CNNs), which, however, remain unable to handle the aforementioned challenges due to their
high dependency on large quantities of data. In this paper, we propose a novel deep convolutional
learning architecture, called Multi-Stream CNN (MS-CNN), for ATR in SAR by leveraging SAR
images from multiple views. Specifically, we deploy a multi-input architecture that fuses information
from multiple views of the same target in different aspects; therefore, the elaborated multi-view
design of MS-CNN enables it to make full use of limited SAR image data to improve recognition
performance. We design a Fourier feature fusion framework derived from kernel approximation based
on random Fourier features which allows us to unravel the highly nonlinear relationship between
images and classes. More importantly, MS-CNN is qualified with the desired characteristic of easy
and quick manoeuvrability in real SAR ATR scenarios, because it only needs to acquire real-time GPS
information from airborne SAR to calculate aspect differences used for constructing testing samples.
The effectiveness and generalization ability of MS-CNN have been demonstrated by extensive
experiments under both the Standard Operating Condition (SOC) and Extended Operating Condition
(EOC) on the MSTAR dataset. Experimental results have shown that our proposed MS-CNN can
achieve high recognition rates and outperform other state-of-the-art ATR methods.

Keywords: CNN; deep learning; multi-view; ATR; SAR; MSTAR

1. Introduction

Thanks to its superior characteristics, including all-weather day-and-night observation,
high-resolution imaging capability, and so forth, synthetic aperture radar (SAR) imaging plays
an indispensable role in both military and civil applications. Essentially, SAR is an active microwave
detection device for remote sensing, which is diversely utilized in geographical surveying, environment
and Earth system monitoring, climate change research [1,2], and more. The combination of the
electromagnetic scattering mechanism and a coherent imaging system enables SAR images to contain
rich features, which provides important information for target recognition [3]. However, such features
are contaminated by coherent speckle noise and geometric distortions in the images, accounting
for the lower quality of SAR images. This tendency has a negative impact on target detection and
recognition [4]. Furthermore, SAR images are highly sensitive to observation depression and aspect
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angle variations, as well as inevitable imaging deformation, including the perspective scale-variant,
shadow, and layover. Even with a limited observation azimuth gap, the shapes of targets in SAR
images are almost distinct from each other. All these factors pose severe difficulties in SAR image
interpretation and target recognition. In order to overcome these obstacles, the research of SAR image
automatic interpretation algorithms has attracted increasing attention; notably, the automatic target
recognition (ATR) has been extensively researched.

ATR is used to locate and classify the target in SAR images. The SAR ATR procedure is typically
composed of three steps: preprocessing, feature extraction, and classification. The preprocessing
provides a region of interest (ROI) cropped from a specific SAR image using a constant false alarm rate
(CFAR) detector. The output of this CFAR detector contains not only the ROI target, but also false alarm
clutter, like trees, building, and cars. In addition, data augmentation operations, including rotation,
flipping, and random cropping, are also deployed in this step. The second step is to extract the effective
features from the output with reduced dimensions and eliminate the false clutters in the meantime.
In terms of typical feature extraction, the available SAR image features, mainly consisting of scattering
features, polarization features, and ROI features, are mostly extracted from single and independent
SAR images [5–7]. Finally, a classifier is then applied to specify the category of the target. As the
most important step, adopted classification methods in the ATR procedure can be approximately
divided into three genres: template-based approaches, model-based approaches, and machine
learning approaches [8–10]. The template-based methods rely on template-matching, and therefore,
are dependent on the template library. But, once some SAR attributes change, the classification rate
will drop sharply. To achieve better robustness, the model-based methods introduce a high-fidelity
model with both an offline model construction component and online prediction and recognition
component. These methods are adaptive and online adjustable but increase the computation overhead
significantly. With the advent of machine learning, classification approaches based on deep learning or
a support vector machine (SVM) are proven to be feasible and promising [10]. Accordingly, increasing
research efforts have been devoted in the field of SAR image recognition with a deep learning structure,
which has thus far reported extraordinary recognition rates [11–13].

Although ATR in SAR has been extensively studied in recent years, it remains an unsolved
problem. Its significant challenges arise from a severe lack of raw SAR image data and great variations
of SAR images, due to their aspect-sensitive characteristics. Firstly, collecting SAR images can be very
burdensome, resulting in the awkward fact that there are not enough training and testing samples to
train a deep model with almost perfect performance in the usual manner. Naturally, it is vital to design
a network structure that is capable of making full use of the limited available data (such as the Moving
and Stationary Target Acquisition and Recognition (MSTAR) dataset). Recent studies regarding ATR
began to adopt convolutional neural networks (CNNs); this approach provides a powerful tool for
ATR in SAR, with significant progress in the past years [14–16]. However, CNNs remains unable to
overcome the aforementioned challenges, partly because of their high dependency on large data for
training an excellent model. In addition, many proposed methods attempted to increase the number
of training samples by data augmentation for better recognition performance [12]. Indeed, the data
augmentation approach shows some benefits, but the inherent connection between these raw SAR
images in the MSTAR dataset has not been well explored.

Moreover, owing to the SAR imaging mechanism and SAR parameter settings, the SAR images
are highly sensitive to the aspect and depression angle changes. In other words, SAR images with
different aspects and depression angles contain largely distinct information about the same ground
target. In general, SAR images of different aspect angles of the same target can be obtained by
either multiple airborne uninhabited aerial vehicle (UAV) SAR joint observations, or single SAR
observations along a circular orbit. Therefore, these images may contain space-varying scattering
features, and contain much more information than a single image. SAR ATR algorithms can perhaps
consider more in terms of multi-view images of the same target as the network input, in order to build
more comprehensive representations [17,18]. This idea may make full use of the inherent connections
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of a limited raw MSTAR dataset, possibly enhancing the recognition accuracy, which, however, has not
yet been explored.

In this paper, we propose a novel deep convolutional learning architecture, called a Multi-Stream
CNN (MS-CNN), by using SAR images from multiple views of the same targets to effectively recognize
the target classes. MS-CNN handles the aforementioned challenges by disentangling the relationships
between images and classes in the learning architecture which is composed of four parts: a multi-stream
convolutional layer, a Fourier feature fusion layer, a fully connected layer, and a softmax layer as
shown in Figure 1.
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that is, the three-views MS-CNN.

In order to extract not only typical features but also space-varying features induced by multiple
views, MS-CNN incorporates a multi-stream convolutional layer, which is more efficient but with
fewer parameters. This multiple-input architecture can effectively and efficiently extract features from
multiple views of the same targets. Therefore, it can make full use of limited SAR images to improve
recognition performance compared to regular CNN, which probably suffers a problem that it can
hardly extract effective and interconnected features.

In conjunction with the multi-stream convolutional layer, we introduce a Fourier feature fusion
layer into the learning architecture. This part is able to fuse the features of multiple views from
upper outputs, and then build strong holistic representations. The Fourier feature fusion is derived
from kernel approximation based on random Fourier features, which takes advantage of strength of
kernel methods for nonlinear feature extraction and fusion, and it helps unravel the highly nonlinear
relationship between images and classes. Furthermore, the Fourier feature fusion turns out to be
a nonlinear layer with a cosine activation function, which can make the back-propagation learning
process ready to use.

