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Abstract: In this paper, a novel satellite image segmentation technique based on dynamic Harris
hawks optimization with a mutation mechanism (DHHO/M) is proposed. Compared with the
original Harris hawks optimization (HHO), the dynamic control parameter strategy and mutation
operator used in DHHO/M can avoid falling into the local optimum and efficiently enhance the
search capability. To evaluate the performance of the proposed method, a series of experiments are
carried out on various satellite images. Eight advanced thresholding approaches are selected for
comparison. Three criteria are adopted to determine the segmentation thresholds, namely Kapur’s
entropy, Tsallis entropy, and Otsu between-class variance. Furthermore, four oil pollution images are
used to further assess the practicality and feasibility of the proposed method on real engineering
problem. The experimental results illustrate that the DHHO/M based thresholding technique is
superior to others in the following three aspects: fitness function evaluation, image segmentation
effect, and statistical tests.

Keywords: satellite image; thresholding; image segmentation; Harris hawks optimization; mutation
mechanism; Kapur’s entropy

1. Introduction

Image segmentation is a fundamental and crucial stage in some applications, such as computer
vision, pattern recognition, image classification, etc. [1–4]. Generally speaking, the purpose of the
segmentation operation is to partition the grayscale or color image into several non-overlapping regions
with unique characteristics. The gray levels of the pixels in the same area are roughly the same, while
the pixels from different areas are significantly different. In the last few decades, many segmentation
methods have been proposed by scholars, such as clustering, fractal-wavelet modeling, region growing,
and thresholding [5–7]. Among all available techniques, threshold-based (thresholding) method is
extensively used due its simplicity and efficiency [8,9].

Thresholding technique can be mainly divided into two categories: bi-level and multilevel [10].
Bi-level thresholding splits the image into two classes according to the intensity. However, if the
image contains much information and multiple objects, the bi-level thresholding is not competent.
Therefore, as an extension of bi-level thresholding, multilevel thresholding is proposed to handle the
current issues [11]. For example, Díaz–Cortés et al. segment the breast thermograms using multilevel
thresholding, which provides a highly reliable clinical decision support and advances the progress
of thresholding approach in medical imaging domain [12]. Also, multilevel thresholding is adopted
by Bhandari et al. to process the satellite images, which improves the segmentation accuracy and
obtains high-quality segmented images [13]. In fact, researchers have introduced numerous approaches
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based on different criteria to select the segmentation thresholds over the past few decades, such as
Kapur’s entropy [14], Tsallis entropy [15], and Otsu between-class variance [16]. Kapur’s entropy
measures the homogeneity of segmented regions by maximizing the histogram entropy. Tsallis entropy
also determines the thresholds by maximizing the entropy, but there are certain constraints. Otsu’s
technique maximizes the between-class variance of the segmented image.

Multilevel thresholding can be considered as a NP-hard problem with high complexity [10]. To be
more specific, the computational complexity increases exponentially with the number of thresholds,
which greatly affects the efficiency and feasibility. To overcome this drawback, meta-heuristic
algorithms are introduced into this domain and combined with the thresholding technique. In 2017,
He and Huang proposed a modified firefly algorithm (MFA) based method to select the segmentation
thresholds [11]. Kapur’s entropy, Otsu between-class variance, and minimum cross entropy are served
as fitness functions. Experimental results reveal that the proposed technique can efficiently reduce
the computational complexity and produce segmented images with more details. Khairuzzaman
and Chaudhury combined the grey wolf optimizer (GWO) with thresholding for grayscale image
segmentation [7]. Kapur’s entropy and Otsu’s method are used to select the segmentation thresholds.
It can be found from the results that the proposed approach can accurately determine the segmentation
thresholds and significantly reduce the computational complexity. In 2017, Oliva et al. presented
an efficient magnetic resonance (MR) image segmentation method based on crow search algorithm
(CSA) and minimum cross entropy [17]. The results of the comparison experiment show that the
well-delimited regions obtained are easier to distinguish than other techniques [17]. Furthermore, some
other algorithms or their modified versions have also been introduced into this domain, such as whale
optimization algorithm (WOA) [18], multi-verse optimizer (MVO) [19], grasshopper optimization
algorithm (GOA) [20], social spiders optimization (SSO) [21], krill herd optimization (KHO) [22], and
cuckoo search (CS) [23] as well as Lévy flight firefly algorithm (LFA) [24], hybrid differential evolution
(hjDE) [25], adaptive wind driven optimization (AWDO) [26], etc. These promising results motivate us
to apply some other efficient meta-heuristic algorithms to multilevel image thresholding. Besides, as
stated in No-Free Lunch Theorem (NFL) [27], there is no algorithm can solve all optimization problems.
Thus, the recently proposed and uninvestigated algorithm also has potential.

Harris hawks optimization (HHO) is a high-performance, population-based, gradient-free
optimization technique, which was proposed by Heidari et al. in 2019 [28]. Inspired from the
cooperative behavior and chasing style of Harris hawks in nature, the mathematical model of HHO
was established [28]. Similar to other meta-heuristic algorithms, the exploration and exploitation stages
are also included in HHO. Each Harris hawk represents a candidate solution in the search space and
the best solution obtained so far is considered as the prey or approximate optimal solution. During the
whole process of predation, the Harris hawks patiently wait for the prey, besiege the prey to make it
exhausted, and finally attack the prey with a surprise pounce. According to [28], HHO has presented
better or occasionally competitive results than well-established techniques on 29 benchmark problems
and several real-world engineering tasks. These phenomena illustrate the potential and the superiority
of HHO, which also motivates us to apply this powerful algorithm to multilevel image thresholding.

No algorithm is perfect. Each algorithm requires some adjustments to fit the current problem, as
does the HHO algorithm. For example, the exploration and exploitation phases of HHO are unbalanced.
To be more specific, the absolute value of the parameter E cannot be larger than 1 during the latter half
of the iteration (e.g., the last 250 of 500 maximum iterations), that is, the search agent does not perform
a global search, although the current region may not be promising. For some complex optimization
tasks, there is no guarantee that the population has gathered near the global optimum at the end of
the exploration phase, resulting in premature convergence and local optimization. Therefore, two
improvement strategies are introduced in this paper to enhance the optimization ability of the original
HHO. As for the former, a novel dynamic control parameter strategy is presented to avoid trapping
into the local optimum. The essence of the improvement strategy is to add a disturbance term to the
update formulation of the escaping energy (E). Sine and cosine functions are used in combination
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to control where the disturbance peak appears. A Gaussian distribution is also adopted to increase
randomness. In the experiment, not only the influence of parameter change on the performance
of disturbance term, but also the reason for using the Gaussian distribution instead of the Levy
distribution is analyzed. As for the latter, a famous mutation operator, known as DE/best/2 is utilized
to improve the global search efficiency and population diversity [29]. Then, the modified version
of HHO, known as dynamic Harris hawks optimization with a mutation mechanism (DHHO/M) is
applied to multilevel image thresholding.

Satellite imagery contains a wealth of information and is crucial to environmental resource
monitoring and evaluation, such as forest cover, wetland resources, climate change, etc. Although
remote sensing technology has many advantages (e.g., fast update cycle, fewer interference factors,
and saving manpower and material resources), it is still a challenge to extract boundaries, locate
objects and separate regions in high-resolution satellite images [30]. To solve the above problems,
DHHO/M is combined with thresholding technique for satellite image segmentation. A series of
experiment are carried out to evaluate the performance of the proposed method. The experiments can
be mainly divided into four parts. For the first part, the impact of both the improvement strategies on
performance is investigated and analyzed. For the second and the most important part, the DHHO/M
based approach is compared with four advanced thresholding techniques on satellite images. Various
performance metrics have been taken into consideration, such as objective function value, standard
deviation (Std), peak signal to noise ratio (PSNR), mean squared error (MSE), structural similarity
index (SSIM), feature similarity index (FSIM), and convergence property as well as the Wilcoxon’s
rank sum test and Friedman test. For the third part, DHHO/M is compared with other thresholding
techniques based on different criteria. For the fourth part, four oil pollution images are used to further
assess its practicality and feasibility on real engineering problems.

The contributions of this paper have three aspects:

1. Introduce the recently proposed HHO into multilevel image thresholding. To the best of the
authors’ knowledge, this attempt has not been made yet.

