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Abstract: Radiative transfer model (RTM) inversion allows for the quantitative estimation of
vegetation biochemical composition from satellite sensor data, but large uncertainties associated
with inversion make accurate estimation difficult. The leaf structure parameter (Ns) is one of the
largest sources of uncertainty in inversion of the widely used leaf-level PROSPECT model, since
it is the only parameter that cannot be directly measured. In this study, we characterize Ns as a
function of phenology by collecting an extensive dataset of leaf measurements from samples of three
dicotyledon species (hard red wheat, soft white wheat, and upland rice) and one monocotyledon
(soy), grown under controlled conditions over two full growth seasons. A total of 230 samples
were collected: measured leaf reflectance and transmittance were used to estimate Ns from each
sample. These experimental data were used to investigate whether Ns depends on phenological
stages (early/mid/late), and/or irrigation regime (irrigation at 85%, 75%, 60% of the initial saturated
tray weight, and pre-/post-irrigation). The results, supported by the extensive experimental data set,
indicate a significant difference between Ns estimated on monocotyledon and dicotyledon plants,
and a significant difference between Ns estimated at different phenological stages. Different irrigation
regimes did not result in significant Ns differences for either monocotyledon or dicotyledon plant
types. To our knowledge, this study provides the first systematic record of Ns as a function of
phenology for common crop species.
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1. Introduction

Terrestrial biogeochemical cycles are primarily driven by plant physiological and ecological processes
involving the exchange of matter and energy, such as photosynthesis and evapotranspiration [1–3].
Knowledge of plant canopy biochemical composition provides critical information towards understanding
and predicting the flow of energy and matter within terrestrial biogeochemical cycles [4,5]. However,
generalizing field measured plant or canopy biochemical processes, albeit locally accurate, is not a
feasible method for inferring larger landscape ecosystem processes.

Spaceborne radiometric remote sensing measurements of solar electromagnetic radiation, reflected
by the Earth’s surface, can be used to monitor physical interactions between leaf properties and canopy
structure, thereby delivering valuable information relevant to terrestrial biogeochemical cycles [6–8].
Empirical methods, which rely on statistical relationships of observed phenomena with remote sensing
measurements, are widely applied as being simple and computationally efficient. Typically, with this
approach, multispectral reflectances are combined into vegetation indices, designed to maximize the
sensitivity to parameters of interest while minimizing the influence of unrelated factors, including
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soil or atmospheric effects [9,10]. The vegetation indices are subsequently correlated to biochemical
variables such as photosynthetically active pigments, water, and biomass.

The systematic application of vegetation indices for quantitative biochemical component
estimation, however, is hampered by large uncertainties. Spectral indices are inevitably sensitive to
multiple biochemical and structural characteristics of vegetative canopy systems, and are constrained
by the representativeness of the training data needed by this approach [11–13]. Alternatively,
physical-based approaches may be applied to overcome transferability problems that arise during
systemic application [14].

Physical-based approaches are used to estimate canopy biochemical and structural characteristics
through radiative transfer modeling by simulating the interactions of electromagnetic energy with
leaf and canopy surfaces based on the laws of physics [15,16]. Among these, leaf optical spectral
properties are critical indicators of plant physiology [17–19], which affect other functional processes
up to ecosystem levels [3]. Leaves also act as the primary scattering and absorbing elements of plant
canopy systems [20,21].

The leaf Propriétés Spectrales radiative transfer model (PROSPECT), which simulates
hemispherical reflectance and transmittance of a leaf in reflective wavelengths in the 400–2500 nm
spectral region [22], is one of the most widely applied physical-based models for leaf trait
estimation [23,24]. The model has been successfully used to estimate leaf biochemical components by
inverting leaf reflectance measurements [13,24,25].

PROSPECT is based on the plate theory model [26], where a leaf is conceptualized as one or
multiple compact absorbing plates with rough surfaces. The model calculates the radiative transfer of
energy at the surface and inside the leaf as a function of: (1) the angle of incidence of incoming radiation
α, (2) the refractive index n(λ), (3) a dimensionless leaf structural parameter that represents the number
of homogenous layers (or plates) Ns, and airspaces Ns − 1, specifying the number of cell wall/air space
interfaces within the plant leaf mesophyll, and (4) the contents of biochemical components per leaf
area Cspe, multiplied by the corresponding absorption coefficients kspe(λ).

Several versions of the model have been published since first introduced in 1990 [12,22,27,28]:
the most recent version being PROSPECT-5 [29] and PROSPECT-D [30]. The biochemical components
used in PROSPECT-5 are presented in Table 1.

