Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis
Abstract
:1. Introduction
2. Context of Target Area
3. Data Sets and Methods
3.1. Data Set Description
3.2. Permanent Scatterers Analyses of InSAR Pairs
3.3. GPS Data Set and Processing
4. Results
4.1. Surface Deformation by PS Analysis
4.2. Migration Vector Decomposition and Intercomparison with GPS Data
5. Discussion
5.1. Interpretation of Deformations and Geophysical Modelling
5.2. Risk Assessments
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence-and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1571–1581. [Google Scholar] [CrossRef]
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens. 2006, 27, 4433–4447. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef]
- Nissen, E.; Elliott, J.R.; Sloan, R.A.; Craig, T.J.; Funning, G.J.; Hutko, A.; Wright, T.J. Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nat. Geosci. 2016, 9, 330. [Google Scholar] [CrossRef]
- Kim, Y.; Rhie, J.; Kang, T.S.; Kim, K.H.; Kim, M.; Lee, S.J. The 12 September 2016 Gyeongju earthquakes: 1. Observation and remaining questions. Geosci. J. 2016, 20, 747–752. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, T.S.; Rhie, J.; Kim, Y.; Park, Y.; Kang, S.Y.; Kong, C. The 12 September 2016 Gyeongju earthquakes: 2. Temporary seismic network for monitoring aftershocks. Geosci. J. 2016, 20, 753–757. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, T.; Kyung, J.B.; Cho, C.S.; Choi, J.H.; Choi, C.U. Preliminary study on rupture mechanism of the 9.12 Gyeongju earthquake. J. Geol. Soc. Korea 2017, 53, 407–422. [Google Scholar] [CrossRef]
- Grigoli, F.; Cesca, S.; Rinaldi, A.P.; Manconi, A.; López-Comino, J.A.; Clinton, J.F.; Wiemer, S. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science 2018, 360, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Ree, J.H.; Kim, Y.; Kim, S.; Kang, S.Y.; Seo, W. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 2018, 360, 1007–1009. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Guo, P.; Jiang, J. Investigation and analysis of historical Domino effects statistic. Procedia Eng. 2012, 45, 152–158. [Google Scholar] [CrossRef]
- Krausmann, E.; Cruz, A.M.; Affeltranger, B. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities. J. Loss Prev. Process Ind. 2010, 23, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Nishi, H. Damage on hazardous materials facilities. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012. [Google Scholar]
- Sezen, H.; Whittaker, A.S. Seismic performance of industrial facilities affected by the 1999 Turkey earthquake. J. Perform. Constr. Facil. 2006, 20, 28–36. [Google Scholar] [CrossRef]
- Suzuki, K. Earthquake damage to industrial facilities and development of seismic and vibration control technology. J. Syst. Des. Dyn. 2008, 2, 2–11. [Google Scholar] [CrossRef]
- Lindell, M.K.; Perry, R.W. Hazardous materials releases in the Northridge earthquake: Implications for seismic risk assessment. Risk Anal. 1997, 17, 147–156. [Google Scholar] [CrossRef]
- Lanzano, G.; Santucci de Magistris, F.; Fabbrocino, G.; Salzano, E. An observational analysis of seismic vulnerability of industrial pipelines. Chem. Eng. Trans. 2012, 26, 567–572. [Google Scholar]
- Campedel, M. Analysis of major industrial accidents triggered by natural events reported in the principal available chemical accident databases. Rep. EUR 2008, 23391. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC42281 (accessed on 19 May 2019).