2. Dynamic control parameter strategy and mutation mechanism are used to improve the search
efficiency of the original HHO.

3. Objectively and comprehensively evaluate the performance of the proposed technique.

The structure of this paper is described as follows: in Section 2, the problem statement and
definitions of Kapur’s entropy, Tsallis entropy, and Otsu’s method are given. Section 3 briefly reviews
the original HHO. In Section 4, the proposed DHHO/M based image thresholding technique is
introduced in details. Section 3 presents the experimental results and relevant discussions. Finally, the
conclusion and future research direction are represented in the last section.

2. Material and Methods

2.1. Problem Statement

For multilevel image thresholding, the ultimate goal is to select the combination of segmentation
thresholds. Assume that the given image is segmented into n+ 1 classes {C0, C1, . . . , Cn} by n thresholds
{T1, T2, . . . , Tn}, which can be defined as follows [31]:

C0 =
{
I(i, j)

∣∣∣0 ≤ I(i, j) ≤ T1 − 1
}

C1 =
{
I(i, j)

∣∣∣T1 ≤ I(i, j) ≤ T2 − 1
}

. . .
Ck =

{
I(i, j)

∣∣∣Tk ≤ I(i, j) ≤ L− 1
} (1)

where I(i, j) denotes the gray level of the (i, j)th pixel, and L is the number of gray levels in the
given image.
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Furthermore, the combination of the optimal thresholds is determined by optimizing (maximizing
or minimizing) the objective function, which is mathematically expressed as the following equations:{

T∗1, T∗2, . . . , T∗n
}
= arg max

T1,...,Tn
f (T1, T2, . . . , Tn), (2)

{
T∗1, T∗2, . . . , T∗n

}
= arg min

T1,...,Tn
f (T1, T2, . . . , Tn), (3)

where f represents the objective function and
{
T∗1, T∗2, . . . , T∗n

}
is the combination of the

optimal thresholds.

2.2. Multilevel Thresholding

2.2.1. Kapur’s Entropy

Kapur’s entropy is a famous thresholding method that selects the thresholds based on the entropy
of the segmented classes [14]. The objective function can be defined as:

fKapur =
∑n

i=0
Hi, Hi = −

∑Ti+1−1

j=Ti

p j

ωi
ln

( p j

ωi

)
, (4)

where ωi =
∑Ti+1−1

j=Ti
p j, p j = h( j)/N. ωi indicates the sum of the probabilities of the pixels in the ith

class, p j is the proportion of pixels in each gray level to the total, h( j) represents the frequency, and N
is the number of all pixels. Besides, for multilevel image thresholding, T0 = 0 and Tn+1 = L.

2.2.2. Tsallis Entropy

Tsallis entropy is extensively used by researchers in the field of image thresholding to choose the
optimal combination of thresholds [15]. The objective function is mathematically represented as:

fTsallis =
∑n

i=0
Sci

q + (1− q)
∏n

i=0
Sci

q , Sci
q =

1−
∑Ti+1−1

j=Ti

( p j
ωi

)q

q− 1
, (5)

where q is a constant equal to 4, the value selected is the same as [30,32].

2.2.3. Otsu Between-Class Variance

Otsu’s method was proposed in 1979, which maximizes the between-class variance of segmented
classes to determine the thresholds [16]. The objective function is presented as follows:

fOtsu =
∑n

i=0
σ2

i , σ2
i =

∑Ti+1−1

j=Ti
ωi(µi − µ), (6)

where µi =
∑Ti+1−1

j=Ti

jp j
ωi

, µ =
∑L−1

j=0 jp j. µ is the mean intensity for whole image.
The mathematical form of above three optimization problems can be expressed as:
Consider

→
x = [x1, x2, . . . , xn].

Maximize fKapur(
→
x ) = −

∑n
i=0

∑xi+1−1
j=xi

p j
ωi

ln
( p j
ωi

)
or

fTsallis(
→
x ) =

∑n

i=0

1−
∑xi+1−1

j=xi

( p j
ωi

)q

q− 1
+ (1− q)

∏n

i=0

1−
∑xi+1−1

j=xi

( p j
ωi

)q

q− 1

or
fOtsu(

→
x ) =

∑n

i=0

∑xi+1−1

j=xi
ωi(µi − µ).

Subject to xi must be integer, i = 1, 2, . . . , n Variable range 0 ≤ xi ≤ 255.
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As discussed above, the computational complexity of the thresholding techniques will increase
exponentially with the number of thresholds. Thus, meta-heuristic algorithms are used to optimize the
objective functions in Equations (4)–(6) to improve the efficiency.

2.3. Harris Hawks Optimization

HHO is a novel population-based, gradient-free optimization technique, which was proposed by
Heidari et al. in 2019 [28]. HHO simulates the predation, surprise pounce, and attacking behaviors
of Harris hawks in nature. Similar to other meta-heuristic algorithms, HHO also includes two
optimization stages, namely exploration and exploitation (see Figure 1), which are described in the
following subsections.
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2.3.1. Exploration Stage

Harris hawks have insightful eyes that help them track and detect prey, however, sometimes the
prey is not easy to find. Then, the Harris hawks will perch, wait patiently, and may last for hours.
In HHO, above behaviors are modeled as the exploration stage, which can be expressed as:

Xt+1
i =

Xt
rand − r1

∣∣∣Xt
rand − 2r2X(t)

∣∣∣ q ≥ 0.5(
Xrabbit −Xt

m

)
− r3(LB + r4(UB− LB)) q < 0.5

, (7)

where Xt+1
i is the position of ith individual in (t + 1)th iteration, Xrabbit denotes the position of the

rabbit (prey), and q is a random number in the interval [0,1] that converts the two strategies. r1, r2, r3,
and r4 are also random numbers inside [0,1]. LB and UB are the upper and lower bounds of the given
optimization problem respectively. Xt

m represents the average position of the population that can be
calculated as follows:

Xt
m =

1
N

∑N

i=1
Xt

i , (8)

where N is the size of the population, and Xt
i is the position of ith individual in tth iteration.

2.3.2. Transition from Exploration to Exploitation

The transition between exploration and exploitation is critical to the performance of meta-heuristic
algorithms. In HHO, the escaping energy of the rabbit, known as E, is used to convert these two
phases. The value of E decreases as the number of iterations increases, which can be mathematically
modelled as:

E = 2E0 ∗

(
1−

t
tmax

)
, (9)
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where E0 is a random number that changes in the interval [−1,1], t denotes the current iteration, and
tmax represents the maximum number of iterations.

More specifically, the value of E decreases from [−2,2] to 0 as the iterative process. If |E| ≥ 1, the
exploration stage is used to search for the prey; If |E| < 1, the exploitation stage is adopted to exploit
the promising area.

2.3.3. Exploitation Stage

After detecting the prey, the Harris hawks tend to attack it using surprise pounce. The actual
predation process is often very complicated, the prey has a chance to escape and the Harris hawks also
react differently according to the behavior of the prey. In order to better simulate the real situation,
four strategies are used in the exploitation stage. A random number (r) is used to determine whether
the prey has successfully escaped. The case r < 0.5 indicates successful escape, while r ≥ 0.5 shows
unsuccessful escape. The escaping energy of the prey (E) affects the behavior of the Harris hawks.
If |E| ≥ 0.5, the soft besiege occurs; if |E| < 0.5, the hard besiege happens [28].

A. Soft besiege

Considering r ≥ 0.5 and |E| ≥ 0.5, the rabbit has enough energy and keeps trying to escape, even
though these acts are in vain and will only make the prey itself exhausted. At the same time, the Harris
hawks softly encircle the rabbit and then attack it using surprise pounce. The mathematical model is
given as follows:

Xt+1
i = ∆Xt

i − E
∣∣∣JXrabbit −Xt

i

∣∣∣ (10)

∆Xt
i = Xrabbit −Xt

i , (11)

where ∆Xt
i indicates the difference between the position vector of the rabbit and the current individual.

r5 is a random number inside [0,1], and J = 2(1− r5) indicates the random jump strength of the rabbit
during the escape process.