Table 1. Biochemical parameters used by the PROSPECT-5 model.

Symbol Biochemical Parameter Units

Ccab Leaf chlorophyll content µg cm−2

Ccar Leaf carotenoid content µg cm−2

Cw Equivalent water thickness g cm−2

Cm Dry matter content g cm−2

In the PROSPECT-5 version of the model, the incidence of incoming radiation α, refractive index
n(λ), and specific absorption coefficients kspe(λ) have been estimated and fixed in the model [29].
Therefore, the estimation of a single leaf’s reflectance and transmittance in PROSPECT-5 is driven
by user inputs: The Ns parameter and contents of the biochemical components per leaf area Cspe.
The spectral absorption coefficient k(λ) is estimated as:

k(λ) =
(Ccab ∗ kcab(λ)) + (Ccar ∗ kcar(λ)) + (Cm ∗ km(λ)) + (Cw ∗ kw(λ))

Ns
, (1)

Leaf transmittance τ(λ) and reflectance ρ(λ) are subsequently derived from the spectral absorption
coefficient k(λ), angle of incidence of incoming radiation α, refractive index n(λ), and number of
airspaces Ns − 1 following the methods introduced by Jacquemoud and Baret [22].
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The inversion of a model for the retrieval of biophysical variables is inherently an “ill-posed”
problem [31]: in many cases, it is likely that more than one set of values of the variables would satisfy
the inversion. Combal et al. [31] recommended the use of a priori information to address the “ill-posed”
nature of the problem by constraining the range of biophysical values resulting from the inversion,
thereby eliminating unrealistic solutions. Several studies have reported significant improvements
to biophysical parameter retrieval by using a priori information to constrain the inversion [32–34].
There is still a need, however, to advance our knowledge of the range of key biophysical variables and
of associated uncertainties [31,35,36].

The Ns parameter is a major source of uncertainty in the inversion of the PROSPECT model as
it is the only parameter that is based on a conceptual quantity (i.e., number of plates) rather than a
measurable physiological trait. Theoretically, Ns is connected to leaf characteristics such as thickness and
intercellular properties, including fraction of airspace and mesophyll cell structural dimensions [22,37].
The internal structural properties and cell types (i.e., epidermis, palisade, and spongy mesophyll) of
leaves play a key role in regulating internal light for maximizing photosynthetic activity, especially with
regard to energy not easily absorbed at the leaf surface [38,39]. For example, upper epidermis cell shape
(spherical vs elliptical) dictates the distribution of intercepted energy within the leaf while palisade
mesophyll cells act as a conduit for photons to enter the spongy mesophyll. Spongy mesophyll cells
and interior air spaces (many air–water interfaces) induce a scattering effect to maximize absorption
by chloroplasts. Since the visible (400–750 nm) and mid-infrared (> 1400 nm) regions are governed
by the two primary absorbers in leaf tissue (pigments and water, respectively), the NIR wavelengths
(750–1400 nm) represents the region in which leaves are most optically transparent and is primarily
influenced by leaf structural properties [40]. In PROSPECT, these intercellular characteristics are
lumped into the Ns parameter. Previous approaches to link Ns with physical traits, like specific leaf
area (SLA), are based on empirical relationships that are difficult to transfer [41]. As a result of the
simplification of leaf structural properties, Ns cannot be easily connected to any corresponding physical
traits [40].

The sensitivity analysis conducted by Ceccato et al. [41] demonstrated that Ns is a key parameter
within PROSPECT. When applying the model in direct mode to estimate leaf reflectance at 1600 nm,
Ns has the greatest influence on the uncertainty of the model output (41.1%), as compared to leaf water
content (36.4%) and dry matter content (22.5%). Consequently, when applying the model in inverse
mode, constraining the range of possible Ns values would greatly reduce the uncertainty in estimating
other biophysical variables of interest.

Jacquemoud and Baret [22] indicated that the different structural properties of monocotyledon
and dicotyledon species cause differences in estimated Ns values, with monocotyledon leaves ranging
between 1 and 1.5 and the thicker and structurally more complex leaves of dicotyledon leaves resulting
in Ns values between 1.5 and 2.5. Processes driven by leaf growth are also important when considering
the scattering of energy. Demarez [42] observed seasonal variation of Ns in select temperate deciduous
forest species and linked the change of Ns throughout time to the development of the leaves. In that
study, Ns increased gradually during leaf tissue development in the initial growth stages, plateaued
during most of the summer months, then rapidly increased during senescence. The rapid increase of Ns

at the end of the study period was linked with an amplified scattering effect caused from degradation
of leaf structural features resulting from the reduction of leaf water content. This link was made
because, as leaves approach fully turgid or wilted states, leaf cell size, shape, and distribution are
altered resulting in changes in scattering properties [43]. Despite this, we are not aware of any studies
that examine the effect of water stress on Ns, regardless of the fact that several studies used PROSPECT
inversion to estimate vegetation water content [41,44–47].