In terms of practical value, our proposed MS-CNN can be easily and quickly operated in real
SAR ATR scenarios. This superiority stems from our unique training and testing samples construction
approach, which only needs multiple continuous aspect information of multi-view SAR images, rather
than requiring the aspects with a fixed interval or larger changeable range mentioned in other methods;
these aspects can be calculated by the real-time GPS information of airborne SAR within a tiny time slot.

Our main contributions can be summarized as follows:
We propose a novel convolutional learning architecture, called the multi-stream convolutional

neural network (MS-CNN), for ATR in SAR. Our MS-CNN makes full use of discriminating space-
varying features, and can largely improve the recognition rates.
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We introduce a novel feature extraction structure, the Fourier feature fusion layer, to effectively
extract and fuse the features of multi-view SAR images to achieve a strong representation, which in
turn establishes the highly nonlinear relationship between SAR images and their associated classes.

We conceive a specific construction approach for corresponding multi-view training and testing
samples in our proposed MS-CNN. Its practical value in real SAR ATR scenarios is obvious,
simply because it only needs multiple continuous aspect information within a small time slot to
construct its testing samples.

The remainder of this paper is organized as follows: The MS-CNN structure and the descriptions
of each part are introduced in Section 2. Experimental results and analyses on the MSTAR dataset are
given in Section 3. In Section 4, we present some discussions regarding the feasibility and reasonability
of the MS-CNN, and future work. Finally, Section 5 concludes this paper.

2. Multi-Stream Convolutional Neural Network

In this part, we first introduce our proposed multi-stream convolutional neural network
(MS-CNN), beginning with problem formulation. Next, we will describe each key part of MS-CNN,
including the multi-stream convolutional layer and the Fourier feature fusion layer. Then, the learning
process of MS-CNN, such as learning rate setting, convolutional kernel updating and so forth, will be
given. Finally, we propose an easily accessible approach for training and testing samples construction
in real SAR ATR scenarios.

2.1. Preliminaries

SAR ATR is a classification task with the purpose of establishing the mapping between SAR
image input and the corresponding classes the targets belong to. The proposed MS-CNN explores and
leverages the space-varying information, which means that different views of the same target contain
some different features, from multi-view SAR images to enhance the recognition rates, alleviating
the problem of the lack of raw SAR images. Specifically, the multi-stream convolutional layer and
the Fourier feature fusion layer can effectively and efficiently extract the nonlinear features—both
image-based features and space-varying features—which can be used to identify the relationship
between images and target categories, and make it possible to improve recognition rates. Therefore,
MS-CNN has got a great generalization ability.

2.2. Multi-Stream Convolutional Layer

Image representation is essential for SAR ATR, and CNNs has been identified as an efficient and
powerful tool to extract feature in diverse tasks. However, limited by a lack of raw SAR images for
training data, traditional CNNs is unable to deeply explore the inherent correlation of limited SAR
images, and in turn, cannot adequately dig out effective features in the training process of ATR tasks.

Instead of using regular CNNs, we introduce a multi-stream convolutional layer, which is inspired
by inherent connections of the multiple views of the same targets, to make full use of limited raw SAR
data, and then extract complementary features from multi-view SAR images for more informative SAR
image representations. Moreover, this method can not only adequately extract multi-view features,
but also largely reduce the number of parameters and boost the training efficiency, while improving
the recognition performance, which fits the SAR ATR tasks well.

As shown in Figure 1, we simply provide multi-view SAR images of the same targets as inputs
for the multi-stream convolutional layer. The design of the multi-stream convolutional layer combined
with Fourier feature fusion layer enables it to sieve more interacted features from multi-view SAR
images, and then help identify their corresponding classes. In addition, it removes the flattening
operation by setting rational parameters such as the size of the convolutional kernel and pooling, largely
reducing the number of parameters, while making possible further accelerating the training process.
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Figure 2 shows the details of one stream of the multi-stream convolutional layer, which consists of
four convolutional layers and four pooling layers alternately. The details of each layer and operation
will be explained below.
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2.2.1. Convolutional Operation

The convolutional layer in each stream of the MS-CNN serves to extract one-view features from
the multi-view input images, and all streams work parallelly to additionally extract multi-view
complementary feature. Compared to standard CNNs, the number of parameters is relatively
smaller because of shared convolutional kernels and biases among multiple streams. Generally,
the hyperparameters in the convolutional process consist of the number of feature maps, convolutional
kernel size, stride and padding. For instance, if the size of previous feature maps is V1 ×V2, W1 ×W2

is the convolutional kernel size, and the stride and padding are S and P correspondingly. Then, the size
of the feature map’s output of each branch is ((V1 −W1 + 2P)/S + 1) × ((V2 −W2 + 2P)/S + 1).
Typically, we remove the flattening operation by rationally setting the size of the convolutional kernel,
further reducing the number of parameters and computations.

2.2.2. Batch Normalization

Batch normalization is also required for our multi-stream convolutional layer. Specifically, a batch
normalization operation is utilized after the convolutional operation [19]. It is essential to do so,
because batch normalization of each stream can solve the instability problem of gradient descent in the
process of backpropagation, and ultimately speed up the convergence of the whole network.

Batch normalization can change the distribution of the original data, and render most data to
be pulled into the linear part of the activation function. However, in our MS-CNN, we choose the
ReLU activation function following batch normalization. This is actually a nonlinear function, so the
nonlinear transformation yi = γx̂i + β is rendered unnecessary.

2.2.3. Nonlinearization

The role of the nonlinear activation function is to increase the nonlinear relationship between
layers of the neural network. In this paper, we choose Rectified Linear Units (ReLUs) as the activation
function for all streams of multi-stream CNN [20]. ReLU can largely decrease the training time,
and achieve a better performance on labeled SAR data without any unsupervised pre-training.
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2.2.4. Pooling Operation

There are two types of pooling functions: max pooling and average pooling. In this paper, the max
pooling operator is utilized [21], and the relevant operation only reserves the maximum value within
the pooling-size region extracted from a certain filter, so this operation is processed in each feature
map separately.

2.3. Fourier Feaature Fusion Layer

After the multi-stream CNN process, we have extracted multiple feature vectors correspondingly
from multi-view images. Next, we need to generate a high-level and holistic representation by fusing
these multiple feature vectors in a proper approach. It would not be optimal to simply sum or put
all the vectors together, because there are semantic gaps between those separate outputs. Therefore,
we propose a Fourier feature fusion layer to integrate these feature vectors by means of kernel methods,
so as to leverage its great strength to fill the semantic gaps [22,23]. In contrast to regular Fourier
features, ours are learned from data in an end-to-end way. This enables us to obtain more compact
but discriminant features for more accurate recognition. In addition, feature fusion in the kernel level
can also acquire nonlinear feature extraction if nonlinear kernels are utilized. The proposed Fourier
feature fusion layer is derived from the approximation of shift-invariant kernels, which is supported
by the Bochner’s theorem.

