Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model
Abstract
:1. Introduction
2. Study Area: Meteorological and Geomorphical Setting
2.1. Main Meteorological Features of the Study Area
2.2. Geomorphology of the Study Area
3. Data
3.1. MSG-3 and the Desert-Dust-RGB Product
3.2. Sentinel-2 Data and Preprocessing
3.3. Vegetation
3.4. ECMWF Forecast Wind
4. Methods
4.1. Determination of Dust Activity and Dust Hot-Spots
4.2. Sediment Supply Map
4.2.1. Alluvial Sediment Map
4.2.2. Dune and Sand Sheets Map
4.3. Determination of Soil Parameters
5. Model Description
5.1. Surface Roughness
5.2. Vegetation Cycle in the Dust-Emission Model
6. Results
6.1. Dust Source Activation Frequency (DSAF) Map and Dust Hot-Spot Zones
6.2. Sediment Supply in the Hot-Spot Zones
6.3. Model Simulations of Dust Emission
6.3.1. Influence of SSM on Simulated Dust Emission
6.3.2. Comparison DSAF and Model
7. Discussion
7.1. Overestimation of Sediment Supply
7.2. Overestimation of Simulated Emission Flux
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; Bouet, C.; Cautenet, G.; Mackenzie, E.; Ashpole, I.; Engelstaedter, S.; Lizcano, G.; Henderson, G.; Schepanski, K.; Tegen, I. Dust as a tipping element: The Bodélé Depression, Chad. Proc. Natl. Acad. Sci. USA 2009, 106, 20564–20571. [Google Scholar] [CrossRef] [PubMed]
- Washington, R.; Todd, M.C.; Lizcano, G.; Tegen, I.; Flamant, C.; Koren, I.; Ginoux, P.; Engelstaedter, S.; Bristow, C.S.; Zender, C.S.; et al. Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Todd, M.C.; Washington, R.; Martins, J.V.; Dubovik, O.; Lizcano, G.; M’Bainayel, S.; Engelstaedter, S. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Tegen, I.; Todd, M.C.; Heinold, B.; Bönisch, G.; Laurent, B.; Macke, A. Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Schepanski, K.; Heinold, B.; Tegen, I. Interannual variability in the Saharan dust source activation- Toward understanding the differences between 2007 and 2008. J. Geophys. Res. Atmos. 2016, 121, 4538–4562. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characteristics of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef]
- Herman, J.; Bhartia, P.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distribution of UV-absorbing Aerosols from Nimbus 7/TOMS data. J. Geophys. Res. Atmos. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Ginoux, P.; Garbuzov, D.; Hsu, N.C. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Tegen, I.; Laurent, B.; Heinold, B.; Macke, A. A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Baddock, M.; Bullard, J.; Bryant, R. Dust source identification using MODIS: A comparison technique applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 2009, 113, 1511–1528. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 2012, 123, 90–97. [Google Scholar] [CrossRef]
- Reheis, M.; Kihl, R. Dust deposition in southern Nevada and California, 1984–1989: Relations to climate, source area, and source lithology. J. Geophys. Res. 1995, 100, 8893–8918. [Google Scholar] [CrossRef]
- Ryder, C.L.; Highwood, E.J.; Lai, T.M.; Sodemann, H.; Marsham, J.H. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophys. Res. Lett. 2013, 40, 2433–2438. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Flamant, C.; Chaboureau, J.P.; Kocha, C.; Banks, J.R.; Brindley, H.E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P. Characterization of dust emission from alluvial sources using aircraft observations and high-resolution modeling. J. Geophys. Res. Atmos. 2013, 118, 7237–7259. [Google Scholar] [CrossRef] [Green Version]
- Baddock, M.; Ginoux, P.; Bullard, J.; Gill, T. Do MODIS defined dust sources have a geomorphological signature? Geophys. Res. Lett. 2016, 43, 2606–2613. [Google Scholar] [CrossRef]
- Lee, J.; Baddock, M.; Mbuh, M.; Gill, T. Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Res. 2011, 3, 459–466. [Google Scholar] [CrossRef]
- von Holdt, J.; Eckardt, F.; Wiggs, G. Landsat identifies dust emission dynamics at the landform scale. Remote Sens. Environ. 2017, 198, 229–243. [Google Scholar] [CrossRef]
- Bryant, R. Recent advances in our understanding of dust source emission processes. Prog. Phys. Geogr. 2013, 37, 397–421. [Google Scholar] [CrossRef]
- Vickery, K.; Eckardt, F.; Bryant, R. A sub-basin scale dust plume source frequency inventory for southern Africa, 2005–2008. Geophys. Res. Lett. 2013, 40, 5274–5279. [Google Scholar] [CrossRef]
- Bullard, J.; Harrison, S.P.; Baddock, M.C.; Drake, N.; Gill, T.E.; McTainsh, G.; Sun, Y. Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models. J. Geophys. Res. 2011, 116, F04034. [Google Scholar] [CrossRef]
- Parajuli, S.; Yang, Z.L.; Kocurek, G. Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing. J. Geophys. Res. Earth Surf. 2014, 119, 1977–1994. [Google Scholar] [CrossRef] [Green Version]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Kinne, S.; Prospero, J.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11. [Google Scholar] [CrossRef]