A few studies exist that examine the variation of Ns as a function of vegetation physiological
status (i.e., water stress) and phenology [13,22,27,42], but no prior study presents a comprehensive
analysis of this relationship. Zhang et al. [13] established an indirect relationship between leaf
reflectance and copper stress through the Ns parameter in two crop species at two vegetative growth
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stages. Jacquemoud and Baret [22] used a limited set of greenhouse measurements to state that a
difference exists between estimated Ns in monocotyledon and dicotyledon leaves; Jacquemoud et al. [27]
found that this difference might not be observed on leaves grown outdoors, but neither study took
phenology into consideration. Finally, Demarez [42] reported estimated Ns from leaves at various
stages throughout leaf development, but this study was limited to temperate tree species grown in a
deciduous forest under the same environmental conditions. Furthermore, to the best of our knowledge,
no published dataset reports reference Ns values of common monocotyledon and dicotyledon crop
species throughout the growing season.

The present study is designed to assess whether there is a statistically significant variation in Ns

as a function of phenology and irrigation, and to provide reference values of Ns to be used as a priori
information for the inversion of PROSPECT in future research.

The present study involved three main components: (1) a large data collection experiment
was performed over two growing seasons to collect a comprehensive dataset of leaf optical spectral
measurements for use in Ns estimation; (2) PROSPECT-5 was inverted to estimate Ns using the leaf
optical spectral dataset; (3) the distribution of estimated Ns values was analyzed statistically as a
function of phenological class and irrigation regime.

2. Materials and Methods

2.1. Data Collection

An extensive experiment was conducted in which plants (monocotyledon and dicotyledon)
were grown under controlled conditions to collect a representative dataset of leaf optical spectral
measurements over a period of 90 days, to cover the full phenological cycle of the plants. Additionally,
the plants were subjected to different irrigation regimes to create controlled water stress conditions.
Measurements were performed throughout the entire growing season. The phenological stages of
the plants grown were aggregated into three main phenological classes, defined to delimit periods in
which plants are most temperature and water sensitive.

2.1.1. Experimental Design

Pitkin’s forest research nursery during the summers of 2015 and 2016 contained three
monocotyledons (hard red wheat—Triticum durum Desf., soft white wheat—Triticum aestivum L.,
and upland rice—Oryza sativa L.) and one dicotyledon (soy—Glycine max L.). All four were grown in
2015, and two were also grown in 2016 (hard red wheat and soy). The plants were grown outdoors
in 45-well foam trays. Watering was controlled, following the procedures detailed below. Other
environmental variables, such as temperature, sunlight, and exposure to wind were not controlled.

Each tray contained 45 plants of the same species (one plant for each well); 2–3 seeds per well
were initially planted. After plant emergence, if more than one seed had germinated in the same well,
the additional plants were removed to ensure one seedling per well. Plants were watered through
sub-irrigation methods, allowing for direct control over the amount of water administered while
limiting tissue disease. The water for sub-irrigation contained a mixture of starter fertilizer to obtain a
nitrogen content of 50 ppm. To water a tray, an 18-gallon bin was filled with approximately 3 gallons
of the nitrogen starter mixture. The tray was placed in the bin to allow the starter mixture to soak
the tray up from the bottom. The tray would remain in the starter mixture for 30 minutes before
being removed. To determine whether sub-irrigation was necessary, each tray was weighed every day.
The tray was irrigated only if on that day its weight had dropped below a given percentage of the
initial tray saturation weight.

Plant extraction for performing the measurements began approximately 27 days after planting
to allow the plants to establish. For the plants grown in 2015, plant extraction and leaf optical
measurements occurred regularly once a week and three plants were removed from each tray during
the extraction. In 2016, plant extraction and measurements were dependent on watering frequency.
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Two plants were extracted and sampled immediately before watering occurred and again 24 h after
watering occurred.