B. Hard besiege

Considering r ≥ 0.5 and |E| < 0.5, the rabbit becomes so exhausted and does not have enough
escaping energy. Meanwhile, the Harris hawks hardly encircle the rabbit to conduct the final pounce.
This process can be modeled as:

Xt+1
i = Xrabbit − E

∣∣∣∆Xt
i

∣∣∣. (12)

C. Soft besiege with progressive rapid dives

Considering r < 0.5 and |E| ≥ 0.5, the rabbit has enough energy and managed to escape. In the
meantime, a more intelligent soft besiege is performed before the surprise pounce. Note that the
position update of the Harris hawks in this situation is a two-step process. If the first step is not an
improved move, then the second step will be executed. For the former part, it can be mathematically
modelled as:

Y = Xrabbit − E
∣∣∣JXrabbit −Xt

i

∣∣∣. (13)

For the latter part, the Levy flight is used to simulate the rapid, abrupt, and irregular movement
of Harris hawks when chasing the rabbit. The formulation for position update is presented as:

Z = Y + S× Levy(dim). (14)

where dim is the dimensions of the optimization problem, S is a random vector of size 1× dim, and
Levy denotes the Levy distribution that is defined as:

Levy(x) = 0.01×
u× σ

|v|
1
β

, σ = (
Γ(1 + β) × sin (

πβ
2 )

Γ( 1+β
2 ) × β× 2(

β−1
2 )

)

1
β

, (15)



Remote Sens. 2019, 11, 1421 7 of 35

where u and v are random values in the interval [0,1]. β is a constant equal to 1.5.
Then, for a problem to be minimized, the mathematical model of the whole process at this stage is:

Xt+1
i =

Y i f f (Y) < f
(
Xt

i

)
Z i f f (Z) < f

(
Xt

i

) , (16)

where f is the fitness function for the given optimization problem.

D. Hard besiege with progressive rapid dives

Considering r < 0.5 and |E| < 0.5, the rabbit does not have enough energy but it successfully
escapes. In this situation, the Harris hawks perform a hard besiege before the surprise pounce, and
they try to bring the whole group closer to the prey, not just the individual. Therefore, the formulation
for position update of the Harris hawks is given as follows:

Xt+1
i =

Y i f f (Y) < f
(
Xt

i

)
Z i f f (Z) < f

(
Xt

i

) , (17)

where
Y = Xrabbit − E

∣∣∣JXrabbit −Xt
m

∣∣∣ (18)

Z = Y + S× Levy(dim) (19)

Furthermore, the pseudocode of HHO is represented in Algorithm 1.

Algorithm 1 Pseudocode of Harris hawks optimization (HHO) algorithm

Input: The size of population N, maximum number of iterations tmax.
Output: The position of the rabbit and the corresponding fitness function value.

1. Initialize the position of the hawks Xi and the rabbit Xrabbit.
2. Initialize the fitness values of the hawks fi and the rabbit frabbit.
3. Set the dimensions of the optimization problem dim.
4. While (termination condition is not met (t < tmax)) do
5. Check the boundary and evaluate the fitness value of each hawk fi.
6. Update the location Xrabbit and fitness value frabbit of rabbit if there is a better one.
7. For (each hawk (i = 1 : N)) do
8. Update the energy of the rabbit E using Equation (9).
9. If (|E| ≥ 1) then % Exploration Stage
10. Update the position using Equation (7).
11. Else If (|E| < 1) then % Exploitation Stage
12. If (r ≥ 0.5 and |E| ≥ 0.5. ) then % Soft besiege
13. Update the position using Equation (10).
14. Else If (r ≥ 0.5 and |E| < 0.5) then % Hard besiege
15. Update the position using Equation (12).
16. Else If (r < 0.5 and |E| ≥ 0.5) then % Soft besiege with progressive rapid dives
17. Update the position using Equation (16).
18. Else If (r < 0.5 and |E| < 0.5) then % Hard besiege with progressive rapid dives
19. Update the position using Equation (17).
20. End If
21. End If
22. End For
23. End While
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2.4. Proposed Dynamic Harris Hawks Optimization with Mutation Mechanism

In this section, the proposed DHHO/M algorithm based image segmentation technique is
introduced in detail. For multilevel color image segmentation problem, the input to the method was the
histogram of each color component, and the output was the segmentation thresholds. This process was
implemented by optimizing the objective functions in Equations (4)–(6) using the DHHO/M algorithm.
The following subsections will discuss the two improvement strategies respectively, and then give the
algorithm steps. Finally, the time complexity of DHHO/M and HHO is analyzed.

2.4.1. Dynamic Control Parameter Strategy

In the original HHO algorithm, the transition of the exploration and exploitation phase is based
on the escaping energy (E) of the rabbit. More specifically, the absolute value of the parameter E
decreased from 2 to 0 throughout the whole iteration. If |E| > 1, HHO explored the search space to
determine the promising area. On the contrary, if |E| < 1, the exploitation strategy was adopted to
enhance the local search efficiency. However, the main drawback of this transition process is that the
absolute value of the parameter E cannot be larger than 1 during the latter half of the iteration (e.g., the
last 250 of 500 maximum iterations), that is, the search agents do not perform global search during the
second half of the iteration, although the current region may not be promising. For some complex
optimization tasks, there was no guarantee that the population has gathered near the global optimum
at the end of the exploration phase, resulting in premature convergence and local optimal values.

Therefore, a novel dynamic control parameter strategy is introduced with the purpose of jumping
out of the local optimum under the premise of ensuring accuracy. The essence of the improvement
strategy is to add a disturbance term to the update formulation of E in Equation (9). The disturbance
term and modified update formulation of E are presented as follows:

δ = randn ∗ (sinα
(
π
2
∗

t
tmax

)
+ cos

(
π
2
∗

t
tmax

)
− 1) (20)

E = 2E0 ∗

(
1−

t
tmax

)
+ δ, (21)

where sin and cos denote the sine and cosine functions respectively. randn is a random number subject
to Gaussian distribution. t and tmax represent the current iteration and the maximum number of
iterations respectively. α is a constant that determines where the disturbance peak appears.

Figure 2 illustrates the variation of the disturbance term δ under different values of parameter α.
It can be found that the amplitude decreases as the value of the parameter α increases, and the high
amplitude disturbance occurs earlier when α = 2.
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Figure 2. Variation of the disturbance term δ under different values of parameter α.

In order to more intuitively illustrate the impact of dynamic control parameter strategy on the
escaping energy of the rabbit, the variation of the parameter E with the number of iterations is also
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given in Figure 3. It is worth mentioning that the values of E was not only the key to global and local
phases transition, but also affects the convergence of the algorithm because it was part of the position
update formulation. To be more specific, a larger value indicates more exploration, while a smaller
value indicates more exploitation. As can be observed from the figure, when α = 2, the absolute value
of E in the late iteration can be abruptly greater than 1, but the amplitude of the disturbance term is too
large, which seriously affects the convergence performance. In the case of α = 3, the amplitude of the
perturbation term is too small, which cannot enhance the ability of jumping out of the local optimum,
but will not affect the performance of the algorithm itself. Considering α = 2.5, it can be found that the
convergence property was not greatly affected, and the global search strategy also had an opportunity
to be adopted in the later iteration. As far as the authors are concerned, for optimizing some fitness
functions that contain local best, setting α to 3 may reduce the accuracy; setting α to 2 made the results
obtained similar to the original algorithm; while setting α to 2.5 can improve the performance of the
algorithm. These hypotheses will be verified in the experimental section.
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Figure 3. Variation of the escaping energy of the rabbit E under different values of parameter α.

In addition, it was necessary to explain the reason why the Gaussian distribution is used instead
of the Levy distribution in the disturbance term. Although the characteristic of usually small steps
and occasional large jumps in Levy distribution fits well with the idea of the improvement strategy,
sometimes there are some extreme cases as shown in Figure 4, which can seriously affect the performance
of the algorithm. More specifically, the disturbance of uncertain position makes the population evolve
slowly and even degenerate.

Reducing the step size of Levy flight can theoretically improve this situation, but in fact, it is
difficult to determine an appropriate value to meet the desired requirements. In our study, if the step
size is larger than 0.05, disturbances with large amplitude will always appear; if the step size is smaller
than 0.01, the disturbance is not enough to affect the value of E; while the value between the two is
still not ideal. Therefore, the Gaussian distribution is more suitable for the current problem, and the
amplitude generated by it is acceptable compared with the Levy distribution.
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Furthermore, according to our experimental statistics, the disturbance peaks of our proposed
strategy usually appearred during the 300th to 400th iterations (the maximum number of iterations
was 500), especially the 350th to the 400th iterations.

