Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Cropland Change Conceptual Model
2.4. Initial Land Cover Classification
2.5. Monitoring Cropland Change with LandTrendr
2.6. Accuracy Assessment and Validation
3. Results
3.1. Historical Change Process of Conversion Patterns
3.2. Characterization of Two Conversion Patterns
3.3. Accuracy Assessment
3.3.1. Accuracy Assessment for Initial Classification
3.3.2. Accuracy Assessment for LandTrendr
4. Discussion
4.1. Mapping Approach
4.2. Benefits of Change Detection Using LandTrendr in GEE
4.3. Research Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Mcgowan, S.; Lei, X.; Zeng, L.; Yang, X. Effects of hydrological regulation and anthropogenic pollutants on Dongting Lake in the Yangtze floodplain. Ecohydrology 2016, 9, 315–325. [Google Scholar]
- Hereher, M.E. Environmental monitoring and change assessment of Toshka lakes in southern Egypt using remote sensing. Environ. Earth Sci. 2015, 73, 3623–3632. [Google Scholar] [CrossRef]
- Qi, S.H.; Brown, D.G.; Tian, Q.; Jiang, L.G.; Zhao, T.T.; Bergen, K.M. Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. Mapp. Sci. Remote Sens. 2009, 46, 101–127. [Google Scholar] [CrossRef]
- Kraemer, R.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T.; Radeloff, V.C.; Dara, A.; Terekhov, A.; Frühauf, M. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ. Res. Lett. 2015, 10, 054012. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Richard, A.; Martha, A.; Alan, B.; Robert, B.; Warren, C.; Feng, G.; Goward, S.N.; Dennis, H.; Eileen, H. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Röder, A.; Stellmes, M.; Hill, J.; Kuemmerle, T.; Tsiourlis, G.M. Analysing land cover change using time series analysis of Landsat data and geoinformation processing. A natural experiment in Northern Greece. Proc. SPIE Int. Soc. Opt. Eng. 2008, 7104, 43–56. [Google Scholar]
- Rogan, J.; Franklin, J.; Roberts, D.A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Wohlfart, C.; Mack, B.; Liu, G.; Kuenzer, C. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series: Exemplary analysis in mining, agriculture, forest, and urban areas. Appl. Geogr. 2017, 85, 73–88. [Google Scholar] [CrossRef]
- Liao, C.; Feng, Z.; Peng, L.I.; Zhang, J. Monitoring the spatio-temporal dynamics of swidden agriculture and fallow vegetation recovery using Landsat imagery in northern Laos. Acta Geogr. Sin. 2015, 25, 1218–1234. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.; Tondoh, J. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Manning, J.A. Parcel-based classification of agricultural crops via multitemporal Landsat imagery for monitoring habitat availability of western burrowing owls in the Imperial Valley agro-ecosystem. Can. J. Remote Sens. 2010, 36, 750–762. [Google Scholar] [CrossRef]
- Justice, C.J. Landsat-derived cropland mask for Tanzania using 2010–2013 time series and decision tree classifier methods. In Proceedings of the Agu Fall Meeting, College Park, MD, USA, 17 December 2015. [Google Scholar]
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Zhe, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. Isprs J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Novo-Fernández, A.; Franks, S.; Wehenkel, C.; López-Serrano, P.M.; Molinier, M.; López-Sánchez, C.A. Landsat time series analysis for temperate forest cover change detection in the Sierra Madre Occidental, Durango, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 230–244. [Google Scholar] [CrossRef]
- Verbesselt, J.; Herold, M.; Hyndman, R.; Zeileis, A.; Culvenor, D. A robust approach for phenological change detection within satellite image time series. In Proceedings of the Analysis of Multi-Temporal Remote Sensing Images, Trento, Italy, 12–14 July 2011. [Google Scholar]
- Fatikhunnada, A.; Seminar, K.B.; Solahudin, M.; Buono, A. Optimization of Parallel K-means for Java Paddy Mapping Using Time-series Satellite Imagery. Telkomnika 2018, 16, 1409–1415. [Google Scholar] [CrossRef]
- Huang, K.; Tao, Z.; Xiang, Z. Extreme Drought-induced Trend Changes in MODIS EVI Time Series in Yunnan, China. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012070. [Google Scholar] [CrossRef] [Green Version]
- Schneibel, A.; Stellmes, M.; Röder, A.; Frantz, D.; Kowalski, B.; Haß, E.; Hill, J. Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series. Remote Sens. Environ. 2017, 195, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Zhe, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Watts, L.M.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 2014, 154, 234–245. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Yun, D.; Han, P.; Wei, H. Monitoring Spatial and Temporal Dynamics of Flood Regimes and Their Relation to Wetland Landscape Patterns in Dongting Lake from MODIS Time-Series Imagery. Remote Sens. 2015, 7, 7494–7520. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, X.; Xie, Y.; Li, X.; Li, F.; Hou, Z. Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Sci. Rep. 2014, 4, 6339. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Simonetti, D.; Simonetti, E.; Szantoi, Z.; Lupi, A.; Eva, H.D. First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1496–1500. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Bai, J.J.; Bai, J.T.; Wang, L. Spatio-temporal Change of Vegetation NDVI and Its Relations with Regional Climate in Northern Shaanxi Province in 2000–2010. Sci. Geogr. Sin. 2014, 34, 882–888. [Google Scholar]
- Mainknorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Practical look at the sources of confusion in error matrix generation. Photogramm. Eng. Remote Sens. 1993, 59, 641–644. [Google Scholar]
- Bo, Y.; Zeng, F.; Yuan, M.; Li, D.; Qiu, Y.; Li, J. Measurement of Dongting Lake Area Based on Visual Interpretation of Polders. Proced. Environ. Sci. 2011, 10, 2684–2689. [Google Scholar] [Green Version]
- Zhang, P.L.; Bo, L.R.; Chao, J. An Object-based Basic Farmland Change Detection Using High Spatial Resolution Image and GIS Data of Land Use Planning. Key Eng. Mater. 2012, 500, 492–499. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Dan, T. A Framework for Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics. Remote Sens. 2016, 8, 312. [Google Scholar] [CrossRef]
- Schwantes, A.M.; Swenson, J.J.; Jackson, R.B. Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas. Remote Sens. Environ. 2016, 181, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m resolution Global Annual Burned Area Mapping based on Landsat images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Iii, B.M. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.Z.; Bai, Y.Q. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wu, M.; Wang, L.; Niu, Z. Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors 2018, 18, 185. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Feng, T.; Prishchepov, A.V.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef] [Green Version]
Data | Description | Source |
---|---|---|
Landsat5 Landsat7 Landsat8 (path/row: 123/040,124/039,124/040) | Annual atmospherically corrected Surface Reflectance Collection from June to September, 1998–2018, for use with LandTrendr | Pre-Collection 1 archive available from Google Earth Engine |
DEM | Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data used for modification of classification | ASTER Global Emissivity Dataset 100 m V003 available from Google Earth Engine |
Field survey | Inventory data within the study area, collected in 2018 | |
High-resolution images | Imagery used for validation of LandTrendr disturbance | Google Earth |
Year | Conversion to Lake | Conversion to Poplar Cultivation | ||
---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | |
1998 | 258.98 | 58.21% | 221.88 | 44.39% |
1999 | 3.08 | 0.68% | 4.73 | 0.95% |
2000 | 0.82 | 0.19% | 8.67 | 1.73% |
2001 | 1.13 | 0.28% | 9.54 | 1.91% |
2002 | 3.55 | 0.87% | 4.03 | 0.81% |
2003 | 5.52 | 1.24% | 6.32 | 1.26% |
2004 | 2.49 | 0.54% | 22.19 | 4.44% |
2005 | 0.91 | 0.21% | 23.03 | 4.61% |
2006 | 1.26 | 0.30% | 7.37 | 1.47% |
2007 | 3.75 | 0.84% | 13.24 | 2.65% |
2008 | 5.93 | 1.33% | 6.50 | 1.30% |
2009 | 2.42 | 0.52% | 7.38 | 1.48% |
2010 | 5.12 | 1.10% | 7.94 | 1.59% |
2011 | 2.91 | 0.62% | 19.53 | 3.91% |
2012 | 14.37 | 3.31% | 8.02 | 1.61% |
2013 | 8.25 | 1.80% | 39.00 | 7.80% |
2014 | 51.38 | 11.07% | 34.58 | 6.92% |
2015 | 13.83 | 3.13% | 7.77 | 1.55% |
2016 | 31.76 | 6.76% | 9.01 | 1.80% |
2017 | 14.62 | 3.47% | 19.97 | 4.00% |
2018 | 15.40 | 3.52% | 19.19 | 3.84% |
Total | 447.48 | 100% | 499.90 | 100% |
Validation Data | ||||||
---|---|---|---|---|---|---|
Class | Water | Cropland | Forest | Urban | Shoal | User Accuracy |
Water | 179 | 0 | 0 | 0 | 0 | 100% |
Cropland | 1 | 153 | 24 | 10 | 30 | 70.2% |
Forest | 0 | 14 | 153 | 1 | 17 | 82.7% |
Urban | 0 | 3 | 1 | 168 | 1 | 97.1% |
Shoal Total | 0 180 | 10 180 | 2 180 | 1 180 | 132 180 | 91.0% |
Producer Accuracy | 99.4% | 85.0% | 85.0% | 93.3% | 73.3% |
Conversion to Lake | ||||
Changed Pixels | Stable Pixels | Total | User Accuracy | |
Changed pixels | 258 | 42 | 300 | 86.0% |
Stable pixels | 36 | 264 | 300 | 88.0% |
Total | 294 | 306 | ||
Producer Accuracy | 87.8 | 86.3% | Overall | 87.0% |
Conversion to Poplar Cultivation | ||||
Changed Pixels | Stable Pixels | Total | User Accuracy | |
Changed pixels | 245 | 55 | 300 | 81.7% |
Stable pixels | 42 | 258 | 300 | 86.0% |
Total | 287 | 313 | ||
Producer Accuracy | 85.4% | 82.4% | Overall | 83.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. https://doi.org/10.3390/rs11101234
Zhu L, Liu X, Wu L, Tang Y, Meng Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sensing. 2019; 11(10):1234. https://doi.org/10.3390/rs11101234
Chicago/Turabian StyleZhu, Lihong, Xiangnan Liu, Ling Wu, Yibo Tang, and Yuanyuan Meng. 2019. "Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery" Remote Sensing 11, no. 10: 1234. https://doi.org/10.3390/rs11101234
APA StyleZhu, L., Liu, X., Wu, L., Tang, Y., & Meng, Y. (2019). Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sensing, 11(10), 1234. https://doi.org/10.3390/rs11101234