The life cycle stages of the plants were aggregated into three main phenological classes (early,
mid, late), reported in Figure 1.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 16 
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Figure 1. Phenological aggregation into three classes for the species considered in this study. For each
species, the top line reports the observed crop growth stage recorded using commonly used growth
stage identification protocols. Growth phases and durations, outlined by Arraudeau and Vergara [48],
were used for identifying phenological stages of upland rice. The soy was identified using the protocol
outlined by Pedersen et al. [49]. Both red and white varieties of wheat followed the Zadok’s code [50].
The bottom row of each species row reports the phenological aggregation.

These three phenological classes were defined based on the sensitivity to drought (water deficit)
and temperature of each growth stage for each crop. The ‘early’ class was defined to include the
vegetative periods, where extreme temperatures and water deficit have consequences that slow or stop
development and reduce yield in later life cycle stages [51]. The ‘mid’ and ‘late’ classes encompass
the flowering and yield formation phases of the crop’s life cycle, respectively. In terms of successful
yield, these periods are the most sensitive to water and temperature extremes [51]. The crops used
in this study are less susceptible to drought or extreme temperatures when full maturity is achieved.
Therefore, life cycle stages after the ‘late’ phenological class were not considered, and plants were no
longer sampled.

Since the plants were grown outdoors, the samples were subjected to the same temperature and
sunlight conditions. The upland rice plants did not grow past the flowering growth stages as the local
outdoor conditions slowed development in the early and mid-phenological classes. As the experiment
ended after 90 days, before the upland rice plants reached the ripening growth phase, the upland rice
samples were aggregated into two phenological classes only (early and mid).

In 2015, plants were separated into three separate irrigation regimes resulting in three groups of
four trays (four species)—for a total of 12 trays. The trays were weighed daily at approximately the
same time of day to determine if watering should occur. Irrigation occurred when the tray reached
85%, 75%, and 60% of the initial saturated weight measured at the beginning of the growing season for
regimes 1, 2, and 3, respectively.

In 2016, all plants were watered following the same regime, hence only one tray per species was
grown. As in the 2015 experiment, the trays were weighed daily at approximately the same time of
day to determine if irrigation would occur. Irrigation occurred when the tray reached 60% of the initial
saturated weight measured at the beginning of the growing season.

2.1.2. Measurement Protocol

Extraction occurred by cutting the plant at the base, just above the soil line, and immediately
placing it in a plastic bag to minimize water loss. Bags were put in a cooler until processing in the
lab approximately an hour after extraction. Leaf sample water loss was assumed to be minimal
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during transportation to the lab for measurements. Extraction and leaf measurements occurred at
approximately the same time each day.

Leaf bidirectional reflectance factor (ρBRFλ) [dimensionless] and transflectance [dimensionless]
were measured with a PSR-3500 field spectroradiometer (Spectral Evolution, Inc). The instrument
collects measurements on a full spectral range of wavelengths, from 350 nm to 2500 nm, with a spectral
resolution of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. All data were interpolated to
1 nm sampling interval before further processing, resulting in 2151 bands. The field spectroradiometer
was equipped with a pistol-grip contact probe with leaf clip, using a 5-watt tungsten halogen source at
12-degree incidence zenith to the target for spectral measurements. The leaf clip attachment for the
contact probe includes a two-sided reversible plate that holds the leaf sample during measurement
and excludes ambient direct and scattered light from the sensor. One side of the plate is a near 100%
reflective Lambertian Spectralon panel (Labsphere Inc., North Sutton, NH) and the opposite side is a
black surface with near 0% reflectance. Radiance measurements were calibrated using the Spectralon
panel before scanning each leaf. The instrument was set to acquire and average 10 spectra per scan to
reduce noise and was considered the optimal compromise between time required for spectra collection
and noise reduction. Measurements were performed on five points of the leaf and subsequently
averaged. The black plate was used to measure ρBRFλ as it ensures that only electromagnetic radiation
directly reflected by the leaf is measured by the sensor, as any radiation transmitted through the leaf is
absorbed by the plate. The white plate was used as the background to measure leaf transflectance,
defined as the sum of leaf reflectance and double transmittance: The spectroradiometer acquires the
energy directly reflected by the leaf, plus the energy that is transmitted through the leaf, reflected by
the Spectralon panel, and transmitted through the leaf a second time [52]. While leaves from all plants
sampled after the 27-day establishment period were measured with the leaf clip, only leaves that fully
covered the leaf clip field of view area were considered in the present study.

