Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018)
Abstract
:1. Introduction
2. Data and Methods
2.1. Long Point Fault GPS Array
2.2. Data Processing
3. Results
4. Discussion
4.1. Horizontal Displacements Associated With Subsidence
4.2. Groundwater Withdrawal vs. Subsidence and Faulting
4.3. Seasonal Ground Deformation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pratt, W.E.; Johnson, D.W. Local Subsidence of the Goose Creek Oil Field. J. Geol. 1926, 34, 577–590. [Google Scholar] [CrossRef]
- Weaver, P.; Sheets, M.M. Active faults, subsidence, and foundation problems in the Houston, Texas, area. In Geology of the Gulf Coast and Central Texas, and Guidebook of Excursions; Rainwater, E.H., Zingula, R.P., Eds.; Houston Geological Society: Houston, TX, USA, 1962; pp. 254–265. [Google Scholar]
- Van Siclen, D.C. The Houston fault problem. In Proceedings of the AIPG 3rd Annual Meeting, Texas section, Houston, TX, USA, 16–17 February 1967; American Institute of Professional Geologists: Westminster, CA, USA, 1967; pp. 9–31. [Google Scholar]
- Sheets, M.M. Active surface faulting in the Houston area, Texas. HGS Bull. 1971, 13, 24–33. [Google Scholar]
- Reid, W.M. Active faults in Houston, Texas. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1973. [Google Scholar]
- Clanton, U.S.; Amsbury, D.L. Active faults in southeastern Harris county, texas. Environ. Earth Sci. 1975, 1, 149–154. [Google Scholar] [CrossRef]
- Verbeek, E.R.; Clanton, U.S. Map Showing Surface Faults in Southeastern Houston Metropolitan Area, Texas; 78–797; US Geological Survey: Reston, VA, USA, 1978; p. 20.
- Verbeek, E.R.; Ratzlaff, K.W.; Clanton, U.S. Faults in parts of north-central and western Houston metropolitan area, Texas. In Faults in Parts of North-Central and Western Houston Metropolitan Area, Texas; US Geological Survey: Reston, VA, USA, 1979. [Google Scholar]
- Engelkemeir, R.M.; Khan, S.D. LiDAR mapping of faults in Houston, Texas, USA. Geosphere 2008, 4, 170–182. [Google Scholar] [CrossRef]
- Engelkemeir, R.; Khan, S.D.; Burke, K. Surface deformation in Houston, Texas using GPS. Tectonophysics 2010, 490, 47–54. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Kim, J.W. New faults detection by multi-temporal InSAR over Greater Houston, Texas. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA; pp. 2153–7003. [Google Scholar]
- Shah, S.; Lanning-Rush, J. Principal Faults in the Houston, Texas, Metropolitan Area; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2005.
- Norman, C.E.; Elsbury, W.R. Active faults in north Harris County and south Central Montgomery County, Texas. In Environmental and Engineering Geology of North Harris and South Montgomery Counties Texas-Guidebook; Houston Geological Society: Houston, TX, USA, 1991; Chapter 19; pp. 13–27. [Google Scholar]
- Norman, C.E. Ground subsidence and active faults in the Houston Metropolitan Area. In Proceedings of the Conference on Coastal Subsidence, Sea Level and the Future of the Gulf Coast; Houston Geological Society and Engineering, Science and Technology Council of Houston, Houston, TX, USA, 3–5 November 2005. [Google Scholar]
- Huffman, A.C., Jr.; Kinney, S.A.; Biewick, L.; Mitchell, H.R.; Gunther, G.L. Salt Diapirs in the Gulf Coast. From Gulf Coast Geology (GCG) Online—Miocene of Southern Louisiana; Version 1; US Geological Survey: Reston, VA, USA, 2004.