Theorem 1. (Bochner [24]) A continuous shift-invariant kernel function k(x, y) = k(x− y) on Rd is positive
definite if and only if k(δ) is the Fourier transform of a non-negative measure on Rd.

If the kernel k(δ) is properly scaled, then its Fourier transform p(w) will also be a proper
probability distribution. Defining ξw(x) = ejwT x, for any x, y ∈ Rd, we have:

k(x− y) =
∫
Rd

p(w)ejwT(x−y)dw =E[ξw(x)ξw(y)
∗] (1)

where * is the conjugate and ξw(x)ξw(y)
∗ is an unbiased estimate of k(x − y) when is w drawn

from p(w).
Actually, we focus only on the real part, so the integrand ejwT(x−y) can be simplified as

cos wT(x− y). We assume zw(x) =
√

2 cos(wTx + b) that satisfies E[zw(x)zw(y)
∗] = k(x, y).

We can approximate the kernel k(x, y) by randomly choosing D random samples and calculating
the sum of their inner products:

k(x, y) ≈
D

∑
i=1

〈√
2
d

cos(wT
i x + bi),

√
2
d

cos(wT
i y + bi)

〉
(2)

where w is drawn from p(w) and b obey to the uniform distribution over [0,2π].
Therefore, the corresponding feature maps φw,b(xi) can be simplified as:

φw,b(xi) =

√
2
d
[cos(wT

i xi + bi)]1:D (3)

where φw,b(xi) is called the random Fourier feature, and cos(·) is the cosine function on the
element-wise level.

Kernel approximation remains largely underdeveloped. Specifically, the chosen samples are
drawn independently from the distributions, and in order to achieve a satisfactory recognition
performance, high-dimensional feature maps are always essential for the class prediction. However,
on the basis of an approximation operation, it perhaps induces extra computational cost because of the
approximate feature maps with high redundancy and low generalization ability. Another problem in
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sampling is how to select the most suitable kernel configuration parameters. Therefore, approximating
the kernel with the random sampling operation probably cannot enhance the recognition performance
as expected.

Instead of randomly sampling w from the distribution p(w) and b from [0,2π], we learn these two
parameters in a supervised way. Thus, we get a nonlinear layer with the cosine activation function:

zW,b(x) =
√

2 cos(Wx + b) (4)

where W = [wT
1 , wT

2 , · · ·, wT
D] ∈ RD×d is the weight matrix and b = [b1, b2, · · ·, bd] ∈ Rd is the

bias vector.
The Fourier feature fusion seamlessly aggregates feature maps from the upper multi-stream

convolutional layer and achieves a nonlinear activation in the meantime. Fourier feature fusion can
concatenate these features by changing them into the same semantic level, and those space-varying
potential features can be identified and utilized in this process to strengthen the discrimination of feature
maps. To sum up, the induced Fourier feature fusion can be integrated with the multi-stream CNN to
achieve a novel and efficient learning structure, which can be trained through back-propagation readily.

In the end, after a fully connected layer, we utilize the softmax layer as the output layer for
classification. It will generate the posterior probability distribution for the inputting feature vector.
The final output of the network is a k-dimension probability vector, and each element in this vector
represents the probability of identifying as the corresponding class.

2.4. Learning Process of the MS-CNN

2.4.1. Learning Rate

The learning rate indicates the speed at which the parameters reach the optimal value. In the
beginning, the initial learning rate should be set as a relatively large value to help the trainable network
parameters approach a convergence value faster. However, if it is always trained with a large learning
rate through the training process, the parameters may finally fluctuate randomly around the optimal
value, instead of reaching the optimum. Therefore, we need to adjust the learning rate according to loss
and validation accuracy during the training process. For instance, the learning rate can be decreased
by multiplying a factor τ (0 < τ < 1) when we either find the validation accuracy stops improving for
a long time, or just change it in fixed epochs d. In this paper, we utilized the second updating approach,
and its initial value is set to α, where{

α← τα i f mod(i, d) = 0

α← α others
(5)

where i (I ≥ 1) is denoted as the training epochs, α takes 0.001, d takes 1, and τ takes 0.96.

2.4.2. Cost Function with L2 Regularization and Backpropagation

The original cost function in this paper uses the cross-entropy cost function, so the formula of the
cost function can be written as:

L(w, b) = − 1
C

C

∑
i=1

yi log ρ(yi|Z(L); w, b) (6)

After the operation of L2 regularization, the cost function LR(w, b) can be rewritten as:

LR(w, b) = − 1
C

C

∑
i=1

yi log ρ(yi|Z(L); w, b) +
λ

2C
(‖w‖2)

2 (7)
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where ‖w‖2 =

√
N
∑

i=1
w2

i is the Euclid norm, and λ is the weight decay value and is set to 0.00001.

The aim of backpropagation is to train and update the trainable network parameters to achieve
minimum loss, and the parameters w and b are updated through the formula below:

w← w− α
∂LR

∂w
= w− α

∂L
∂w
− αλ

C
w = (1− αλ

C
)w− α

∂L
∂w

(8)

b← b− α
∂LR

∂b
= b− α

∂L
∂b

(9)

where the value of α is the learning rate. It is obvious that the L2 regularization operation only
influences the update of convolutional kernel w without any impacts on bias b.

In the backpropagation algorithm, these two partial derivatives, ∂L
∂w and ∂L

∂b , can be calculated by

resorting to the error term δ
(l)
j of each layer. Thus, the formulas of ∂L

∂w and ∂L
∂b can be written as:

∂L

∂w(l)
ij

= δ
(l)
j ∗ (a(l−1)

ij )
T

(10)

∂L

∂b(l)j

= ∑
x,y

δ
(l)
j (x, y) (11)

where the error term of each layer δ
(l)
j can be calculated by δ

(l)
j = σ′(z(l)j )�∑

i
δ
(l+1)
i ∗ (w(l+1)

ij )
T

and

the error term of the output layer is δ
(L)
j = −(yi − ρ(yi|Z(L))).

2.5. Training and Testing Sample Construction

Generally, multi-view SAR images can be acquired by either multiple airborne/UAV SAR
joint observations from same depression angle and different aspect angles, or single airborne SAR
observations along a circular orbit. We assume that the depression angle is known in advance, so only
varying aspect angles are demanded here. As shown in Figure 3, the airborne SAR sensors within
the plane, moving along a circular orbit for a given target, can produce continuous SAR images with
different aspects. On the basis of this, we can make our own multi-view SAR image samples for
training and testing.

We assume that the raw SAR image sequence for a specific experiment is defined as
Xr = {X1, X2, X3, . . . , XC}, where Xi = {x1, x2, x3, . . . , xni , } is the image set for a specific class yi,
and their relevant aspect angles are θ(xni ). The set {yi ∈ [1, 2, 3, . . . , C]} indicates the class labels,
and C is the sequence number of classes. For a given view number k, the k-view SAR image
combinations for each class can be gained by regrouping the current SAR images. Specifically,
we first sort these SAR images by azimuth angles in ascending order for each class of each target
type. In other words, each image set Xi = {x1, x2, x3, . . . , xni , } is put in order according to their
aspect angles, such as θ(xs1) < θ(xs2) < θ(xs3) < . . . < θ(xsni

). Then, as shown in Figure 4,
we combine these sorted images according to the view number k to generate multi-view training and
testing samples whose size equals the original, such as

{
xs1 , xs2 , xs3 , . . . , xsk

}
,
{

xs2 , xs3 , xs4 , . . . , xsk+1

}
,

. . . ,{xsni−(k−2) , xsni−(k−1) , xsni−k , . . . , xs1}.