2.4.2. Mutation Mechanism

In order to enhance the global search efficiency of HHO, mutation mechanism was introduced into
the exploration stage. The famous DE/best/2 mutation operator was adopted to replace the original
location update strategy in Equation (7) [29]. The formulation is given as follows:

Xt+1
i = Xt

best + F
(
Xt

r1 −Xt
r2

)
+ F

(
Xt

r3 −Xt
r4

)
, (22)

where xt+1
i indicates the position of the ith individual at the tth iteration, and F is the scaling factor. r1,

r2, r3, and r4 are different integers selected from the range [1, N] and distinct from i. N denotes the size
of population. Thus, Equation (7) can be rewritten as follows:

Xt+1
i =

Xt
best + F

(
Xt

r1 −Xt
r2

)
+ F

(
Xt

r3 −Xt
r4

)
q ≥ 0.5(

Xrabbit −Xt
m

)
− rand1× (LB + rand2× (UB− LB)) q < 0.5

, (23)

where rand1 and rand2 are random numbers in the interval [0,1].
The operators of differential evolution (DE) have been widely used as part of modified or hybrid

algorithm to improve the optimization capability and search efficiency. This is also the motivation
for us to adopt the mutation operator mentioned above. For example, Xiong et al. proposed a
hybrid algorithm of whale optimization algorithm (WOA) and DE, known as DE/WOA, for extracting
parameters of solar photovoltaic models [33]. DE/best/2 is utilized in this proposed algorithm
with the purpose of improving the ability of exploring the search space and locating the region of
global optimum [33]. Also, Jadon et al. used DE to modify the onlooker bee phase of artificial
bee colony (ABC) algorithm [34]. DE/best/1 is adopted to accelerate the convergence speed and
maintain population diversity. Furthermore, DE has also been embedded or merged into some other
improved versions of meta-heuristic algorithm, such as moth search algorithm based DE (MSDE) [35],
improved whale optimization algorithm (IWOA) [36], self-adaptive gravitational search algorithm
and DE (SGSADE) [37], improved dragonfly algorithm (IDA) [38], gbest-guided ABC (GABC) [39],
hybrid whale optimization algorithm with DE (WOA-DE) [18], chaotic opposition-based grey wolf
optimization algorithm based on DE and disruption operator (COGWO2D) [40], etc.

In fact, there are other types of mutation and crossover operators that have been proposed by
researchers to enhance the optimization ability. In 2019, Xu et al. introduced a series of new variants of
moth-flame optimization (MFO) by combining MFO with Gaussian mutation (GM), Cauchy mutation
(CM), Lévy mutation (LM) or the combination of GM, CM and LM [41]. The experimental results
demonstrated that the three strategies can significantly boost exploration and exploitation capabilities
of the basic MFO. For the crossover operators, Kita et al. analyzed the unimodal normal distribution
crossover (UNDX) by discussing the importance of the distribution and statistics of the offspring
yielded by a crossover operator for its evaluation [42]. Akimoto et al. proposed an adaptive real-coded
ensemble crossover (AREX) that combines the adaptation of expansion rate technique and the crossover
mean descent technique in 2009 [43]. Experimental results showed that the proposed algorithm
enlarges the classes of functions that original methods can solve. In 2015, Ariyarit and Kanazaki
introduced a modified version of genetic algorithm (GA) with multi-modal distribution crossover
(MMDX) [44]. Blend crossover (BLX) [45] and UNDX were used as comparison algorithms. It can
be found from the experimental results that MMDX is more competitive and can maintain higher
population diversity.

In addition, experiments are performed on eight satellite images (see Figure 5) to determine the
optimal parameter settings of the proposed algorithm. The sum of ranks with different combination
of α and F is given in Table 1. The lower the ranking value, the better the performance. As can be



Remote Sens. 2019, 11, 1421 11 of 35

observed, α = 2.5 and F = 0.5 present the best results in most cases, thus this combination of parameter
values is adopted in the following experiments.

Table 1. Sum of ranks obtained by the proposed method (K = 5) under different of parameter values.

F=0.1 F=0.3 F=0.5 F=0.7 F=0.9

α = 2 89 41 20 43 109
α = 2.5 80 19 9 36 112
α = 3 92 65 60 70 115

2.4.3. Algorithm Steps

In this section, a comprehensive algorithm step of DHHO/M based multilevel color image
thresholding technique is given in Algorithm 2.

Algorithm 2 Pseudocode of dynamic Harris hawks optimization with a mutation mechanism (DHHO/M)
based multilevel color image thresholding

Input: The given color image.
Output: Segmentation thresholds.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗Get information about the image ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

24. Read the given color image.
25. Extract the histogram of each color component (R, G, and B).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗Harris Hawks Optimization ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

26. Initialize the position of the hawks Xi and the rabbit Xrabbit.
27. Initialize the fitness values of the hawks fi and the rabbit frabbit.
28. Set population size N and maximum number of iterations tmax.
29. Set the dimensions of the optimization problem dim, namely the number of thresholds.
30. While (termination condition is not met (t < tmax)) do
31. Check the boundary and evaluate the fitness value of each hawk fi using Equations (4)–(6).
32. Update the location Xrabbit and fitness value frabbit of rabbit if there is a better one.
33. For (each hawk (i = 1 : N)) do
34. Update the energy of the rabbit E using Equation (21). % Dynamic control parameter strategy
35. If (|E| ≥ 1) then
36. Update the position using Equation (23). % Mutation mechanism
37. Else If (|E| < 1) then
38. If (r ≥ 0.5 and |E| ≥ 0.5) then
39. Update the position using Equation (10).
40. Else If (r ≥ 0.5 and |E| < 0.5) then
41. Update the position using Equation (12).
42. Else If (r < 0.5 and |E| ≥ 0.5) then
43. Update the position using Equation (16).
44. Else If (r < 0.5 and |E| < 0.5) then
45. Update the position using Equation (17).
46. End If
47. End If
48. End For
49. End While

Fitness function (Kapur’s entropy)
Input: Histogram of a color component, and segmentation thresholds Xi.
Output: Fitness function value fi.

1. The histogram is divided into n + 1 parts by n thresholds.

2. Calculate the proportion of pixels in each gray level
(
p j, j ∈ [0, 255]

)
to the total based on the histogram.

3. Compute the sum of the probabilities of the pixels (ωk, k ∈ [0, n]) contained in each part.
4. Calculate the Kapur’s entropy of each part (Hk, k ∈ [0, n]).
5. The sum of the entropies of all parts represents the fitness function value.
6. fi = H0 + H1 + . . .+ Hn
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2.4.4. Computational Complexity

The computational complexity of DHHO/M and HHO algorithms mainly depends on three
processes: initialization, function evaluation, and position update. The improvement strategy of this
paper only replaces the relevant formulations, and does not add additional judgments, loops or other
commands. Therefore, the computational complexity of DHHO/M is approximately the same as that
of HHO, which can be computed as follows:

O(DHHO/M) = O(initialization) + O( f unction evaluation) + O(position update)
= O(N) + O(tmax ×N ×Co f ) + O(tmax ×N × dim)

= O(N × (1 + tmax × (Co f + dim))),
(24)

where N is the size of population, Co f is the cost of function evaluation, dim is the dimension of the
given optimization problem, and tmax is the maximum number of the iterations [46].

In fact, the proposed DHHO/M runs slightly faster than the original HHO, which will be
demonstrated and analyzed in subsequent experiments.