- Evan, A.; Flamant, C.; Fiedler, S.; Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett. 2014, 41, 5996–6001. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, S.P.; Zender, C.S. Connecting geomorphology to dust emission through high-resolution mapping of global land cover and sediment supply. Aeolian Res. 2017, 27, 47–65. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16–415. [Google Scholar] [CrossRef]
- BouKaram, D.; Flamant, C.; Knippertz, P.; Reitebuch, O.; Pelon, P.; Chong, M.; Dabas, A. Dust emissions over the Sahel associated with the West African Monsoon inter-tropical discontinuity region: A representative case study. Q. J. R. Meteorol. Soc. 2008, 134, 621–634. [Google Scholar] [CrossRef]
- Fiedler, S.; Schepanski, K.; Heinold, B.; Knippertz, P.; Tegen, I. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos. 2013, 118, 6100–6121. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Knippertz, P. Haboobs: Convectively generated dust storms in West Africa. Weather 2012, 67, 311–316. [Google Scholar] [CrossRef]
- Heinold, B.; Knippertz, P.; Marsham, J.H.; Fiedler, S.; Dixon, N.S.; Schepanski, K.; Laurent, B.; Tegen, I. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 2013, 118, 4385–4400. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Todd, M.C. The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Zenebe, A.; Poesen, J.; Nyssen, J.; Verstraeten, G.; Deckers, J. Sediment dynamics and the role of flash floods in sediment export from medium-sized catchments: A case study from the semi-arid tropical highlands in northern Ethiopia. J. Soils Sediments 2010, 10, 611–627. [Google Scholar] [CrossRef]
- Schlüter, T. Geological Atlas of Africa: With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of each Country; Springer: Berlin, Germany, 2008. [Google Scholar]
- Wright, B. Geology and Mineral Resources of West Africa; Springer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Graef, F.; Vennemann, K. The Geological Setting in Western Niger. 1999. Available online: https://www.uni-hohenheim.de/atlas308/b_niger/projects/b2_1_1/html/english/nframe_en_b2_1_1.htm (accessed on 23 May 2017).
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E. Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ. 2013, 128, 58–73. [Google Scholar] [CrossRef]
- Banks, J.R.; Schepanski, K.; Heinold, B.; Hünerbein, A.; Brindley, H.E. The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery. Atmos. Chem. Phys. 2018, 18, 9681–9703. [Google Scholar] [CrossRef]
- Lensky, I.M.; Rosenfeld, D. Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys. 2008, 8, 6739–6753. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, K. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services; ESA SP-1322; ESA: Hong Kong, China, 2012. [Google Scholar]
- Mueller-Wilm, W. Sen2Cor Configuration and User Manual; Ref. S2-PDGS-MPC-L2A-SUM-V2.3; EESA: Paris, France, 2016. [Google Scholar]
- Kim, D.; Chin, M.; Remer, L.; Diehl, T.; Bian, H.; Yu, H.; Brown, M.; Stockwell, W. Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel. Atmos. Environ. 2002, 148, 282–296. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Didan, K. MYD13A3 MODIS/Aqua Vegetation Indices Monthly L3 Global 1 km SIN Grid V006 [Data Set]; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015; Volume 20, pp. 397–398.
- Fensholt, R.; Rasmussen, K.; Nielsen, T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Schepanski, K.; Wright, T.J.; Knippertz, P. Evidence for flash floods over deserts from loss of coherence in InSAR imagery. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Crouvi, O.; Schepanski, K.; Amit, R.; Gillespie, A.; Enzel, Y. Multiple dust sources in the Sahara Desert: The importance of sand dunes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Kok, J.F.; Martin, R.; Swet, N.; Katra, I.; Gill, T.; Reynolds, R.; Freire, L. Fine dust emissions from active sands at coastal Oceano Dunes. Atmos. Chem. Phys. Discuss. 2018. [Google Scholar] [CrossRef]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Bastawesy, M.E.; White, K.; Nasr, A. Integration of remote sensing and GIS for modelling flash floods in Wadi Hudain catchment, Egypt. Hydrol. Process. 2009, 23, 1359–1368. [Google Scholar] [CrossRef]
- Ford, A.; Roberts, A. Color Space Conversion. Technical Report. 1998. Available online: http://poynton.ca/PDFs/coloureq.pdf (accessed on 23 May 2017).
- Lancaster, N.; Wolfe, S.; Thomas, D.; Bristow, C.; Bubenzer, O.; Burrough, S.; Duller, G.; Halfen, P.H.A.; Roskin, J.; Singhvi, A.; et al. The INQUA Dune Atlas chronologic database. Q. Int. 2015, 1. [Google Scholar] [CrossRef]
- FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (Version 1.2). 2012. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 23 May 2017).