2.1.3. Spectral Data Processing

A function based on the Kubelka-Munk theory of light scattering and absorption was applied to
measured leaf transflectance to estimate leaf transmittance (τλ) [dimensionless]:

τλ =

√
(ρTFλ − ρBRFλ)(

1
ρwλ
− ρBRFλ), (2)

where τλ is the estimated transmittance, ρTFλ is the measured transflectance of the leaf using the white
plate background, ρBRFλ is the measured reflectance of the leaf using the black plate background, and
ρwλ is the measured reflectance of the white plate. Transmittance estimated from Equation (2) has
been used in PROSPECT inversion problems with success in previous research [53] and is used in the
estimation of Ns for this study due to the unavailability of an integrating sphere for collecting the
spectral measurements.

Since the PROSPECT models were originally calibrated on directional hemispherical reflectance
spectra (ρDHRFλ) measured with an integrating sphere [22,29], inverting the PROSPECT-5 model using
leaf clip ρBRFλ measurements would not be appropriate [54].

Both ρBRFλ and ρDHRFλ result from the combination of a leaf surface reflectance component, which
accounts for the electromagnetic radiation that does not penetrate the leaf and is directly reflected,
and a diffuse reflectance component, which is the result of intercellular physical and biochemical
constituents [55]. By separating surface reflectance from the diffuse reflectance, it is possible to
correct, prior to the radiative transfer model (RTM) inversion, ρBRFλ measured with a leaf clip [56].
Bousquet et al. [55] and Jay et al. [54] summarized and demonstrated the principles, which connect
integrating sphere measured ρDHRFλ and leaf clip measured ρBRFλ, assuming a small incidence zenith,
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resulting in the characterization of the surface component, which can be used to account for the
differences in physical properties between ρDHRFλ and ρBRFλ:

ρBRFλ − ρBRFsurλ = ρDHRFλ − ρDHRFsurλ, (3)

At a wavelength of 445 nm, where strong absorption of leaf pigments occurs, it is possible to
assume only direct reflectance to occur at the leaf surface [57], thus estimating a simple function,
known as PROREF [56], is used to correct the ρBRFλ measurement of each leaf sample:

ρ′measλ = ρBRFλ − (ρBRF445 − ρmod445), (4)

where ρ′measλ is the adjusted spectral reflectance, and ρBRF445, and ρmod445 are the measured and
modeled leaf reflectance at 445 nm. ρmod445 was generated and Equation (4) was computed with each
iteration of the Ns inversion step described in Section 2.2, with constant values set for Ccab and Ccar

at 47.28 µg cm−2 and 10.31 µg cm−2, respectively, and the Ns value from the iteration. The solution
to Equation (5) was computed with each iteration of Ns inversion until minimization was reached.
The method for minimization is described in more detail in Section 2.2.

The pigment parameter values were determined by taking the average of Ccab and Ccar from
all of the leaves in the LOPEX leaf dataset [58]. Using only pigment values from soybean and rice
leaf, LOPEX samples did not significantly change ρmod445 (less than a tenth of a percent). Similarly,
the difference in ρmod445 generated with Ns = 1 and Ns = 3 was less than a half percent. An example of
the PROREF function being applied in the NIR region of measured mature soy leaf spectra is presented
in Figure 2.
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Figure 2. Comparison between measured and modeled leaf spectra in the NIR region (850–1150 nm):
(a) before PROREF adjustment; (b) after PROREF adjustment. The dashed red line represents the
modeled leaf spectra as output from PROSPECT-5. The solid black line represents the measured wheat
leaf spectra. The modeled leaf spectra were generated for this example figure with the biochemical
input parameters measured from a wheat leaf sample: Cw = 0.016, Cm = 0.004, and N = 1.38.

2.2. Data Analysis

The PROSPECT-5 model was inverted to estimate Ns for each leaf sample, using the
three-wavelength inversion method proposed by Féret et al. [29]. The method uses reflectance
and transmittances measured at three wavelengths in the NIR plateau, where the leaf spectral response
is more sensitive to the Ns parameter, rather than to the concentration of the biochemical components.
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The three wavelengths are identified based on the measured reflectance and transmittance of each leaf
sample in the 800–1300 nm range, as:

• λ1: Wavelength of minimum absorbance (i.e., the maximum of the sum of measured transmittance
and reflectance).

• λ2: Wavelength of maximum measured reflectance.
• λ3: Wavelength of maximum measured transmittance.

The approximate location of these three wavelengths are illustrated in Figure 3 on the same
example spectra as Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 16 
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Figure 3. Comparison between measured reflectance and transmittance, and estimated absorptance
(absolute difference between reflectance and transmittance) in the NIR region (850–1150 nm) of the
wheat leaf from Figure 1. The black ‘X’s mark the approximate locations of maximum reflectance
(λ1 = 880 nm) and transmittance (λ2 = 1071 nm), and minimum absorptance (λ3 = 853 nm) in the
NIR region.