3. Discussions

3.1. Experimental Setup and Database

In order to assess the performance of the proposed approach, a series of experiments were carried
out on various images. More specifically, the experiments can be divided into four parts. For the first
part of the experiment, the performance influence of each strategy (dynamic control parameter and
mutation mechanism) is investigated, and the relevant algorithms are denoted by DHHO and HHO/M,
respectively. Two DHHO variants with different parameter values were also included to further
evaluate the effect of the parameter (α). The algorithm with parameter α equal to three is represented
as DHHO+, and DHHO– indicates α = 2. For the second part of the experiment, the proposed
method is compared with the traditional HHO and four advanced multilevel thresholding techniques,
namely teaching-learning-based optimization (TLBO) [47], whale optimization algorithm with TH
heuristic (WOA-TH) [48], improved differential search algorithm (IDSA) [49], and beta differential
algorithm (BDE) [50]. The experiment is conducted on eight satellite images (see Figure 5) with low
and high threshold levels [51]. For the third part of the experiment, DHHO/M is compared with other
thresholding techniques based on different criteria to illustrate its feasibility and universality, such
as Tsallis entropy based modified grasshopper optimization algorithm (MGOA) [20] and modified
artificial bee colony (MABC) [13], as well as Otsu method based modified flower pollination algorithm
(MFPA) [48] and grey wolf optimizer (GWO) [7]. For the fourth part of the experiment, four oil pollution
images are used to further evaluate its practicality and feasibility on real engineering problems.

It is worth noting that the parameters of each thresholding method used are the same as the
original literature, except for the population size N set to 30 and the number of iterations tmax set to 500
for fair comparison. The parameter setting can be found in Table 2. Besides, the initial population of all
algorithms is randomly generated in the solution space, and the termination condition in this work is
to reach the maximum number of iterations tmax. A number of 50 independent runs are conducted, and
the best result is highlighted in boldface. All experiments are executed on a computer with “Microsoft
Windows 10” system and “8GB” memory space under Matlab2017.
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Table 2. Parameters of the algorithms.

No. Algorithm Parameter Setting Year Reference

1. DHHO/M α = 2.5, SF = 0.5 — —
2. DHHO α = 2.5(control parameter) — —
3. HHO/M SF = 0.5(scaling factor) — —
4. HHO E ∈ [0, 2](energy of a rabbit) 2019 [28]
5. TLBO TF = 1(teaching factor) 2019 [47]
6. WOA-TH G0 = 40, a0 = 13 2019 [48]
7. IDSA — 2018 [49]

8. BDE a ∈
[0, 1] (beta distribution parameter) 2018 [52]

9. MGOA β = 0.8 (Levy flight parameter) 2019 [20]
10. MABC K = 300 (chaotic iteration) 2015 [13]
11. MFPA p ∈ [0.2, 0.8] (switch possibility) 2018 [53]
12. GWO a ∈ [0, 2] (control parameter) 2017 [7]
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7. Average computation time 𝑇𝑖𝑚𝑒 = ∑ 𝑡𝑖𝑚𝑒ேୀଵ𝑁  [17] 

8. Wilcoxon’s rank sum test 

𝑅ା =  𝑟𝑎𝑛𝑘(𝑑)ௗவ + 12  𝑟𝑎𝑛𝑘(𝑑)ௗୀ  

𝑅ି =  𝑟𝑎𝑛𝑘(𝑑)ௗழ + 12  𝑟𝑎𝑛𝑘(𝑑)ௗୀ  

[54] 
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Figure 5. Original satellite images and the corresponding histograms for each of color channels (red,
green and blue).

3.2. Performance Metrics.

Several performance metrics are briefed in this section, which can be observed in Table 3. Among
the available measures, average fitness function value and standard deviation (Std) are used to evaluate
the optimization capability of meta-heuristic algorithm, while peak signal to noise ratio (PSNR), mean
squared error (MSE), structural similarity index (SSIM), and feature similarity index (FSIM) are utilized
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to assess the quality of the segmented image. Furthermore, Wilcoxon’s rank sum test and Friedman
test were adopted for statistical analysis.

Table 3. Performance measures of the multilevel image segmentation methods.

No. Measures Formulation Reference

1. Average fitness function value Average =
∑N

i=1 fi
N

[40]

2. Standard deviation (Std) Std =
√

1
N−1

∑N
i=1( fi −Average)2 [46]

3. Peak signal to noise ratio (PSNR) PSNR = 10 log10

(
2552

MSE

)
[18]

4. Mean squared error (MSE) MSE = 1
MN

∑M
i=1

∑N
j=1[I(i, j) −K(i, j)]2 [18]

5. Structural similarity index (SSIM) SSIM =
(2µxµy+c1)(2σxy+c2)
(µ2

x+µ
2
y+c1)(σ2

x+σ
2
y+c2)

[53]

6. Feature similarity index (FSIM) FSIM =
∑

x∈Ω SL(x)·PCm(x)∑
x∈Ω PCm(x)

[23]

7. Average computation time Time =
∑N

i=1 timei
N

[17]

8. Wilcoxon’s rank sum test
R+ =

∑
di>0

rank(di) +
1
2

∑
di=0

rank(di)

R− =
∑

di<0
rank(di) +

1
2

∑
di=0

rank(di)
[54]

9. Friedman test F f =
12n

k(k+1)

∑
j

R2
j −

k(k+1)2

4

 [55]

3.3. Experimental Series 1: Performance on Mathematical Functions

In this section, the proposed algorithm is evaluated on three mathematical test functions with
different characteristics, such as unimodal, multi-modal, and composite. The test functions are taken
from the CEC2005 special session, which are known as F1, F9, and F14. It can be found from Table 4
(bold is the best) that the proposed method outperforms others in most cases, showing its remarkable
performance on mathematical test functions. This promising result motivates us to apply it to multilevel
image thresholding domain.

Table 4. The experimental results of different algorithms on mathematical test functions.

F DHHO/M HHO TLBO WOA-TH IDSA BDE

F1

Best 6.6218 × 10−120 5.311 × 10−106 54.9103 1.4639 3.4749 × 103 2.7038 × 10−7

Mean 2.7498 × 10−105 1.7563 × 10−88 4.7014 × 102 2.6078 1.0831 × 104 9.2519 × 10−6

Worst 5.2688 × 10−97 5.2688 × 10−87 1.4603 × 103 3.5383 2.1372 × 104 4.5017 × 10−5

Std 3.1671 × 10−91 9.6195 × 10−88 3.1022 × 102 0.45694 3.8111 × 103 1.1476 × 10−5

F9

Best 0 0 2.2902 × 102 1.5848 × 102 1.7535 × 102 3.1335 × 10−7

Mean 0 0 2.7583 × 102 2.1586 × 102 2.0861 × 102 2.1983 × 10−5

Worst 0 0 3.1682 × 102 2.8732 × 102 2.4096 × 102 1.597 × 10−4

Std 0 0 23.3213 36.1926 16.7857 3.7214 × 10−5

F14

Best 0.998 0.998 0.998 0.998 0.998 1.0311
Mean 1.069 1.6254 1.3612 1.1624 2.2329 1.992
Worst 2.8008 5.9288 5.9288 5.9288 19.2307 0.1815

Std 0.33043 1.4981 1.5979 0.90024 3.4264 1.3037

3.4. Experimental Series 2: Influence of Dynamic Control Parameter Strategy and Mutation Mechanism

In this section, the influence of each improvement strategy (dynamic control parameter and
mutation mechanism) is investigated, and the results can be found in Table 5 (bold is the best). As can
be observed, DHHO/M presents the highest fitness function value in most cases, while HHO/M and
DHHO are ranked second and third respectively. This promising result indicates that introduction of
each strategy can improve the performance of the original algorithm, and the combination of them
works better. Specifically speaking, the dynamic control parameter strategy prevents falling into
local optimum, and the mutation mechanism effectively enhances the global search capability. Thus,
DHHO/M exhibits superior performance compared to other algorithms.

Another comparison is made between DHHO, HHO, DHHO+, and DHHO–. From the table,
these algorithms can be arranged as DHHO > HHO ~ DHHO+ > DHHO–, which strongly supports



Remote Sens. 2019, 11, 1421 15 of 35

the discussion in the previous section. Smaller value of parameter (α = 2) makes the amplitude of the
disturbance term too large, although the diversity of the population is increased but the algorithm
convergence ability is seriously affected. On the contrary, larger value of parameter (α = 3) produces
a small disturbance. Although the local optimum cannot be avoided, it does not affect the accuracy of
the algorithm, so the result is similar to the original algorithm. However, the value of parameter α of
DHHO is between the above two, which can enhance the ability to jump out of local optimum while
ensuring convergence property, and obtain the best result in this comparison.

Furthermore, the Std values obtained by each algorithm are also given in Table 5. It can be found
that DHHO/M presents the lowest value in general, which shows better stability than other algorithms.
More detailed and comprehensive stability testing and analysis can be found in the next subsection.

Table 5. The experimental results of HHO variants on satellite images.