- Zilkoski, D.B.; Hall, L.W.; Mitchell, G.J.; Kammula, V.; Singh, A.; Chrismer, W.M.; Neighbors, R.J. The Harris-Galveston Coastal Subsidence District/National Geodetic Survey automated global positioning system subsidence monitoring project. In Proceedings of the U.S. Geological Survey Subsidence Interest Group Conference, Galveston, Texas, USA, 27–29 November 2001; Geological Survey: Galveston, TX, USA; pp. 13–28. [Google Scholar]
- Kearns, T.J.; Wang, G.; Turco, M.; Welch, J.; Tsibanos, V.; Liu, H. Houston16: A stable geodetic reference frame for subsidence and faulting study in the Houston metropolitan area, Texas, U.S. Geod. Geodyn. 2018. [Google Scholar] [CrossRef]
- Yang, L.; Wang, G.; Bao, Y.; Kearns, T.J.; Yu, J. Comparisons of ground-based and building-based CORS: A case study in the region of Puerto Rico and the Virgin Islands. J. Surv. Eng. 2015, 142, 05015006. [Google Scholar] [CrossRef]
- Herring, T.A.; Melbourne, T.I.; Murray, M.H.; Floyd, M.A.; Szeliga, W.M.; King, R.W.; Phillips, D.A.; Puskas, C.M.; Santillan, M.; Wang, L. Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Rev. Geophys. 2016, 54, 759–808. [Google Scholar] [CrossRef]
- Geng, J.; Meng, X.; Dodson, A.H.; Teferle, F.N. Integer ambiguity resolution in precise point positioning: Method comparison. J. Geod. 2010, 84, 569–581. [Google Scholar] [CrossRef]
- Li, X.X.; Zhan, X.; Ge, M. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J. Geod. 2011, 85, 151–158. [Google Scholar] [CrossRef]
- Wang, G. GPS Landslide Monitoring: Single Base vs. Network Solutions—A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network. J. Géod. Sci. 2011, 1, 191–203. [Google Scholar] [CrossRef]
- Wang, G.; Turco, M.; Soler, T.; Kearns, T.J.; Welch, J. Comparisons of OPUS and PPP Solutions for Subsidence Monitoring in the Greater Houston Area. J. Surv. Eng. 2017, 143, 5017005. [Google Scholar] [CrossRef]
- Wang, G.; Bao, Y.; Cuddus, Y.; Jia, X.; Serna, J.J.; Jing, Q. A methodology to derive precise landslide displacements from GPS observations in tectonically active and cold regions: A case study in Alaska. Nat. Hazards 2015, 77, 1939–1961. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, W.; Wang, G.; Gan, W.; Zhang, M.; Shen, J.S. Millimeter-accuracy structural deformation monitoring using stand-alone GPS: Case study in Beijing, China. J. Surv. Eng. 2017, 144, 05017007. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos Trans. AGU 2018, 99, 99. [Google Scholar] [CrossRef]
- Wang, G.; Soler, T. Using OPUS for measuring vertical displacements in Houston, TX. J. Surv. Eng. 2013, 139, 126–134. [Google Scholar] [CrossRef]
- Soler, T.; Wang, G. Interpreting OPUS-Static Results Accurately. J. Surv. Eng. 2016, 142, 5016003. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; Floyd, M.A.; Mcclusky, S.C. Introduction to GAMIT/GLOBK, Release 10.7; Massachusetts Institute of Technology: Cambridge, MA, USA, 2018. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Biogeosciences 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Bertiger, W.; Desai, S.D.; Haines, B.; Harvey, N.; Moore, A.W.; Owen, S.; Weiss, J.P. Single receiver phase ambiguity resolution with GPS data. J. Geod. 2010, 84, 327–337. [Google Scholar] [CrossRef]
- Wang, G.; Bao, Y.; Gan, W.; Geng, J.; Xiao, G.; Shen, J.S. NChina16: A stable geodetic reference frame for geological hazard studies in North China. J. Geod. 2018, 115, 10–22. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geod. 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Wang, G.; Yu, J.; Ortega, J.; Saenz, G.; Burrough, T.; Neill, R. A stable reference frame for the study of ground deformation in the Houston metropolitan area, Texas. J. Géod. Sci. 2013, 3, 188–202. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G. Introduction to the GNSS geodetic infrastructure in the Gulf of Mexico Region. Surv. Rev. 2017, 352, 51–65. [Google Scholar] [CrossRef]
- Wang, G.; Kearns, T.J.; Yu, J.; Saenz, G. A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 2014, 11, 119–129. [Google Scholar] [CrossRef]
- Yang, L.; Wang, G.; Huérfano, V.; Von Hillebrandt-Andrade, C.G.; Martínez-Cruzado, J.A.; Liu, H. GPS geodetic infrastructure for natural hazards study in the Puerto Rico and Virgin Islands region. Nat. Hazards 2016, 83, 641–665. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Mattioli, G.S.; Miller, M.M.; Feaux, K.; Braun, J. CARIB18: A Stable Geodetic Reference Frame for Geological Hazard Monitoring in the Caribbean Region. Remote Sens. 2019, 11, 680. [Google Scholar] [CrossRef]
- Wang, G.; Soler, T. Measuring land subsidence using GPS: Ellipsoid height vs. orthometric height. J. Surv. Eng. 2014, 141, 05014004. [Google Scholar] [CrossRef]
- Wang, G. Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: A case study in Puerto Rico. J. Geod. Sci. 2013, 3, 22–31. [Google Scholar] [CrossRef]
- Kasmarek, M.C.; Gabrysch, R.K.; Johnson, M.R. Estimated Land-Surface Subsidence in Harris County, Texas, 1915–1917 to 2001; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2009.