The inversion is performed by minimizing a merit function, defined as:

J(Ns, ki(λi)) =
∑3

i=1
(ρmes(λi) − ρmod(Ns, k(λi)))

2 + (τmes(λi) − τmod(Ns, k(λi)))
2, (5)

where λi = (λ1, λ2, λ3) are the three wavelengths defined above, ρmes (λi) and τmes (λi) are the measured
reflectance and transmittance, ρmod (λi) and τmod (λi) are the reflectance and transmittance simulated
by applying the model in forward mode, and k(λi) is the absorption coefficient of an elementary
layer Ns at the three wavelengths. The function J was minimized using the Nelder-Mead downhill
simplex method [59], setting an arbitrary starting value for the numerator of Equation (1) and Ns,
and iteratively searching in the parameter space for the solution resulting in the minimum difference
between modeled and measured leaf spectra.

The population of Ns resulting from inversion of the measurements of each leaf sample
was analyzed through an ANOVA test to determine whether the range of variation of Ns can
be explained by considering plant type (monocotyledon vs. dicotyledon), phenological class
(early/mid/late), and irrigation regime (irrigation at 85%, 75%, and 60% of the initial saturated
weight, and pre-/post-irrigation). The statistical analysis was conducted as follows:
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1. The population of estimated Ns values was stratified into sub-populations according to the criteria
defined in Section 2.1.

2. A Welch’s two-sample t-test was performed to determine if the estimated means of monocotyledon
and dicotyledon Ns differed significantly from one another.

3. A Welch’s two-sample t-test was run to determine whether there was a significant difference
between the estimated means of pre- and post-irrigation Ns for each plant type.

4. Welch’s one-way ANOVA tests were run to test whether the variation of Ns in each plant type
can be explained by phenological class (early/mid/late) and irrigation regime (irrigation at 85%,
75%, and 60% of the initial saturated weight)

5. If the ANOVA test was significant at P ≤ 0.05, then Welch’s two-sample t-tests were carried
out to compare the means of classes within the sub-population of the plant type. For example,
if phenological class returned a significant result as an explanatory variable for Ns in the sampled
monocotyledon leaves, then the means of ‘early’, ‘mid’, and ‘late’ monocotyledon Ns would
be compared.

3. Results

In total, 230 independent estimates of Ns were retrieved from the spectral measurements: 158 from
the 2015 experiment and 72 from the 2016 experiment. The timeseries of estimated Ns from the 2015 and
2016 nursery experiments are presented in Figures 4 and 5, respectively. A summary of the estimated
Ns, stratified by plant type and phenological class, is presented in Table 2.

Table 2. Summary of leaf structure parameter (Ns) metrics 1.

Plant Type Total Early Mid Late

Monocotyledon (n = 118)
µ 1.46 1.35 1.5 1.66
σ 0.29 0.28 0.23 0.25

Max/Min 2.23/1.00 1.92/1.00 1.84/1.00 2.23/1.15
Upper/Lower IQ 1.68/1.27 1.57/1.03 1.70/1.39 1.73/1.52

Dicotyledon (n = 112)
µ 2.07 2.17 1.96 2.14
σ 0.27 0.19 0.25 0.29

Max/Min 2.96/1.61 2.54/1.91 2.89/1.61 2.96/1.64
Upper/Lower IQ 2.21/1.86 2.26/2.05 2.04/1.81 2.36/1.96

1 Stratified by species and phenological class. The 75th and 25th percentiles are the upper and lower interquartile
(IQ) limits, respectively.