- Hugenholtz, C.H.; Levin, N.; Barchyn, T.; Baddock, M. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth Sci. Rev. 2012, 111. [Google Scholar] [CrossRef]
- Chatenet, B.; Marticorena, B.; Gomes, L.; Bergametti, G. Assessing the microped size distributions of desert soils erodible by wind. Sedimentology 1996, 43, 901–911. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G.; Aumont, B. Modelling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Léon, J.F.; Mahowald, N.M. Modeling mineral dust emissions from the Sahara using new surface properties and soil database. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Menut, L.; Pérez, C.; Haustein, K.; Bessagnet, B.; Prigent, C.; Alfaro, S. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling. J. Geophys. Res. 2013, 118. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of Saltation Bombardment on the Entrainment of Dust by Wind. J. Geophys. Res. 1993, 98, 12719–12726. [Google Scholar] [CrossRef]
- White, B.R. Soil Transport by Winds on Mars. J. Geophys. Res. 1979, 84, 4643–4651. [Google Scholar] [CrossRef]
- Callot, Y.; Marticorena, B.; Bergametti, G. Geomorphologic approach for modelling the surface features of arid environments in a model of dust emission: Application to the Sahara desert. Geodin. Acta 2000, 13, 245–270. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Chazette, P.; Maignan, F.; Schmechtig, C. Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface productse. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Knorr, W.; Heimann, M. Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus B 1995, 47, 471–489. [Google Scholar] [CrossRef]
- Kaplan, J.; Bigelow, N.; Prentice, I.; Harrison, S.; Bartlein, P.J.; Cramer, W.; Marveyeva, N.; McGuire, A.; Murray, D.; Razzhivin, V.; et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparison and future projections. J. Geophys. Res. 2003, 108, 8171. [Google Scholar] [CrossRef]
- Stockli, R.; Vermote, E.; Saleous, N.; Simmon, R.; Herring, D. The Blue Marble Next Generation—A True Color Earth Dataset Including Seasonal Dynamics from MODIS; NASA Earth Observatory: Washington, DC, USA, 2005.
- Cohen-Zada, A.; Maman, S.; Blumberg, D. Earth aeolian wind streaks: Comparison to wind data from model and stations. J. Geophys. Res. Planets 2017, 122, 1119–1137. [Google Scholar] [CrossRef]
- Mainguet, M.; Chemin, M. Sand Seas of the Sahara and Sahel: An Explanation of their Thickness ans Sand Dune Type by the Sand Budget Principle. Dev. Sedimentol. 1983, 38, 353–363. [Google Scholar] [CrossRef]
- Tegen, I.; Schepanski, K.; Heinold, B. Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations. Atmos. Chem. Phys. 2013, 13, 2381–2390. [Google Scholar] [CrossRef] [Green Version]
- Grini, A.; Myhre, G.; Zender, C.S.; Isaksen, I.S.A. Model simulation of dust sources and transport in the global atmosphere. Effects of soil erodibility and wind speed variability. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Ridley, D.; Heald, C.; Pierce, J.; Evans, M. Toward resolution-independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust. Geophys. Res. Lett. 2013, 40, 2873–2877. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Harrison, S.P.; Kohfeld, K.; Prentice, I.C.; Coe, M.; Heimann, M. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
# | Sensing Date | Row Number |
---|---|---|
1 | 3 May 2016 | R079 |
2 | 2 June 2016 | R079 |
3 | 16 May 2016 | R122 |
4 | 5 June 2016 | R122 |
Typology | Surface Type | Dmed [] | % | ||
---|---|---|---|---|---|
regs/hamadas | CMS | 210 | 1.8 | 10.0 | 1.34 × 10 |
690 | 1.6 | 90.0 | |||
dunes/sand sheets | SMS | 125 | 1.6 | 37.5 | 4.35 × 10 |
210 | 1.8 | 31.2 | |||
690 | 1.6 | 31.3 | |||
medium emitting alluvial | SFS | 125 | 1.6 | 37.5 | 6.15 × 10 |
210 | 1.8 | 62.5 | |||
high emitting alluvial | S | 125 | 1.6 | 100 | 1.99 × 10 |
Typology | % Clay |
---|---|
alumino-silicated silts | 9.7 |
fine sand | 3.6 |
coarse sand | 0 |
salts | 3.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feuerstein, S.; Schepanski, K. Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model. Remote Sens. 2019, 11, 4. https://doi.org/10.3390/rs11010004
Feuerstein S, Schepanski K. Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model. Remote Sensing. 2019; 11(1):4. https://doi.org/10.3390/rs11010004
Chicago/Turabian StyleFeuerstein, Stefanie, and Kerstin Schepanski. 2019. "Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model" Remote Sensing 11, no. 1: 4. https://doi.org/10.3390/rs11010004
APA StyleFeuerstein, S., & Schepanski, K. (2019). Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model. Remote Sensing, 11(1), 4. https://doi.org/10.3390/rs11010004