Image K
DHHO/M DHHO HHO/M HHO DHHO+ DHHO−

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

1

2 12.6254 0 12.6253 1.00 × 10−4 12.6254 0 12.6253 1.00 × 10−4 12.6253 8.46 × 10−5 12.6217 8.20 × 10−3

3 15.9977 1.40 × 10−3 15.9990 1.70 × 10−3 15.9990 1.40 × 10−3 15.9971 1.70 × 10−3 15.9984 1.80 × 10−3 15.9981 1.40 × 10−3

4 19.1537 0 19.1537 0 19.1537 0 19.1537 0 19.1537 0 19.1537 0
5 22.0256 2.00 × 10−4 22.0254 1.00 × 10−4 22.0254 2.00 × 10−4 22.0253 5.60 × 10−5 22.0254 2.00 × 10−4 22.0254 2.00 × 10−4

3

2 12.6999 0 12.6999 0 12.6999 0 12.6999 0 12.6999 0 12.6999 0
3 15.8400 1.30 × 10−3 15.8400 1.30 × 10−3 15.8400 1.30 × 10−3 15.8400 1.60 × 10−3 15.8400 1.30 × 10−3 15.8400 1.30 × 10−3

4 18.9080 0 18.9080 8.45 × 10−5 18.9081 2.00 × 10−4 18.9080 1.00 × 10−4 18.9080 1.54 × 10−5 18.9080 2.00 × 10−4

5 21.6937 2.16 × 10−5 21.6589 4.75 × 10−2 21.6936 2.00 × 10−4 21.6936 3.07 × 10−5 21.6936 0.0001 21.6936 1.00 × 10−4

5

2 12.2672 0 12.2672 0 12.2672 0 12.2672 0 12.2672 0 12.2672 0
3 15.2240 1.99 × 10−2 15.2388 3.38 × 10−2 15.2388 1.00 × 10−3 15.2089 1.71 × 10−2 15.2314 1.63 × 10−2 15.2089 1.71 × 10−2

4 18.0756 9.90 × 10−5 18.0676 1.82 × 10−2 18.0675 1.81 × 10−2 18.0599 3.02 × 10−2 18.0757 1.00 × 10−4 18.0676 1.82 × 10−2

5 20.7387 1.88 × 10−2 20.7071 5.48 × 10−2 20.6817 5.05 × 10−2 20.7265 3.01 × 10−2 20.7277 3.17 × 10−2 20.6692 4.47 × 10−2

7

2 12.4226 0 12.4226 0 12.4226 0 12.4226 0 12.4226 0 12.4226 0
3 15.4792 1.99 × 10−9 15.4792 1.99 × 10−9 15.4790 1.99 × 10−9 15.4792 1.99 × 10−9 15.4790 1.99 × 10−9 15.4790 1.99 × 10−9

4 18.3182 1.95 × 10−5 18.3181 5.07 × 10−5 18.3181 1.95 × 10−5 18.3181 3.19 × 10−5 18.3181 2.38 × 10−5 18.3181 1.95 × 10−5

5 21.0501 3.37 × 10−5 21.0499 3.00 × 10−4 21.03316 3.74 × 10−2 21.0500 2.00 × 10−4 21.0500 1.00 × 10−4 20.9918 5.51 × 10−2

Rank 1(12) 3(8) 2(9) 4(6) 4(6) 6(5)

3.5. Experimental Series 3: Comparison with Other Advanced Methods on Satellite Images

In this section, the proposed method is compared with other advanced multilevel image
segmentation approaches on satellite images. The performance of each algorithm is comprehensively
and objectively assessed in terms of precision, stability, statistical significance, scalability (high
dimension), and convergence property.

3.5.1. Segmentation Accuracy

Accuracy is one of the main indicators for measuring image segmentation technique. In this
experiment, the precision of each method is evaluated from five aspects, namely average fitness
function value, MSE, PSNR, SSIM, and FSIM values. Firstly, the threshold values and segmented
images obtained are given in Table 6 and Figure 6, respectively. The threshold levels selected (K = 2, 3,
4, and 5) are the same as [47,49]. As can be observed from Table 6, all methods give similar results
when the threshold level is small; while the threshold values determined become different when K =

4 and 5. The reason for this phenomenon is that the difficulty of the current optimization problem
increases with the number of thresholds, and some meta-heuristic algorithms with poor search ability
are not competent, such as “Image3” at three threshold levels, “Image5” at three threshold levels, and
“Image6” at five threshold levels. Considering the segmented images presented in Figure 6, it can be
found that the images with high levels contain more information and details than that with low levels,
because the of entropy of a given image reflects its average information content [18].
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Figure 6. The segmented results of satellite images obtained by different algorithms. Figure 6. The segmented results of satellite images obtained by different algorithms.

Secondly, the average fitness function values obtained by all algorithms are given in Table 7
(bold is the best), which reflects the optimization capability of each meta-heuristic algorithm. Higher
Kapur’s entropy value indicates stronger search ability and higher precision. It can be observed that
the values of all algorithms increase with the number of threshold levels, and DHHO/M outperforms
other compared methods in general. This results strongly proves that high-quality segmented image
with more information can be obtained at higher threshold level, such as K = 5. In DHHO/M, the
introduction of dynamic control parameter strategy and mutation mechanism can improve the search
efficiency of the algorithm and avoid premature convergence. Therefore, the superiority of the proposed
algorithm is holistic rather than on a single image.

Thirdly, several performance metrics are introduced to assess the similarity between the segmented
image and the original image, such as PSNR, MSE, SSIM, and FSIM. The experimental results are given
in two tables. In Table 8, it can be found that the PSNR value increases with the number of threshold
values, while MSE value is the opposite (bold is the best). Similarly, SSIM and FSIM values also increase
with the number of threshold levels, as can be seen from Table 9 (bold is the best). These promising
phenomena indicate that the quality of segmented image is improving gradually; while the results
obtained by the proposed method are better than or at least comparable to other approaches, showing
better feature and structure preserving ability.
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Table 6. Comparison of optimal thresholds for different algorithms using Kapur’s entropy at 2– 5 levels.

Image K
DHHO/M HHO TLBO

R G B R G B R G B

1

2 58,171 111,189 117,187 58,171 111,189 117,187 58,171 111,189 117,187
3 56,123,188 48,122,192 42,128,191 56,123,188 48,122,192 42,128,191 56,123,188 48,122,192 85,143,203
4 53,110,163,209 45,102,156,207 41,95,149,203 53,110,163,209 45,102,156,207 41,95,149,203 53,110,163,209 45,102,156,207 41,95,149,203
5 45,86,130,173,213 44,90,133,174,216 37,85,129,170,210 42,82,126,171,213 44,90,133,174,216 37,85,130,171,210 42,82,126,171,213 44,90,133,174,216 37,85,129,170,210

2

2 94,164 98,168 80,146 94,164 98,168 80,146 94,164 98,168 80,146
3 78,141,199 66,132,192 70,131,185 78,141,199 66,132,192 70,131,185 78,141,199 66,132,192 70,131,185
4 67,120,169,217 57,107,152,195 53,102,148,200 67,120,169,217 57,107,152,195 56,107,154,200 67,120,169,217 57,107,152,195 53,102,148,200
5 53,97,140,180,220 55,101,145,186,222 45,87,128,167,202 53,97,140,180,220 55,101,145,186,222 44,85,126,167,202 53,96,138,180,220 55,101,145,186,222 44,85,126,167,202

3

2 86,163 85,162 80,162 86,163 85,162 80,162 86,163 85,162 80,162
3 84,152,207 81,150,207 65,117,170 84,152,207 81,150,207 78,152,210 84,152,207 81,150,207 65,117,170
4 70,117,165,216 69,117,166,216 65,114,165,218 70,117,165,216 67,115,165,216 65,114,165,218 70,117,165,216 69,117,166,216 65,114,165,218
5 36,82,125,168,216 45,85,126,168,216 57,93,132,171,218 36,82,125,168,216 45,85,126,168,216 18,65,114,165,218 36,82,125,168,216 45,85,126,168,216 58,95,134,172,218