The summary in Table 2 illustrates monocotyledon Ns values primarily fit within the range 1.3–1.7
(µ = 1.46, σ = 0.29) and dicotyledon Ns values exhibited a distribution primarily between 1.9 and 2.2
(µ = 2.07, σ = 0.27). Overall, a pattern of Ns increasing with days after seeding was observed with the
sampled monocotyledon plants, with lower values in the ‘early’ stage (µ =1.35, σ = 0.28) and higher
values in the ‘mid’ and ‘late’ stages: (µ = 1.50, σ = 0.23) and (µ = 1.66, σ = 0.25), respectively. Soy began
with higher estimated values of Ns (µ = 2.17, σ = 0.19), lower ‘mid’ stage (µ = 1.96, σ = 0.25), and finally
increased during the ‘late’ stage (µ = 2.14, σ = 0.29). The progression of distributions for each plant
type over time is illustrated in the box plots of Figure 6, again illustrating the high-low-high pattern
for dicotyledon soy and increase over time for the monocotyledon plants. The results from statistical
analyses described in Section 2.2 are presented in Table 3.
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Figure 4. Estimated Ns for the entire sample of the four species grown in the 2015 experiment: (a) white
wheat; (b) red wheat; (c) soy; (d) upland rice. In all four plots, the symbol indicates the three different
irrigation regimes: Treatments 1, 2, and 3 indicate respectively watering when the plant tray reached
85%, 75%, and 60% of the initial saturated weight.
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Figure 6. Box plots of the distribution of Ns as a function of plant type and phenological class: (a) 

dicotyledon soy during the 2015 and 2016 experiments for each phenological class; (b)  

Figure 5. Estimated Ns for the entire sample of the two species grown in the 2016 experiment:
(a) red wheat; (b) soy. In each plot, the symbol indicates the two different irrigation regimes: Pre-water
samples indicate estimated Ns before the trays were watered and post-water samples indicate estimated
Ns 24-h after the plants were watered.
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Figure 6. Box plots of the distribution of Ns as a function of plant type and phenological class:
(a) dicotyledon soy during the 2015 and 2016 experiments for each phenological class; (b) monocotyledon
wheat (hard red, soft white) and upland rice during the 2015 and 2016 experiments for each phenological
class; (c) both dicotyledon and monocotyledon plant types during both 2015 and 2016 experiments for
the entire season period. The box plots report median, interquartile range (IQR), whiskers (defined by:
Q3 + 1.5 *IQR and Q1-1.5*IQR), and outliers (dots).

Table 3. Welch’s two-sample t-test and analysis of variance 1.

Data Independent Variable F-Value T-Statistic

All Species 10.93 (< 0.001)

Monocotyledon Season period 10.227 (< 0.001)
2015 Irrigation regime 0.896 (0.413)
2016 Irrigation regime −1.122 (0.271)

Dicotyledon Season period 4.46 (0.017)
2015 Irrigation regime 2.422 (0.101)
2016 Irrigation regime −1.251 (0.22)

1 Welch’s two-sample t-test and analysis of variance for species, phenological class, and irrigation regime
sub-populations. ANOVA results are presented in the first two columns after the independent variable column.
Two-sample t-test results are presented in the last two columns. The independent variable name is asterisked if the
difference between population means are significant (P < 0.05).

The Welch’s two-sample t-test run for the whole dataset (‘all’) comparing Ns means by plant type
shows a significant difference (P < 0.001) between the means of monocotyledon and dicotyledon. It was
also determined that phenological classes influence the variation of estimated Ns within each plant type,
with F(2,115) = 13.40, P < 0.001 for monocotyledon phenological classes and F(2,109) = 7.10, P = 0.001
for dicotyledon phenological classes. Finally, no significant differences were observed between the
irrigation regime Ns means for either 2015 or 2016.

Since it was determined that phenological classes were a significant source of variance in estimated
Ns, Welch’s two-sample t-tests were run to intercompare the phenological classes sub-population
means of Ns (early/mid/late) within each plant type. The results from those analyses are presented in
Table 4. Significant differences between sub-population means of Ns in every consecutive phenological
class were observed.
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Table 4. Welch’s two-sample t-test 1.

Population Independent
Variable T-Value df Probability of > T

Monocotyledon Early vs Mid −2.486 88 0.015
Mid vs Late −2.626 58 0.011

Early vs Late −4.912 84 <0.001
Dicotyledon Early vs Mid 3.002 59 0.004

Mid vs Late −3.3 95 0.001
Early vs Late 0.373 64 0.71

1 Results from Welch’s two-sample t-test. The independent variable name is asterisked if the difference between
population means are significant (P < 0.05).

4. Discussion

Our analysis relied on an extensive experimental dataset, collected over two growing seasons
with a rigorous data collection protocol. The distribution of estimated Ns was consistent with expected
values for monocotyledon and dicotyledon plant types: monocotyledon Ns primarily ranged between
values of 1.0–1.5, and dicotyledon Ns primarily ranged between values of 1.5 and 2.5 [27]. The statistical
analysis performed on the population of estimated Ns indicated that there was a significant difference
between plant types, and that there was a significant difference by broad phenological class. There was
instead no significant difference between Ns estimated from plants subject to different irrigation regimes.