For a typical class yi, let Xi
k =

{
Xi

s1
, Xi

s2
, Xi

s3
, . . . , Xi

sni

}
be the set of ni sizes of

sorted k-view images, where Xi
sj
= {{xs1 , xs2 , xs3 , . . . , xsk}, . . . , {xsni−(k−2) , xsni−(k−1) , xsni−k , . . . , xs1}, . . . ,

{xsni
, xs1 , xs2 , . . . , xsk−1}} and j = {1, 2, 3, . . . , ni} is one k-view SAR image combination. Thus,

the sorted k-view SAR image dataset is Xs
k =

{
X1

k , X2
k , X3

k , . . . , XC
k
}

.
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As we mentioned before, the SAR images are very sensitive to the aspect angles. Therefore, before
we start the training process, some pre-processing concerning the aspect angles is required. As such,
in the second step, the rotation operation will be carried out for all training and testing data to make
them stay with the same orientation. For each specific aspect angle of each SAR image, the MSTAR
dataset provides us with its precise value for every aspect while we can calculate these aspects by the
real-time GPS information of airborne SAR in real ATR scenarios.

Suppose that the multi-view value k is 3, reflecting three SAR images in the sorted 3-view SAR
image dataset Xs

3. These three SAR images are Aθ1 , Aθ2 , Aθ3 with the relevant aspect angles θ1, θ2, θ3,
respectively. After the rotation operation for these three images, they can be depicted as follows:

R = rotate(Aθ1 , θ2 − θ1)

G = rotate(Aθ2 , 0)
B = rotate(Aθ3 , θ2 − θ3)

(12)

where rotate(X, ϕ) represents that the image X is rotated by ϕ degrees counterclockwise.
Actually, we are not likely to obtain the specific orientation of the target in advance in the real

scene, and thus, we cannot directly attain accurate information of the ground target, such as the three
aspect angles θ1, θ2, θ3. However, the airborne SAR is capable of acquiring the angle difference between
the two adjacent observation angles in the process of SAR images acquisition with the help of GPS
information, which means that the value of the angle difference, like θ2 − θ1, θ2 − θ3, can be obtained.
Therefore, the flight platform only needs to acquire the diverse SAR images of the ground target at
multiple continuous azimuth angles to meet the requirements of the inputs of MS-CNN designed in
this paper. Our proposed MS-CNN outperforms other state-of-the-art methods due to its easy and
quick maneuverability in this regard. More specifically, this method only needs multiple continuous
aspect information, which can be obtained from the real-time GPS information within a small time slot,
to create testing samples for ATR recognition tasks.
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3. Results

3.1. Implementation Details

In the experiments, we deploy three network instances with two, three, and four-view inputs to
comprehensively assess the recognition performance of MS-CNN. As mentioned before, the MS-CNN
is composed of one multi-stream convolutional layer, one Fourier feature fusion layer, and one softmax
layer. To tell the details of these three instances, the size of multi-view SAR image inputs is 80 × 80,
the kernel sizes of four convolutional layers are 5 × 5, 5 × 5, 6 × 6, and 5 × 5, respectively, the strides
of convolutional layers and pooling layers are 1 × 1 and 2 × 2, respectively, and the dropout ratio is set
as 0.5. As shown in Figure 2, the multi-stream convolutional layer removes the flattening operation by
setting aforementioned parameters, largely reducing the number of parameters. Of course, the setting
of hyperparameters depends on the specific experimental methods.

For our proposed MS-CNN, the framework Tensorflow 1.2 is applied to implement our design.
As for hardware supports, a server with four Nvidia TITAN XP GPU is employed for training and
testing our proposed network. The parameter for weight decay is 0.00001, and we choose the stochastic
optimization algorithm Adam with the cross-entropy loss function to learn the parameters of MS-CNN.
The learning rate begins with 0.001 and with 0.96 exponential decay every epoch, and the mini-batch
size is set to 24. The epochs of training process vary from 20 to 30 with a constant interval of 5 epochs.

3.2. Dataset

We use the MSTAR dataset provided by Sandia National Laboratory, and in this dataset, all images
have a resolution of 0.3 m × 0.3 m, and each target covers each azimuth from 0◦ to 360◦, covering
military targets of different categories, different models, different azimuth angles, and different
depression angles. However, only a small proportion are publicly available. The publicly released
datasets consist of ten different categories of ground targets (BMP-2, BRDM-2, BTR-60, BTR-70, T-62,
T-72, 2S1, ZSU-23/4, ZIL-131, and D7), and this available MSTAR benchmark dataset is widely used to
evaluate and verify the recognition performance of SAR ATR methods.

On the basis of public SAR data, we have undertaken extensive experiments on this dataset under
both the Standard Operating Condition (SOC) and Extended Operating Condition (EOC). Specifically,
SOC assumes that the training and testing sets hold the same serial number and target configurations
while there are some variations under EOC between training and testing sets, including depression



Remote Sens. 2018, 10, 1473 11 of 22

angle variants, target configuration and version variants. Finally, we conduct a comprehensive
performance comparison with other state-of-the-art methods mainly from the recognition rates and the
number of network parameters. Moreover, our proposed MS-CNN consistently gains high recognition
rates and outperforms other previous methods.

3.3. Experiments under SOC

The experiment under SOC is the classic experiment of 10 class ground target recognition; the SAR
image dataset consists of T62, T72, BMP2, BRDM2, BTR60, BTR70, D7, ZIL131, ZSU23/4, and 2S1.
The optical images and relevant SAR images of the same orientation are shown in Figure 5. It can be
seen that the optical images of different targets vary greatly, and their corresponding SAR images also
have discernable differences observable by human eyes. Table 1 shows the class types and the number
of training samples and test samples used in the experiment. Among them, SAR images acquired at
a 17◦ depression angle were used for training, and SAR images acquired at a 15◦ depression angle
were used for testing.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 

 

including depression angle variants, target configuration and version variants. Finally, we conduct a 
comprehensive performance comparison with other state-of-the-art methods mainly from the 
recognition rates and the number of network parameters. Moreover, our proposed MS-CNN 
consistently gains high recognition rates and outperforms other previous methods. 

3.3. Experiments under SOC 

The experiment under SOC is the classic experiment of 10 class ground target recognition; the 
SAR image dataset consists of T62, T72, BMP2, BRDM2, BTR60, BTR70, D7, ZIL131, ZSU23/4, and 
2S1. The optical images and relevant SAR images of the same orientation are shown in Figure 5. It 
can be seen that the optical images of different targets vary greatly, and their corresponding SAR 
images also have discernable differences observable by human eyes. Table 1 shows the class types 
and the number of training samples and test samples used in the experiment. Among them, SAR 
images acquired at a 17° depression angle were used for training, and SAR images acquired at a 15° 
depression angle were used for testing. 

BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4 BTR70 T72 BMP2  
Figure 5. Optical images and SAR images of targets under SOC. 

Table 1. Dataset of Experiment under SOC. 

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU23/4 
Training 299 233 298 256 233 299 299 232 299 299 
Testing 274 195 274 195 196 274 273 196 274 274 

Tables 2–4 show the recognition accuracy confusion matrix of a two, three, and four-view MS-
CNN, respectively. The confusion matrix is widely used for performance illustration; each row in the 
confusion matrix represents the real category to which the target belongs, and each column represents 
the prediction result of the network. We found that the recognition rates increase with the change of 
the number of views under SOC in Tables 2–4, reaching 99.84%, 99.88%, and 99.92%, respectively. 
From this increase among these three instances, we can conclude that our proposed MS-CNN is able 
to identify and extract more features from multiple views to improve the recognition performance 
along with the increasing views, while the recognition rates of the four-view instance are nearly all 
correct. In Tables 3 and 4, we can see that the testing targets of nine classes have been completely 
identified (except for BTR60 partly because these types of tanks look similar in terms of the 
appearance and seem hard to classify in certain aspects), and the overall recognition rate reaches 
99.88% and 99.92%, which reaffirms that the proposed MS-CNN in this paper can effectively identify 
the SAR targets 
  

Figure 5. Optical images and SAR images of targets under SOC.

Table 1. Dataset of Experiment under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU23/4

Training
samples 299 233 298 256 233 299 299 232 299 299

Testing samples 274 195 274 195 196 274 273 196 274 274

Tables 2–4 show the recognition accuracy confusion matrix of a two, three, and four-view
MS-CNN, respectively. The confusion matrix is widely used for performance illustration; each row
in the confusion matrix represents the real category to which the target belongs, and each column
represents the prediction result of the network. We found that the recognition rates increase with
the change of the number of views under SOC in Tables 2–4, reaching 99.84%, 99.88%, and 99.92%,
respectively. From this increase among these three instances, we can conclude that our proposed
MS-CNN is able to identify and extract more features from multiple views to improve the recognition
performance along with the increasing views, while the recognition rates of the four-view instance
are nearly all correct. In Tables 3 and 4, we can see that the testing targets of nine classes have been
completely identified (except for BTR60 partly because these types of tanks look similar in terms of
the appearance and seem hard to classify in certain aspects), and the overall recognition rate reaches
99.88% and 99.92%, which reaffirms that the proposed MS-CNN in this paper can effectively identify
the SAR targets.
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Table 2. Confusion matrix of a two-view MS-CNN under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 PCC (%)

2S1 272 0 0 0 1 0 1 0 0 0 99.27
BMP2 0 195 0 0 0 0 0 0 0 0 100.00

BRDM2 0 0 274 0 0 0 0 0 0 0 100.00
BTR60 0 0 2 193 0 0 0 0 0 0 98.97
BTR70 0 0 0 0 196 0 0 0 0 0 100.00

D7 0 0 0 0 0 274 0 0 0 0 100.00
T62 0 0 0 0 0 0 273 0 0 0 100.00
T72 0 0 0 0 0 0 0 196 0 0 100.00

ZIL131 0 0 0 0 0 0 0 0 274 0 100.00
ZSU234 0 0 0 0 0 0 0 0 0 274 100.00

Total 99.84

Table 3. Confusion matrix of a three-view MS-CNN under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 PCC (%)

2S1 274 0 0 0 0 0 0 0 0 0 100.00
BMP2 0 195 0 0 0 0 0 0 0 0 100.00

BRDM2 0 0 274 0 0 0 0 0 0 0 100.00
BTR60 0 0 0 192 1 0 0 0 2 0 98.46
BTR70 0 0 0 0 196 0 0 0 0 0 100.00

D7 0 0 0 0 0 274 0 0 0 0 100.00
T62 0 0 0 0 0 0 273 0 0 0 100.00
T72 0 0 0 0 0 0 0 196 0 0 100.00

ZIL131 0 0 0 0 0 0 0 0 274 0 100.00
ZSU234 0 0 0 0 0 0 0 0 0 274 100.00

Total 99.88

Table 4. Confusion matrix of a four-view MS-CNN under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 PCC (%)

2S1 274 0 0 0 0 0 0 0 0 0 100.00
BMP2 0 195 0 0 0 0 0 0 0 0 100.00

BRDM2 0 0 274 0 0 0 0 0 0 0 100.00
BTR60 0 0 2 193 0 0 0 0 0 0 98.97
BTR70 0 0 0 0 196 0 0 0 0 0 100.00

D7 0 0 0 0 0 274 0 0 0 0 100.00
T62 0 0 0 0 0 0 273 0 0 0 100.00
T72 0 0 0 0 0 0 0 196 0 0 100.00

ZIL131 0 0 0 0 0 0 0 0 274 0 100.00
ZSU234 0 0 0 0 0 0 0 0 0 274 100.00

Total 99.92

Table 5 shows the comparison of our MS-CNN with other methods from the perspective of
FLOPs, number of parameters, and recognition accuracy. It can be seen that the recognition rate
is loosely related to the number of parameters of the network. In other words, the recognition
rates increase along with the quantity of parameters, indicating that too few parameters are not
sufficient to extract enough effective features from different categories of targets, and result in lower
recognition rates. In order to achieve high recognition rates, Furukawa’s ResNet-18 mentioned in [25]
uses millions of parameters and the FLOPs inevitably attains the order of magnitude of ten billion,
which demands heavy computing resources and more computation time when training and testing
the network, causing the low efficiency. Among these three multi-view methods, our MS-CNN
obtains the highest recognition rates with the least number of parameters and FLOPs, benefiting
from both parameters sharing of multi-stream convolutional layer and rational parameters setting of
MS-CNN. Compared with our proposed MS-CNN, Pei et al.’s network mentioned in [26] contains
more parameters, which resulted from the strategy of fusing multiple layers progressively, leading
into low training efficiency. Moreover, the lack of further feature representations, like Fourier random
features and Gabor features, accounts for lower recognition rates. However, the MA-BLSTM [27]
encodes the Gabor features with TPLBP operator, achieving relatively high recognition rates. All in
all, the comparison results of recognition rates and the quantity of parameters clearly validate the
superiority of our proposed MS-CNN in the SOC scenario.
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Table 5. Comparison of the number of parameters.