- Sengul, H.; Santella, N.; Steinberg, L.J.; Cruz, A.M. Analysis of hazardous material releases due to natural hazards in the United States. Disasters 2012, 36, 723–743. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Analysis of soil liquefaction: Niigata earthquake. J. Soil Mech. Found. Div. 1967, 93, 83–108. [Google Scholar]
- Nath, S.K.; Srivastava, N.; Ghatak, C.; Adhikari, M.D.; Ghosh, A.; Ray, S.S. Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: Its historical perspective and deterministic scenario. J. Seismolog. 2018, 22, 35–68. [Google Scholar] [CrossRef]
- Tamari, Y.; Hyodo, J.; Ichii, K.; Nakama, T.; Hosoo, A. Developments in Earthquake Geotechnics; Springer: Berlin, Germany, 2018; Volume 11, pp. 201–217. ISBN 978-3-319-62068-8. [Google Scholar]
- Simons, M.; Fialko, Y.; Rivera, L. Coseismic deformation from the 1999 M w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am. 2002, 92, 1390–1402. [Google Scholar] [CrossRef]
- Delouis, B.; Nocquet, J.M.; Vallée, M. Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Klein, E.; Vigny, C.; Fleitout, L.; Grandin, R.; Jolivet, R.; Rivera, E.; Métois, M. A comprehensive analysis of the Illapel 2015 Mw8. 3 earthquake from GPS and InSAR data. Earth Planet. Sci. Lett. 2017, 469, 123–134. [Google Scholar] [CrossRef]
- Natsuaki, R.; Nagai, H.; Tomii, N.; Tadono, T. Sensitivity and Limitation in Damage Detection for Individual Buildings Using InSAR Coherence—A Case Study in 2016 Kumamoto Earthquakes. Remote Sens. 2018, 10, 245. [Google Scholar] [CrossRef]
- Yun, S.H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Milillo, P. Rapid Damage Mapping for the 2015 M w 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Albano, M.; Saroli, M.; Pulvirenti, L.; Moro, M.; Bignami, C.; Stramondo, S. Coseismic liquefaction phenomenon analysis by COSMO-SkyMed: 2012 Emilia (Italy) earthquake. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 65–78. [Google Scholar] [CrossRef]
- Baker, J.W. An introduction to probabilistic seismic hazard analysis. White Paper Version 2 2013, 79. [Google Scholar]
- Okada, A.; Watanabe, M.; Sato, H.; Jun, M.S.; Jo, W.R.; Kim, S.K.; Oike, K. Active fault topography and trench survey in the central part of the Yangsan fault, Southeast Korea. Geogr. J. 1994, 103, 111–126. [Google Scholar] [CrossRef]
- Kyung, J.B.; Lee, K.H. Active fault study of the Yangsan fault system and Ulsan fault system, southeastern part of the Korean Peninsula. J. Korean Geophys. Soc. 2006, 9, 219–230. [Google Scholar]
- Kyung, J.B. Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea. Geophys. Geophys. Explor. 2010, 13, 187–197. [Google Scholar]
- Choi, S.J.; Jeon, J.S.; Choi, J.H.; Kim, B.; Ryoo, C.R.; Hong, D.G.; Chwae, U. Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quat. Int. 2014, 344, 53–63. [Google Scholar] [CrossRef]
- Wright, T.J.; Lu, Z.; Wicks, C. Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res. 1998, 34, 2573–2585. [Google Scholar] [CrossRef] [Green Version]
- Osmanoğlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Ye, X.; Kaufmann, H.; Guo, X.F. Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogramm. Eng. Remote Sens. 2004, 70, 1167–1172. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, W.; Liu, Y.; Zhang, J.; Li, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 2010, 7, 359–365. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; de La Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Ding, X.L.; Li, Z.W.; Zhu, J.J.; Feng, G.C.; Long, J.P. Atmospheric effects on InSAR measurements and their mitigation. Sensors 2008, 8, 5426–5448. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Traver, I.N. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Kim, J.R.; Yun, H.W.; Van Gasselt, S.; Choi, Y.S. Error-Regulated Multi-Pass DInSAR Analysis for Landslide Risk Assessment. Photogramm. Eng. Remote Sens. 2018, 84, 189–202. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Gong, W.; Thiele, A.; Hinz, S.; Meyer, F.J.; Hooper, A.; Agram, P.S. Comparison of small baseline Interferometric SAR processors for estimating ground deformation. Remote Sens. 2016, 8, 330. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; Astronomical Institute, University of Bern: Bern, Switzerland, 2015. [Google Scholar]
- Ostini, L.; Dach, R.; Meindl, M.; Schaer, S.; Hugentobler, U. FODITS: A new tool of the Bernese GPS software to analyze time series. In Proceedings of the EUREF 2008 Symposium, Brussels, Belgium, 18–21 June 2008. [Google Scholar]