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Coplin, L.S.; Galloway, D. Houston-Galveston, Texas: Managing coastal subsidence. In Land Subsidence in the United States; Galloway, D., Jones, D.R., Ingebritsen, S.E., Eds.; U.S. Geological Survey: Reston, VA, USA, 1999; Volume 1182, pp. 35–48. [Google Scholar]
- Turco, M.J.; Petrov, A. Effects of groundwater regulation on aquifer-system compaction and subsidence in the Houston-Galveston Region, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Kearns, T.J.; Wang, G.; Bao, Y.; Jiang, J.; Lee, D. Current Land Subsidence and Groundwater Level Changes in the Houston Metropolitan Area (2005–2012). J. Surv. Eng. 2015, 141, 5015002. [Google Scholar] [CrossRef]
- Campbell, M.D.; Campbell, M.D.; Wise, H.M. Growth faulting and Subsidence in the Houston, Texas Area: Guide to the origins, relationships, hazards, potential impacts and methods of investigation: An update. J. Geol. Geosci. 2018, 2, 001–053. [Google Scholar]
- Buckley, S.M.; Rosen, P.A.; Hensley, S.; Tapley, B.D. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. Biogeosciences 2003, 108, 2542. [Google Scholar] [CrossRef]
- Khan, S.D.; Huang, Z.; Karacay, A. Study of ground subsidence in northwest Harris county using GPS, LiDAR, and InSAR techniques. Nat. Hazards 2014, 73, 1143–1173. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.-W.; Zhao, C.; Qu, W. Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Harris-Galveston Subsidence District (HGSD). Harris-Galveston subsidence district regulatory plan. Adopted 9 January 2013; amended 8 May 2013. Available online: http://hgsubsidence.org/wp-content/uploads/2013/07/HGSD-2013-Regulatory-Plan-with-Amendment.pdf (accessed on 15 April 2019).
- Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nat. Cell Boil. 2001, 412, 812–815. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G. GPS-derived ground deformation (2005–2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame. Hazards Earth Sci. 2016, 16, 1583–1602. [Google Scholar] [CrossRef]
- Tandanand, S.; Powell, R. Determining Horizontal Displacement and Strain Due to Subsidence; No 9358; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1991. [Google Scholar]
- Baker, E.T., Jr. Stratigraphic and Hydrogeologic Framework of Part of the Coastal Plain of Texas; Texas Department of Water Resources: Austin, TX, USA, 1979; Volume 236, p. 43. [Google Scholar]
- Kasmarek, M.C.; Ramage, J.K. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas. In Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Shah, S.D.; Ramage, J.K.; Braun, C.L. Status of groundwater-level altitudes and long-term groundwater-level changes in the Chicot, Evangeline, and Jasper aquifers, Houston-Galveston region, Texas, 2018. In Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Wang, G.; Yu, J.; Kearns, T.J.; Ortega, J. Assessing the Accuracy of Long-Term Subsidence Derived from Borehole Extensometer Data Using GPS Observations: Case Study in Houston, Texas. J. Surv. Eng. 2014, 140, 5014001. [Google Scholar] [CrossRef]
- Tregoning, P.; Watson, C.; Ramillien, G.; McQueen, H.; Zhang, J. Detecting hydrologic deformation using GRACE and GPS. Geophys. Lett. 2009, 36, 15401. [Google Scholar] [CrossRef]