Input Method FLoating-Point Operations (FLOPs) Number of Parameters PCC (%)

Typical
Morgan’s [13] 2.514× 107 8.8× 104 92.30

A-ConvNets [11] 3.761× 107 3.03× 105 99.13
Furukawa’s [25] 1.244× 1010 2.75× 106 99.56

Multi-view

MA-BLSTM [27] 7.562× 108 9.58× 106 99.90
2-VDCNN [26] 1.667× 108 2.22× 106 97.81
3-VDCNN [26] 2.235× 108 2.38× 106 98.17
4-VDCNN [26] 2.506× 108 2.87× 106 98.52

MS-CNN (2-view) 5.044× 107 2.59× 105 99.84
MS-CNN (3-view) 7.566× 107 2.60× 105 99.88
MS-CNN (4-view) 1.008× 108 2.61× 105 99.92

Figure 6 shows the comparison of recognition degree of feature maps to verify the robustness
of MS-CNN, mainly including two feature maps for both single-view inputs and three-view inputs,
respectively. As mentioned before, the initial SAR image input is 80 × 80, the outputs of the first
convolutional layer are 76 × 76 × 15 feature maps, and then it outputs 34 × 34 × 30 feature maps after
the second convolutional layer. Figure 6a,c show 15 feature maps acquired at the first convolutional layer.
Apparently, the coherent speckle noise in the raw SAR image has a strong impact on the feature maps in
Figure 6a, so the targets and shadows are not obvious at all, and therefore, hard to distinguish, because
the ambient noise around the target is amplified. However, the targets in the feature maps of Figure 6c
are clearly visible, including both the outline of the target and the shadow, without much influence on
recognition by speckle noise. Therefore, we can conclude that the three-view SAR image input, containing
more information of the targets, is more robust, and can alleviate the effect of speckle noise. Figure 6b,d
are feature maps acquired from the second convolutional layer, from which we can see that the features
in Figure 6b becomes turbulent, but the feature map in Figure 6d is still very clear—the features extracted
in Figure 6d are much better than those in Figure 6b, which means higher recognition rates.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 22 
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3.4. Experiments under EOC

According to the EOC experiment settings of A-ConvNets [11], we first evaluated the EOC
performance with respect to a large depression angle (30◦). This big change in depression angle from
the 15◦ of SOC to 30◦ seems to damage the testing performance in most of the current existing
methods, because of the sensitivity characteristic of SAR ATR for depression and aspect angle
variance. The MSTAR dataset only contains four types of target samples for testing (2S1, BRDM-2,
T72, and ZSU-23/4), which are observed at a depression angle of 30◦, while the four corresponding
training samples are at the depression angle of 17◦. As shown in Figure 7, the optical images of the
four different types of tanks used in this experiment correspond the following SAR images with
the same direction. Therefore, we validate the EOC performance of a large depression angle change,
called EOC-1, on these four samples, as listed in Table 6. The corresponding recognition confusion
matrix is shown in Table 7.
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Table 6. Dataset of EOC-1.

Class 2S1 BRDM2 T72 ZSU234

Training samples (17◦) 299 298 232 299
Testing samples (30◦) 288 287 288 288

Table 7 shows that the proposed MS-CNN with two, three, and four views achieves great
recognition performance in this EOC experiment, reaching 96.96%, 97.48%, and 98.61%, respectively.
Specifically, in the four-view MS-CNN experiment, the recognition rates of 2S1, BRDM2, and ZSU23/4
are more than 98%, while for type T72 they are still 96.88%. This lower performance of T72 is caused by
the difference in both the depression angle and serial number variation of training and testing samples,
since other tank types change only in depression angle. We can draw the conclusion that the proposed
MS-CNN is robust and resilient to the sensitive depression angle variation.
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Table 7. Confusion matrix of the MS-CNN under EOC-1 (large depression angle).

Views Class 2S1 BRDM2 T72 ZSU234 PCC (%) Total

2-views

2S1 271 14 3 0 94.10

96.96
BRDM2 3 284 0 0 98.95

T72 0 3 275 10 95.49
ZSU23/4 2 0 0 286 99.31

3-views

2S1 272 6 10 0 94.44

97.48
BRDM2 3 284 0 0 98.95

T72 0 6 278 4 96.53
ZSU23/4 0 0 0 288 100.00

4-views

2S1 283 3 2 0 98.26

98.61
BRDM2 1 286 0 0 99.65

T72 0 3 279 6 96.88
ZSU23/4 0 1 0 287 99.65

As for the target configuration variants and version variants, another two EOC experiments
were carried out to evaluate the performance of the MS-CNN with respect to EOC. Configuration
variants are different from version variants. According to their definition, version variants are built to
different blueprints, while configuration variants are built to the same blueprints but have had different
post-production equipment added. Specifically, the MSTAR data includes version variants of the T-72
and the BTR-70. Version variants occur when the chassis of the original version has been adapted
for an alternate function, such as Personnel Carrier, Ambulance, Command Post, Reconnaissance,
and so forth. On the other hand, configuration variants involve the addition or removal of objects,
not due to damage. Examples of how configurations may vary include fuel drums on the back of
a T72, crewmembers on the vehicle, and mine excavation equipment on the front of vehicle. Moreover,
configuration variants also involve the rotation or repositioning of objects, including turret rotations,
opening of doors and hatches, and repositioning of tow cables. In these two EOC experiments,
we selected four categories of targets (BMP-2, BRDM-2, BTR-70, and T-72) as training samples with 17◦

depression angles from Table 1, while the testing samples—acquired at both 17◦ and 15◦ depression
angles—consisted of two-version variants of BMP-2 and ten-version variants of T-72, as listed in
Tables 8 and 9. These two relevant recognition confusion matrixes are shown in Tables 10 and 11.

Table 8. Dataset of EOC-2 (version variants).

Class T72 (15◦ & 17◦)

Serial No. S7 A32 A62 A63 A64
Testing samples 419 572 573 573 573

Table 9. Dataset of EOC-2 (configuration variants).

Class BMP2 (15◦ & 17◦) T72 (15◦ & 17◦)

Serial No. 9566 c21 812 A04 A05 A07 A10
Testing samples 428 429 426 573 573 573 567

Table 10 reveals the MS-CNN performance under EOC-2 (version variants) in three types of
situations. It shows that there were only nine images which are incorrectly classified into other types
of tanks in the two-view instance, and its relevant recognition rate reaches 99.67%. Remarkably,
the recognition accuracy of the three-view and four-view instances are all 100%, showing that the
proposed MS-CNN is superior in discerning the targets with version variations.

Table 11, which represents the recognition performance of EOC-2 (configuration variants), shows
excellent recognition ability in discriminating the BMP2 and T72 targets with configuration differences
in training samples. We can see that these three instances reach the recognition accuracy of 98.71%,
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99.08%, and 99.58%, respectively. It is obvious that the recognition rate rises with the increasing
number of multiple views.

Table 10. Confusion Matrix of the MS-CNN under EOC-2 (version variants).

Views Class Serial No. BMP2 BRDM2 BTR70 T72 PCC (%) Total

2-views T72

A32 0 0 0 572 100.00

99.67
A62 0 0 0 573 100.00
A63 0 0 0 573 100.00
A64 0 0 0 573 100.00
S7 5 0 4 410 97.85

3-views T72

A32 0 0 0 572 100.00

100.00
A62 0 0 0 573 100.00
A63 0 0 0 573 100.00
A64 0 0 0 573 100.00
S7 0 0 0 419 100.00

4-views T72

A32 0 0 0 572 100.00

100.00
A62 0 0 0 573 100.00
A63 0 0 0 573 100.00
A64 0 0 0 573 100.00
S7 0 0 0 419 100.00

Table 11. Confusion matrix of the MS-CNN under EOC-2 (configuration variants).