The results align with previous literature reporting that structural changes, driven by growth and
maturation, influence Ns [23,42]. In particular, we observed a pronounced increase of Ns over time
in monocotyledon leaves and a less pronounced dicotyledon seasonality, with higher Ns in the early
and late phases, than in the mid growing phase. While the monocotyledon seasonality is in line with
previous results derived from measurements on broadleaved plants [42], to the best of our knowledge,
the reduced sensitivity of Ns to phenology in certain dicotyledon leaves has not been reported in the
available literature. Higher mean Ns in the ‘early’ phenological stages of the dicotyledon plants may
be attributed to a change of leaf properties as the leaves begin to mature, i.e., leaf thickness decreasing
or the wider spatial distribution of trichomes per unit leaf area as the leaves mature, which affect
the transmission of NIR energy. A more detailed investigation of Ns as a function of phenology in
dicotyledon species, which will examine a wider variety of species, will be conducted in the future. For
monocotyledon Ns, while samples were rejected if the leaf material did not cover the full leaf clip field
of view, the strong variation in data points derived from measurements performed less than 60 days
after seeding may be attributed to errors with the leaves sampled during the early tillering stages,
when in some cases the leaves were still too small for a reliable spectral measurement.

The irrigation regime did not explain the variation estimated Ns. The presence of water either has
a direct influence on the spectral signal of leaves, through the rotation-vibration features of water in
the mid-infrared region, or an indirect influence, through the structural and physiological biochemical
responses of leaves to hydration or dehydration. The result that irrigation regime did not influence
the estimation of Ns is consistent with the fact that the estimation of Ns is independent of both direct
(i.e., mid-infrared absorption characteristics of water) and most indirect (i.e., changing pigment content)
water content influences. Leaf wilting does influence the estimation of Ns, but only when water loss
has developed sufficiently enough to result in severe leaf dehydration, causing a significant response
in the NIR spectral region [60]. Although the irrigation regime did not have a significant influence
over the variance of the Ns parameter in our study, water still has the potential to affect the structural
components of leaves and should be considered on an individual species and ecosystem basis along
with other environmental factors, such as toxicity, nutrient availability, and disease. Future studies,
which examine the influence of wilting or fully turgid cellular properties on the estimation of Ns

in more extreme cases, will need to account for irrigation regimes on an individual species basis.
Notwithstanding these limitations, the finding that the irrigation regimes used in the current study do
not significantly influence Ns has particular relevance as it implies that a priori Ns values, tabulated
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solely as a function of plant type and phenology (i.e., Table 2), can be used to constrain the inversion of
PROSPECT. A common use of PROSPECT is the estimation of canopy water content, and in such case
the leaf water content is evidently unavailable to inform the a priori selection of Ns.

A few caveats should be considered if using a priori Ns values, estimated in this study through
leaf-level inversions, for canopy level studies. First, the heterogeneity of the canopy should be
considered, as different plant types and different phenological stages might be present. Second, Ns may
vary within a single species depending on other factors besides phenology, such as environmental
conditions [13] and illumination (sun vs shade) [42]. Future research will be focused on coupled
radiative transfer model inversion for estimating canopy traits in an agricultural setting where species,
environmental conditions, illumination, and phenology are relatively uniform, and on the evaluation
of the reduction of canopy water content uncertainty that can be attained by constraining the range of
variation of Ns.

5. Conclusions

This paper presents the results of an extensive experiment aimed at the assessment of the
PROSPECT radiative transfer model leaf parameter (Ns) as a function of phenological class, and
whether water content would indirectly influence the estimation of the Ns parameter. While several
datasets of leaf spectral and biophysical properties are available [29,58,61,62], our results, obtained over
the full extent of the growing season and accounting for a range of irrigation regimes, provide the first
detailed phenology dependent record of Ns values for two common crop species. The results indicate a
significant difference between Ns estimated on the considered monocotyledon and dicotyledon plants,
and new findings of a significant difference between Ns estimated at different phenological stages.
The results also indicate other new findings, namely that irrigation regimes did not result in significant
Ns differences for either monocotyledon or dicotyledon plant types. Since only four plant species
(three monocotyledons and one dicotyledon) were considered in this study, further research will be
needed to assess whether these results can be generalized to different species. A second priority for
future research will be on the quantitative assessment of the reduction of uncertainty in estimating
plant biophysical variables when applying a priori Ns values in PROSPECT inversions and whether
constraining the range of variation of Ns can reduce the uncertainty of retrieving certain canopy
variables in coupled radiative transfer model inversion.
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