- Fu, Y.; Freymueller, J.T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res. Biogeosciences 2012, 117, 03407. [Google Scholar] [CrossRef]
- Riel, B.; Simons, M.; Ponti, D.; Agram, P.; Jolivet, R. Quantifying Ground Deformation in the Los Angeles and Santa Ana Coastal Basins Due to Groundwater Withdrawal. Water Resour. Res. 2018, 54, 3557–3582. [Google Scholar] [CrossRef] [Green Version]
- Holzer, T.L.; Gabrysch, R.K. Effect of Water-Level Recoveries on Fault Creep, Houston, Texas. Ground Water 1987, 25, 392–397. [Google Scholar] [CrossRef]
- Yeager, K.M.; Wolfe, P.C.; Feagin, R.A.; Brunner, C.A.; Schindler, K.J. Active near-surface growth faulting and late Holocene history of motion: Matagorda peninsula, Texas. Geomorphology 2019, 327, 159–169. [Google Scholar] [CrossRef]
Longitude | Latitude | Antenna Elevation | Distance | Site Velocities (2013-2018) (mm/year) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NAVD88 | To Fault | To UTEX | (PPP Solutions*, Houston16) | (DD Solutions**, UTEX-Fixed) | |||||||
GPS | (deg.) | (deg.) | (m) | (km) | (km) | NS | EW | UD | NS | EW | UD |
MDWD | −95.595 | 29.771 | 32.9 | 0.36 | 3.12 | 2.5 | −0.8 | −6.8 | −0.7 | 1.0 | 2.0 |
WCHT | −95.581 | 29.783 | 38.3 | 0.67 | 1.35 | 2.4 | −0.5 | −11.0 | −0.5 | 1.4 | −1.3 |
UTEX | −95.568 | 29.786 | 37.1 | 0.13 | 0.00 | 2.6 | −2.0 | −8.2 | 0.0 | 0.0 | 0.0 |
HCC2 | −95.562 | 29.788 | 37.1 | 0.07 | 0.62 | 2.0 | −1.8 | −9.3 | −0.5 | 0.2 | −0.6 |
SPBH | −95.515 | 29.802 | 36.4 | 0.63 | 5.42 | 1.5 | −1.3 | −6.9 | −1.1 | 0.9 | 1.8 |
RDCT | −95.495 | 29.810 | 36.7 | 0.92 | 7.60 | 1.3 | −1.0 | −6.4 | −1.0 | 1.2 | 1.8 |
TSFT | −95.480 | 29.806 | 29.1 | 0.11 | 8.88 | 1.0 | −0.5 | −7.3 | −1.4 | 2.2 | 2.4 |
HCC1 | −95.561 | 29.788 | 34.5 | 0.02 | 0.67 | 2.7 | −1.5 | −8.6 | 0.2 | 0.5 | −0.8 |
WDVW | −95.533 | 29.790 | 31.5 | 0.17 | 3.41 | 2.3 | −1.3 | −7.3 | −0.3 | 0.9 | 1.7 |
CSTE | −95.511 | 29.796 | 28.5 | 0.25 | 5.62 | 2.0 | −1.3 | −5.1 | −0.4 | 0.5 | 0.6 |
HSMN | −95.470 | 29.800 | 34.4 | 0.73 | 9.68 | 1.2 | −0.9 | −6.2 | −1.4 | 1.7 | 2.4 |
LCI1 | −95.443 | 29.807 | 48.9 | 0.56 | 12.45 | 1.0 | −1.2 | −4.5 | −1.5 | 2.0 | 3.2 |
Average | 0.39 | 1.9 | −1.3 | −7.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, X.; Wang, G.; Turco, M.J.; Agudelo, G.; Bao, Y.; Zhao, R.; Shen, S. Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018). Remote Sens. 2019, 11, 1213. https://doi.org/10.3390/rs11101213
Liu Y, Sun X, Wang G, Turco MJ, Agudelo G, Bao Y, Zhao R, Shen S. Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018). Remote Sensing. 2019; 11(10):1213. https://doi.org/10.3390/rs11101213
Chicago/Turabian StyleLiu, Yuhao, Xiaohan Sun, Guoquan Wang, Michael J. Turco, Gonzalo Agudelo, Yan Bao, Ruibin Zhao, and Shuilong Shen. 2019. "Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018)" Remote Sensing 11, no. 10: 1213. https://doi.org/10.3390/rs11101213
APA StyleLiu, Y., Sun, X., Wang, G., Turco, M. J., Agudelo, G., Bao, Y., Zhao, R., & Shen, S. (2019). Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018). Remote Sensing, 11(10), 1213. https://doi.org/10.3390/rs11101213