Views Class Serial No. BMP2 BRDM2 BTR70 T72 PCC (%) Total

2-views

BMP2
9566 411 3 0 14 96.03

98.71

c21 403 4 0 22 93.94

T72

812 2 0 0 424 99.53
A04 1 0 0 572 99.83
A05 0 0 0 573 100.00
A07 0 0 0 573 100.00
A10 0 0 0 567 100.00

3-views

BMP2
9566 410 3 8 7 95.79

99.08

c21 417 4 0 8 97.20

T72

812 0 0 1 425 99.77
A04 1 0 0 572 99.83
A05 0 0 0 573 100.00
A07 1 0 0 572 99.83
A10 0 0 0 567 100.00

4-views

BMP2
9566 425 2 0 1 99.30

99.58

c21 423 4 0 2 98.60

T72

812 5 0 0 421 98.83
A04 1 0 0 572 99.83
A05 0 0 0 573 100.00
A07 0 0 0 573 100.00
A10 0 0 0 567 100.00

To sum up, our proposed MS-CNN shows high performance under EOC, including with
a large depression angle (EOC-1), configuration variants (EOC-2), and version variants (EOC-2),
which demonstrate the significate value of MS-CNN in SAR ATR tasks.

3.5. Recognition Performance Comparison

In this section, we undertake a performance comparison between our proposed MS-CNN and
ten other SAR ATR methods, including the extended maximum average correlation height filter
(EMACH) [28], support vector machine (SVM) [28], adaptive boosting (AdaBoost) [28], iterative graph
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thickening (IGT) [28], sparse representation-based representation of Monogenic Signal (MSRC) [29],
monogenic scale-space (MSS) [30], modified polar mapping classifier (M-PMC) [31], all-convolutional
networks (A-ConvNets) [11], combined discrimination trees (CDT) [32], multi-aspect-aware bidirectional
LSTM recurrent neural networks (MA-BLSTM) [27], and multi-view DCNNs (MVDCNNs) [26]. All these
aforementioned ATR methods hold state-of-the-art performance, and therefore, we choose them
for comparisons.

Although all these aforementioned SAR ATR methods are based on the MSTAR dataset, they might
utilize different training dataset and implement distinct principles. In addition, the quantity of SAR
images inputs varies from single-view methods to multi-view. All those factors lead to the difficulty of
recognition performance comparison. We can simply compare all these methods by recognition rates
and the number of training samples inputs, and assume that an ATR method with higher recognition
rates but fewer inputs holds a better recognition performance. On the basis of this assumption, we select
the recognition rates under both SOC and EOC and the number of network inputs as criterions to
compare the recognition performance.

Table 12 shows comparison with other state-of-the-art methods, including EMACH, SVM,
A-ConvNets, MA-BLSTM, and so forth. All these ATR methods are based on the MSTAR dataset, so the
results cited from corresponding papers for the recognition rate comparison are reliable. As listed
in Table 12, it is obvious that the deep learning approaches outperform the methods of conventional
machine learning, like SVM, AdaBoost, and so forth, in the field of SAR ATR in both SOC and
EOC scenarios. Moreover, the performance of the multi-view methods, MVDCNNs, MA-BLSTM,
and MS-CNN, is better than that of the other deep learning methods that use single-view input,
partly because the extra space-varying information extracted from interconnected multi-view images
can improve the recognition performance.

Table 12. Recognition accuracy comparison of the MS-CNN and other methods.

Method SOC Inputs EOC-1 Inputs EOC-2 (Vrsion Variants) Inputs

EMACH [28] 88 3670 77 1129 68 1593
SVM [28] 90 3670 81 1129 75 1593

AdaBoost [28] 92 3670 82 1129 78 1593
IGT [28] 95 3670 85 1129 80 1593

MSRC [29] 93.6 2747 98.4 896 - -
MSS [30] 96.6 2747 98.2 896 - -

M-PMC [31] 98.81 3671 - - 97.31 996
A-ConvNets [11] 99.13 2747 96.12 698 98.93 698

CDT [32] 99.30 3681 97.50 1370 96.9 997
MA-BLSTM [27] 99.90 2320 - - 99.59 928
2-VDCNN [26] 97.81 2754 93.29 1130 93.75 998
3-VDCNN [26] 98.17 2760 94.34 1134 95.08 1002
4-VDCNN [26] 98.52 2760 94.61 1132 95.46 1004

MS-CNN (2-view) 99.84 2747 96.96 1128 99.67 996
MS-CNN (3-view) 99.88 2747 97.48 1128 100.00 996
MS-CNN (4-view) 99.92 2747 98.61 1128 100.00 996

Due to the similar mechanisms by which MVDCNNs [26] and our proposed MS-CNN are based
on the multi-view concept and CNNs, it is necessary to conduct a more detailed comparison to show
the superiority of MS-CNN.

• Training and testing sample construction. Our proposed training and testing samples construction
approach makes full use of MSTAR dataset to produce equivalent amounts of multi-view SAR
images, while the multi-view SAR data formation approach mentioned in [26] merely leverages
part of raw images of MSTAR dataset to multiply its training and testing samples by many times.
In other words, MS-CNN can be better trained simply because it has more raw images from the
training samples to learn, compared with the MVDCNNs. In addition, as shown in Table 12,
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due to multiplying the training samples, the quantity of MVDNNs inputs is slightly larger than
MS-CNN. Therefore, we can conduct a conclusion that our proposed multi-view training samples
construction method is more effective.

• Network architecture. Since we incorporate the Fourier feature fusion layer into MS-CNN to
achieve high-level and holistic representation, MVDCNNs only rely on the great strength of
CNNs, so naturally, some limitations to further improving the recognition rates exist.

• Time complexity. In MS-CNN, we remove the flattening operation by setting rational parameters
such as the size of the convolutional kernel and pooling, largely reducing the number of
parameters, and then decreasing time complexity. Moreover, we parallelly conceive a multi-stream
convolutional layer to extract features of multi-view SAR images, instead of fusing feature
maps from inputs to last layer progressively in the network topology described in MVDCNNs.
This design makes possible to share parameters among multi-view inputs, further reducing the
quantity of parameters and accelerating the training process.

All these experiments carried out in this paper reveal that the proposed MS-CNN has a better
generalization and recognition ability than other state-of-the-art methods, and naturally achieves
a superior recognition performance.

4. Discussion

We have conducted extensive experiments on the MSTAR benchmark dataset, and the
aforementioned experimental results have also verified the superiority of our proposed MS-CNN
under both SOC and EOC, compared with ten state-of-the-art SAR ATR methods. In this section,
we will mainly discuss the feasibility and reasonability, and future work regarding the MS-CNN.

4.1. Feasibility and Reasonability Discussion

At first, in terms of the feasibility and reasonability of multiple views implemented with the deep
learning approaches in SAR ATR, we have undertaken comprehensive investigations from existing
literature regarding deep learning, SAR ATR with single inputs, and ATR with multi-view inputs.