- Sohn, D.H.; Kim, D.S.; Park, K.D. A Study on GNSS Data Pre-processing for Analyzing Geodetic Effects on Crustal Deformation due to the Earthquake. J. Korean Soc. Geospat. Inf. Syst. 2015, 23, 47–54. [Google Scholar]
- Kim, D.; Park, K.D.; Ha, J.; Sohn, D.H.; Won, J. Geodetic analysis of postseismic crustal deformations occurring in South Korea due to the Tohoku-Oki earthquake. KSCE J. Civ. Eng. 2016, 20, 2885–2892. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Kim, D.J.; Park, S.E. Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2678–2689. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.J.; Cross, P. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3220–3230. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Iglesias, R.; Crippa, B. Persistent scatterer interferometry. Photogramm. Eng. Remote Sens. 2010, 76, 1061–1069. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, 19. [Google Scholar] [CrossRef]
- Shanker, P.; Casu, F.; Zebker, H.A.; Lanari, R. Comparison of persistent scatterers and small baseline time-series InSAR results: A case study of the San Francisco Bay Area. IEEE Trans. Geosci. Remote Sens. 2011, 8, 592–596. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef] [Green Version]
- Motagh, M.; Hoffmann, J.; Kampes, B.; Baes, M.; Zschau, J. Strain accumulation across the Gazikoy–Saros segment of the North Anatolian Fault inferred from Persistent Scatterer Interferometry and GPS measurements. Earth Planet. Sci. Lett. 2007, 255, 432–444. [Google Scholar] [CrossRef]
- Walters, R.J.; Holley, R.J.; Parsons, B.; Wright, T.J. Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Bagnardi, M.; Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochem. Geophys. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. Persistent scatterer InSAR for crustal deformation analysis. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Albano, M.; Polcari, M.; Bignami, C.; Moro, M.; Saroli, M.; Stramondo, S. Did Anthropogenic Activities Trigger the 3 April 2017 Mw 6.5 Botswana Earthquake? Remote Sens. 2017, 9, 1028. [Google Scholar] [CrossRef]
- Han, S.R.; Park, J.; Kim, Y.S. Evolution modeling of the Yangsan-Ulsan fault system with stress changes. J. Geol. Soc. Korea 2009, 45, 361–377. [Google Scholar]
- King, G.C.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605. [Google Scholar] [CrossRef]
- Matsuda. Earthquake magnitude and return period from active fault. J. Seismol. Soc. Jpn. 1975, 28, 269–283. [Google Scholar]
- Leonard, M. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bull. Seismol. Soc. Am. 2010, 100, 1971–1988. [Google Scholar] [CrossRef]
- McGuire, R.K. Deterministic vs. probabilistic earthquake hazards and risks. Soil Dyn. Earthq. Eng. 2001, 21, 377–384. [Google Scholar] [CrossRef]
- Ordaz, M.; Martinelli, F.; Meletti, C.; D’Amico, V. CRISIS2012: An Updated Tool to Compute Seismic Hazard. In AGU Spring Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Duzgun, H.S.B.; Yucemen, M.S.; Kalaycioglu, H.S.; Celik, K.; Kemec, S.; Ertugay, K.; Deniz, A. An integrated earthquake vulnerability assessment framework for urban areas. Nat. Hazards 2011, 59, 917. [Google Scholar] [CrossRef]
- Christensen, K.; Olami, Z. Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in spring-block model for earthquakes Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 1992, 97, 8729–8735. [Google Scholar] [CrossRef]
- Cornell, C.A.; Vanmarke, E.H. The major influences on seismic risk. In Proceedings of the 3rd World Conference on Earthquake Engineering, Santiago, Chile, 13–18 January 1969. [Google Scholar]
- Choi, J.H.; Yang, S.J.; Han, S.R.; Kim, Y.S. Fault zone evolution during Cenozoic tectonic inversion in SE Korea. J. Asian Earth Sci. 2015, 98, 167–177. [Google Scholar] [CrossRef]
- Perissin, D. Validation of the submetric accuracy of vertical positioning of PSs in C-band. IEEE Trans. Geosci. Remote Sens. 2008, 5, 502–506. [Google Scholar] [CrossRef]
- Le Béon, M.; Huang, M.H.; Suppe, J.; Huang, S.T.; Pathier, E.; Huang, W.J.; Hu, J.C. Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terr. Atmos. Ocean. Sci. 2010, 28, 663–681. [Google Scholar] [CrossRef]
- Rymer, M.J.; Treiman, J.A.; Kendrick, K.J.; Lienkaemper, J.J.; Weldon, R.J.; Bilham, R.; Irvine, P.J. Triggered Surface Slips in Southern California Associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, Earthquake; US Geological Survey: Reston, VA, USA, 2011.