4

2 92,179 96,171 82,146 92,179 96,171 82,146 92,179 96,171 82,146
3 63,120,182 72,118,171 79,137,176 63,120,182 72,118,171 79,137,176 63,120,182 72,118,171 79,137,176
4 47,89,132,182 70,114,159,194 50,91,137,176 47,89,132,182 70,114,159,194 50,91,137,176 47,89,132,182 70,114,159,194 50,91,137,176
5 46,87,129,176,209 52,88,124,164,205 31,66,99,142,183 46,87,129,176,209 49,86,123,164,205 49,90,134,162,198 46,87,129,176,209 48,85,122,164,205 47,91,136,164,198

5

2 97,158 95,156 81,144 97,158 95,156 81,144 97,158 95,156 81,144
3 97,148,183 38,96,156 83,138,181 97,148,183 38,96,156 28,82,144 97,148,183 96,150,187 83,138,180
4 74,109,150,184 40,96,150,187 28,83,138,181 74,109,150,184 38,96,150,187 28,83,138,181 78,112,150,184 38,96,150,187 28,83,138,181
5 64,93,121,153,186 38,79,112,152,188 24,52,88,138,181 64,93,121,153,186 38,82,114,152,188 28,80,112,144,183 20,74,109,148,183 38,79,112,152,188 28,80,112,144,183

6

2 74,150 77,152 80,154 74,150 77,152 80,154 74,150 77,152 80,154
3 62,122,183 68,129,187 72,130,187 62,122,183 68,129,187 72,130,187 62,122,183 68,129,187 72,130,187
4 51,98,147,194 61,105,151,197 61,106,152,197 51,98,147,194 61,105,151,197 61,106,152,197 51,98,147,194 61,105,151,197 61,106,152,197
5 49,95,143,190,228 61,103,148,191,228 58,102,148,191,227 49,95,143,190,228 61,103,148,191,228 58,102,148,191,227 50,95,145,191,230 61,103,148,191,228 60,106,152,194,227

7

2 96,169 97,160 64,129 96,169 97,160 64,129 96,169 97,160 64,129
3 80,135,190 81,129,177 55,105,154 80,135,190 81,129,177 55,105,154 80,135,190 81,129,177 55,105,154
4 67,113,159,204 69,108,148,188 54,101,148,197 68,114,159,204 69,108,148,188 54,101,148,197 67,113,159,204 69,108,148,188 54,101,148,197
5 57,94,132,171,209 68,107,146,185,226 48,87,125,163,197 57,94,132,171,209 24,70,110,149,188 50,90,129,168,206 15,68,114,159,204 68,107,146,185,226 48,87,125,163,197

8

2 71,197 111,203 125,168 71,197 111,203 126,179 71,197 111,203 126,179
3 70,138,197 96,150,204 84,132,179 70,138,197 96,150,204 26,86,142 70,138,197 96,150,204 84,132,179
4 69,114,155,197 56,106,152,204 26,84,132,179 69,114,155,197 56,106,152,204 27,84,132,179 69,114,155,197 54,105,152,204 26,85,132,179
5 69,111,151,189,219 54,97,138,171,207 26,82,126,163,203 69,111,151,189,219 54,97,138,171,207 26,82,126,163,199 69,111,151,189,219 56,105,148,189,215 26,82,126,163,203
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Table 6. Cont.

Image K
WOA-TH IDSA BDE

R G B R G B R G B

1

2 58,171 111,189 117,187 58,171 111,189 117,187 58,171 111,189 117,187
3 56,123,188 48,122,192 84,142,203 56,123,188 48,122,192 85,143,203 56,123,188 48,122,192 85,143,203
4 53,110,163,209 45,102,156,207 41,95,149,203 53,110,163,209 45,102,156,207 41,94,149,203 53,111,162,209 45,102,156,207 41,95,149,203
5 42,82,126,171,213 44,90,133,174,216 37,85,129,170,210 45,86,128,171,211 44,90,133,174,214 40,89,133,172,210 42,82,126,171,213 44,90,133,174,216 37,85,129,170,210

2

2 94,164 98,168 80,146 94,164 98,168 80,146 94,164 98,168 80,146
3 78,141,199 66,132,192 70,131,185 78,141,199 66,132,192 70,131,185 78,141,199 66,132,192 70,131,185
4 67,120,169,217 57,107,152,195 57,109,154,200 60,109,155,199 57,107,152,195 56,107,154,200 67,120,169,217 57,107,152,195 53,102,148,200
5 53,96,138,180,220 55,101,145,186,222 45,88,131,169,202 53,95,137,180,220 53,97,138,178,215 45,87,128,167,202 52,93,134,174,217 55,101,145,186,222 42,84,126,167,202

3

2 86,163 85,162 80,162 86,163 85,162 80,162 86,163 85,162 80,162
3 84,152,207 81,150,207 65,117,170 84,152,207 81,150,207 78,152,210 84,152,207 81,150,207 65,117,170
4 70,117,165,216 69,117,166,216 65,114,165,218 70,117,165,216 69,117,166,216 65,115,165,218 70,117,165,216 69,117,166,216 65,114,165,218
5 36,82,125,168,216 45,85,126,168,216 58,95,134,172,218 34,81,123,167,216 45,85,126,168,216 58,95,133,171,218 36,82,125,168,216 45,85,126,168,216 58,95,134,172,218

4

2 92,179 96,171 82,146 92,179 96,171 82,146 92,179 96,171 82,146
3 63,120,182 72,118,171 79,137,176 62,120,182 72,118,171 79,137,176 63,120,182 72,118,171 79,137,176
4 47,89,132,182 71,115,164,205 50,91,137,176 62,118,176,209 70,114,159,194 50,91,137,176 47,89,132,182 70,113,158,194 50,91,137,176
5 47,89,130,176,209 49,86,123,164,205 49,90,134,162,198 42,84,124,176,209 48,85,121,159,194 49,90,134,162,197 46,88,130,176,209 52,87,122,160,198 49,90,134,162,198

5

2 97,158 95,156 81,144 97,158 95,156 81,144 97,158 95,157 81,144
3 97,148,183 38,96,156 83,138,181 97,148,183 38,96,156 83,138,181 97,148,183 39,96,156 83,138,181
4 74,109,150,184 38,96,150,187 28,83,138,181 74,109,150,184 38,96,150,187 28,83,138,180 74,109,150,184 38,96,150,187 28,83,138,182
5 21,78,112,150,184 38,82,114,152,188 28,80,112,144,183 21,78,112,150,184 38,79,113,151,188 28,80,112,144,181 21,74,109,150,184 38,79,112,152,188 30,83,113,156,197

6

2 74,150 77,152 80,154 74,150 77,152 80,154 74,150 77,152 80,154
3 62,122,183 68,129,187 72,130,187 62,122,183 68,129,187 72,131,187 64,125,184 68,129,187 72,130,187
4 51,98,147,194 61,105,151,197 61,106,152,197 52,99,147,194 61,105,151,196 62,107,152,198 51,98,147,194 61,105,151,197 61,106,152,197
5 49,95,143,190,228 61,103,148,191,228 58,102,148,191,227 55,99,146,190,228 61,103,148,191,228 51,86,123,161,200 49,95,143,190,228 61,103,148,191,228 58,102,148,191,227

7

2 96,169 97,160 64,129 96,169 97,160 64,129 96,169 97,160 64,129
3 80,135,190 81,129,177 55,105,154 80,135,190 81,129,177 55,105,154 80,135,190 81,129,177 55,105,154
4 68,114,159,204 70,110,149,188 54,101,148,197 68,114,159,204 69,108,148,188 54,101,148,197 67,113,159,204 69,108,148,188 54,101,148,197
5 57,94,132,171,209 68,107,146,185,226 50,90,129,168,206 58,96,134,172,211 68,107,146,185,226 48,86,124,163,197 57,94,132,171,209 68,107,146,185,226 48,87,125,163,197

8

2 71,197 111,203 126,179 71,197 111,203 126,179 71,197 111,203 126,179
3 70,138,197 96,150,204 84,132,179 70,138,197 96,150,204 84,132,179 70,138,197 96,150,204 84,132,179
4 69,114,155,197 56,106,152,204 26,84,132,179 69,115,157,198 56,106,152,204 79,125,163,203 69,114,155,197 56,106,152,204 79,120,152,193
5 69,111,151,189,219 56,104,146,189,215 26,79,120,152,193 68,111,151,189,219 53,86,119,158,204 26,79,120,152,193 69,111,151,189,219 54,103,148,190,216 27,82,125,163,199
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Table 7. The average fitness values and std values of different algorithms at 2, 3, 4, and 5 levels.