• Deep Learning. Deep learning has attained significant development in the fields of natural
language processing, speech recognition, target detection, image classification, human-machine
games, and autopilot. Naturally, many novel deep learning algorithms and systems have
been proposed, including convolutional neural networks, deep belief networks (DBNs) [33],
and recurrent neural networks (RNNs) [34]. Most of them, especially CNN, have been widely
used in the field of computer vision, such as in target detection and target recognition. In 2012,
Krizhevsky et al. designed an AlexNet deep learning network with an eight-layer network
structure; he won the championship 2012 ILSVRC, with a Top5 error rate of 15.3%, which is
much lower than the previous 26% [35]. Szegedy et al. designed a Google Inception network
with a 22-layers network structure in 2014 which largely reduced the number of parameters and
calculations and won the championship with a 6.67% Top5 error rate [36]. In 2015, Kaiming et al.
continued to deepen the network hierarchy, and proposed a 152-layers Residual Network (ResNet),
reducing the error rate to 3.57%, which exceeded the manual error rate 5% [37].

• SAR ATR with Single Inputs. Many target recognition algorithms proposed for optical images
have been widely applied to SAR images with a high probability of correct cognition (PCC).
In 2014, Chen et al. designed a convolutional neural network with a single hidden layer to
identify SAR image targets, and achieved a recognition accuracy of 84.7% on a 10 class military
target dataset [38]. The same year, Chen et al. designed a novel convolutional neural network,
with five convolutional layers and three pooling layers, for SAR image target recognition. In order
to refine the objective conditions of limited raw SAR image data and sensitive observation
conditions, they replaced the fully connected layers with convolutional layers, and achieved
99.13% recognition accuracy [11]. However, they augmented the training data set by means of



Remote Sens. 2018, 10, 1473 19 of 22

randomly cropping and flipping, which increased the scale of image training samples 10 times
compared to the original, and the cost was an increase in training time. In 2017, Furukawa et al.
designed a network structure with 18 convolutional layers for SAR image target recognition by
imitating the idea of the residual network and achieved extremely high recognition accuracy
through data augmentation methods such as random cropping [25]. However, the parameters
of this network were up to a million levels, which would take up a huge amount of computing
resources, and consume much time when training the network.

• SAR ATR with Multi-View Inputs. Most of the SAR target recognition approaches only use
a single view of the observation target as the input of a network, without considering the
acquisition characteristics of the SAR images. Recently, researchers have studied ATR problems
with multi-view images from multiple aspects, and have reached an agreement that multi-view
inputs could enhance the recognition rates [18]. In 2011, Zhang et al. introduced a joint sparse
representation based multi-view ATR method and achieved 94.69% recognition rate on a 10 class
problem with three consecutive views on the MSTAR database [39]. In 2017, Zhang et al.
proposed a multi-aspect aware bidirectional LSTM recurrent neural network with a Gabor
filter and Three-Patch Local Binary Pattern (TPLBP) extracting the spatial features, followed
by a fully-connected Multi-Layer Perceptron (MLP) network reducing the feature dimensionality.
Although this novel idea attained 99.90% recognition accuracy on 10 class problem using
an MSTAR dataset and showed good anti-noise and anti-confusion performance [27], it is probably
troublesome to apply in real ATR situations, because it needs a 50 images sequence as the input,
which will take too much time to be suitable for real-time scenarios. Moreover, the structure of
BA-LSTM is very complex, and the cost of this network is much higher due to longer training time
and bigger storage. In 2018, Pei et al. proposed a deep convolutional neural network framework
with multi-view images, containing a parallel topology in which the learned features from the
distinct views can be fused progressively. In addition, this literature adopted pre-processing
of data augmentation and finally achieved 98.17% on the 10 class problem using an MSTAR
dataset [26]. However, these SAR image input sequences with a specific aspect interval may not
perform well if the testing image falls out of default interval.
From these investigations, we can reasonably conclude that the multi-view method combined
with the deep learning algorithm has great strength to improve the recognition rates in SAR
ATR compared with single inputs. And our proposed MS-CNN not only leverages the strength
of multiple views to extract potential space-varying features of multi-view SAR images, but
also introduces the Fourier feature fusion framework into the multi-view architecture to fuse
these features in a kernel level to achieve more holistic representations. Therefore, our proposed
MS-CNN is both feasible and reasonable and can effectively and efficiently tackle the SAR ATR
tasks in real time.
In addition, the reasonability of experiments for compressively evaluating the proposed MS-CNN
is discussed as follows.

• Experiments under SOC. SOC refers to the same serial numbers and target configuration for
both training and testing samples, but with only a 2◦ depression angle difference. This typical
experimental setting aims to evaluate whether the proposed network has the ability to classify
targets in general situations. Our proposed MS-CNN achieves 99.84%, 99.88%, and 99.92% in the
two, three, and four-view instances, respectively, which can demonstrate its superior recognition
ability; it outperformed other state-of-the art methods by large margin.

• Experiments under EOC. EOC, which represents the extreme circumstances in ATR tasks, mainly
consists of the large depression angle gap, target configuration variants, and version variants.
Those methods which can effectively recognize corresponding categories of targets with high
recognition rates have the characteristic of robustness for changeable attributes, and can be
better served in real SAR ATR tasks. Compared with other ten excellent methods, our proposed
MS-CNN again shows its great superiority for recognition in the EOC scenarios. Remarkably,
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the experiment of EOC-2 (version variants) attains the recognition rates of 100%, which reaffirms
its excellent capability in ATR tasks.

4.2. Future Work

In order to further improve the recognition performance of ATR in future work, we will make
some attempts to explore the ATR algorithm with a mathematical approach, like introducing the
orthogonal low-rank loss into our proposed MS-CNN, to see whether it can further improve the
recognition performance. In addition, we will attempt to apply the MS-CNN to other fields of computer
version, especially inspired by handcrafted features extraction and classification task mentioned in [40].
We could perhaps exploit output of MS-CNN as a feature vector to feed an SVM to obtain better
classification performance.

5. Conclusions

In this paper, we have presented a novel convolutional learning architecture, i.e., multi-stream
convolutional neural networks (MS-CNN) for multi-view SAR ATR. The MS-CNN is composed of
a multi-stream convolutional layer, a Fourier feature fusion layer, a fully connected layer, and a softmax
layer. Specifically, the multi-view SAR image features can be efficiently extracted by the multi-stream
convolutional layer, and then combined by the Fourier feature fusion layer, and finally successively
fed into the fully connected layer and softmax layer for classification. These layers jointly establish
the nonlinear relationships between raw SAR images and corresponding classes, making full use of
the discriminating space-varying features of limited raw SAR images to enhance the classification
performance and robustness. In addition, our proposed MS-CNN is qualified with the desired
characteristic of easy and quick maneuverability in real SAR ATR scenarios, because it only needs
to acquire real-time GPS information of airborne SAR to calculate multiple aspects. Experimental
results on the MSTAR dataset have shown that the recognition performance of our MS-CNN surpasses
other state-of -the-art methods under both SOC and EOC. Thus, our proposed MS-CNN is an effective
method for SAR target recognition and offers promise for wider SAR ATR applications.
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