Ascending Mode | Descending Mode | |
---|---|---|
Image number | 60 | 86 |
Master image | 2017.02.19. | 2017.01.08. |
Time coverage | 2015.05.25–2018.06.08. | 2014.11.02–2018.06.26. |
Heading angle (deg) | −13.0523 | −166.969 |
Incidence angle (deg) | 39.189 | 39.213 |
Relative Orbit | 54 | 61 |
Acquisition time | 18:22 KST (GMT+9) | 06:24 KST |
Mean Height Difference (m) | Standard Deviation of Height Difference (m) | Root Mean Square of Height Difference (m) | Root Mean Square Deviation of Height Difference (m) | |
---|---|---|---|---|
Survey height-ALOS PRISM DEM | −1.302 | 1.610 | 1.771 | 0.962 |
Survey height-SRTM DEM | −1.803 | 3.651 | 3.029 | 2.555 |
Processing engine | Bernese 5.2 |
Data processing strategy | Precise Point Positioning (PPP) Relative Positioning (RP) |
Satellite ephemeris/clocks | CODE Final |
Ionosphere model file (ION) | CODE ION |
Reference frame (coordinate, velocity) | ITRF 2014 |
A priori troposphere/mapping function model | GMF (Global Mapping Function) |
Ocean tide loading model (BLQ) | FES 2004 |
Phase center variations (PCV) | PCV_COD.I14 |
Unit | Description | Major Characteristics | |
---|---|---|---|
Unit 1 | P1 and P3 | Units involving the Ulsan fault | Strong W–E deformation. Subsidence in directly connected units such as P1 and P3. |
Unit 2 | P7 and P8 | Translation areas between class 1 and class 4 | String E–W deformations and some uplift. Deformations in P8 is more obvious. |
Unit 3 | P4 and P5 | Translation areas between class 1 and class 6 | Weak W–E deformation and uplift. |
Unit 4 | P11, P14 and P9 | Sedimentary plains or reclaimed land | Weak E–W deformation and uplift. |
Unit 5 | P2 and P12 | Units around costal lines | Independent from tectonic faults but some deformation in coastal cutting area. |
Unit 6 | P6 | Unit involving the Yangsan fault | Very stable and weak deformation. |
Unit 7 | P13 and P10 | Units mainly under the influence of local deformation sources | Irregular but strong deformation patterns according to the characteristics of local deformation sources. For instance, P10 and P13 were activated by ground condensation from heavy construction, which caused strong subsidence. |
Single Fault Model | Multifault Model | ||||
---|---|---|---|---|---|
Initial Setting | Modelled Fault | Initial Setting | Modelled Fault 1 | Modelled Fault 2 | |
Fault length (m) | 10,000–53,000 | 51,140.7 | 3000–25,000 | 26,417.9 | 24,985.5 |
Fault width (m) | 4500–8000 | 4567.42 | 1500–4000 | 1639.47 | 1987.89 |
Fault depth (m) | 100–12,000 | 4409.97 | 100–12,000 | 1394.25 | 1781.54 |
Dip angle (deg) | 32.0–60.0 | 35.43 | 35.0–60.0 | 57.46 | 59.45 |
Strike angle(deg) | 150–200 | 183.79 | 150–200 | 188.87 | 184.97 |
Center x(m)* | 4000–8500 | 4002.75 | 2000–10,000 | 4374.67 | 4000.72 |
Center y(m)* | 12,000–21,000 | 20,657.42 | 3000–18,000 | 8941.41 | 9294.90 |
Center of fault (deg) | E 129.392 N 35.748 | E129.396 N 35.642 | E129.392 N 35.646 | ||
Strike slip(m) | −0.1–0.1 | 0.0993 | −0.3–0.3 | 0.292 | 0.285 |
Dip slip(m) | −0.3–0.3 | −0.140 | −0.5–0.5 | 0.492 | −0.373 |
Fitness | Ascending: RMSE 0.010, Stddev 0.008 Descending: RMSE 0.017, Stddev 0.01 | Ascending: RMSE 0.011, Stddev 0.014 Descending: RMSE 0.015, Stddev 0.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, H.-W.; Kim, J.-R.; Yoon, H.; Choi, Y.; Yu, J. Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis. Remote Sens. 2019, 11, 1199. https://doi.org/10.3390/rs11101199
Yun H-W, Kim J-R, Yoon H, Choi Y, Yu J. Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis. Remote Sensing. 2019; 11(10):1199. https://doi.org/10.3390/rs11101199
Chicago/Turabian StyleYun, Hye-Won, Jung-Rack Kim, HaSu Yoon, YunSoo Choi, and JungHum Yu. 2019. "Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis" Remote Sensing 11, no. 10: 1199. https://doi.org/10.3390/rs11101199
APA StyleYun, H. -W., Kim, J. -R., Yoon, H., Choi, Y., & Yu, J. (2019). Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis. Remote Sensing, 11(10), 1199. https://doi.org/10.3390/rs11101199