Image K
DHHO/M HHO TLBO WOA-TH IDSA BDE

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

1

2 12.6254 3.68 × 10−9 12.6254 4.73 × 10−3 12.6254 3.68 × 10−9 12.6254 3.68 × 10−9 12.6254 1.20 × 10−5 12.6254 3.68 × 10−9

3 15.9965 1.31 × 10−3 15.9996 1.61 × 10−3 15.9996 1.67 × 10−3 15.9996 1.31 × 10−3 15.9997 1.52 × 10−3 15.9997 1.61 × 10−3

4 19.1537 1.49 × 10−4 19.1537 3.86 × 10−5 19.1537 3.63 × 10−4 19.1537 3.68 × 10−9 19.153 6.46 × 10−4 19.1523 5.59 × 10−3

5 22.0256 1.15 × 10−4 22.0251 2.11 × 10−4 22.0256 2.40 × 10−4 22.025 3.54 × 10−4 22.0236 2.26 × 10−3 21.9903 1.42 × 10−2

2

2 12.2446 3.68 × 10−9 12.2446 1.61 × 10−4 12.2446 3.68 × 10−9 12.2446 3.68 × 10−9 12.2446 3.68 × 10−9 12.2446 2.78 × 10−4

3 15.4553 1.51 × 10−4 15.4553 2.03 × 10−4 15.4553 1.92 × 10−5 15.4553 2.03 × 10−4 15.4553 9.03 × 10−4 15.4553 4.76 × 10−3

4 18.4839 1.84 × 10−4 18.4835 2.90 × 10−4 18.4839 4.84 × 10−4 18.4833 1.86 × 10−4 18.4813 2.30 × 10−3 18.4839 3.16 × 10−2

5 21.3181 1.64 × 10−4 21.3179 2.35 × 10−3 21.318 2.65 × 10−3 21.3178 1.02 × 10−3 21.3125 1.27 × 10−2 21.3156 6.00 × 10−3

3

2 12.6999 1.84 × 10−9 12.6999 1.84 × 10−9 12.6999 1.84 × 10−9 12.6999 1.84 × 10−9 12.6999 1.84 × 10−9 12.6999 5.73 × 10−5

3 15.8406 4.84 × 10−5 15.8377 1.00 × 10−3 15.8406 7.36 × 10−4 15.8406 1.18 × 10−3 15.8377 2.55 × 10−3 15.8406 1.00 × 10−3

4 18.9081 4.91 × 10−5 18.9079 6.67 × 10−4 18.9081 0 18.9081 4.89 × 10−5 18.908 2.96 × 10−3 18.9081 3.40 × 10−3

5 21.6937 2.00 × 10−5 21.609 2.98 × 10−2 21.6934 3.81 × 10−5 21.6937 7.03 × 10−4 21.6935 1.19 × 10−3 21.6937 2.49 × 10−3

4

2 12.458 3.68 × 10−9 12.458 3.68 × 10−9 12.458 4.04 × 10−5 12.458 3.68 × 10−9 12.458 2.12 × 10−5 12.458 1.21 × 10−3

3 15.5803 3.68 × 10−9 15.5803 3.68 × 10−9 15.5803 3.05 × 10−5 15.5803 3.68 × 10−9 15.5803 3.06 × 10−3 15.5803 3.07 × 10−4

4 18.4835 9.69 × 10−4 18.4834 1.39 × 10−3 18.4834 1.56 × 10−3 18.4834 8.01 × 10−5 18.4806 1.26 × 10−3 18.4814 7.04 × 10−4

5 21.2255 5.82 × 10−3 21.2089 8.52 × 10−3 21.2211 5.99 × 10−3 21.2254 6.81 × 10−3 21.2155 1.02 × 10−2 21.2211 6.13 × 10−3

5

2 12.2672 1.84 × 10−9 12.2672 1.84 × 10−9 12.2672 1.84 × 10−9 12.2672 1.84 × 10−9 12.2672 1.84 × 10−9 12.2665 1.84 × 10−9

3 15.2393 1.12 × 10−3 15.2023 1.93 × 10−2 15.1498 1.67 × 10−2 15.2393 1.30 × 10−2 15.2393 1.30 × 10−2 15.2383 1.32 × 10−3

4 18.0758 1.63 × 10−2 18.0758 2.38 × 10−2 18.0756 1.24 × 10−4 18.0758 1.47 × 10−2 18.0757 3.41 × 10−2 18.0754 5.10 × 10−3

5 20.7597 1.78 × 10−2 20.6966 4.23 × 10−2 20.7506 2.79 × 10−2 20.6622 3.78 × 10−2 20.7588 3.35 × 10−2 20.6768 3.75 × 10−2

6

2 12.6459 3.68 × 10−9 12.6459 3.68 × 10−9 12.6459 3.68 × 10−9 12.6459 3.68 × 10−9 12.6459 5.35 × 10−6 12.6459 3.16 × 10−5

3 15.8348 3.68 × 10−9 15.8348 3.68 × 10−9 15.8348 3.68 × 10−9 15.8348 3.68 × 10−9 15.8348 5.86 × 10−5 15.8346 7.96 × 10−4

4 18.8099 6.43 × 10−6 18.8099 6.43 × 10−6 18.8099 4.23 × 10−5 18.8099 3.03 × 10−5 18.8089 5.43 × 10−4 18.8099 1.48 × 10−3

5 21.5849 7.36 × 10−5 21.5849 1.47 × 10−4 21.5817 8.43 × 10−3 21.5849 7.23 × 10−5 21.5556 1.26 × 10−2 21.5849 1.02 × 10−2

7

2 12.4226 3.68 × 10−9 12.4226 3.68 × 10−9 12.4226 3.68 × 10−9 12.4226 3.68 × 10−9 12.4226 3.68 × 10−9 12.4226 3.98 × 10−5

3 15.4792 5.52 × 10−9 15.4792 5.52 × 10−9 15.4792 5.52 × 10−9 15.4792 5.52 × 10−9 15.4792 5.37 × 10−5 15.4792 4.44 × 10−5

4 18.3182 2.12 × 10−5 18.3181 2.41 × 10−2 18.3182 6.18 × 10−5 18.3181 2.84 × 10−5 18.3181 4.27 × 10−3 18.3182 3.07 × 10−3

5 21.0502 7.07 × 10−5 20.9663 3.46 × 10−2 20.9277 6.17 × 10−4 21.0501 2.16 × 10−2 21.0492 2.60 × 10−2 21.0502 3.01 × 10−2

8

2 12.0856 1.33 × 10−4 12.0853 2.78 × 10−3 12.0853 1.75 × 10−3 12.0853 1.33 × 10−5 12.0853 1.77 × 10−3 12.0853 8.05 × 10−4

3 15.3334 5.52 × 10−9 15.1937 3.60 × 10−2 15.3334 5.52 × 10−9 15.3334 5.52 × 10−9 15.3334 9.91 × 10−4 15.3334 4.08 × 10−4

4 18.2572 7.30 × 10−4 18.256 5.24 × 10−3 18.2552 1.02 × 10−3 18.2562 4.88 × 10−4 18.2573 2.32 × 10−3 18.2547 2.94 × 10−3

5 21.0181 1.25 × 10−3 21.0155 3.78 × 10−2 21.0173 1.49 × 10−3 21.0142 3.70 × 10−2 21.0163 1.57 × 10−2 21.0136 2.38 × 10−3
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Table 8. The PSNR values and MSE values of different algorithms at 2, 3, 4, and 5 levels.

Image K
DHHO/M HHO TLBO WOA-TH IDSA BDE

PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE

1

2 13.4568 3409.6288 13.5059 3409.6288 13.4568 3409.6288 13.4568 3409.6288 13.4568 3409.6288 13.4568 3409.6288
3 20.8043 541.7281 18.7437 541.7281 18.7437 1101.2048 18.7437 1079.8563 18.8912 1101.2048 18.8668 1101.2048
4 23.5379 286.5668 23.5379 288.2504 23.5379 288.2504 23.5379 288.2504 23.4893 286.8563 23.4844 288.2504
5 25.3432 190.0378 25.2873 190.4263 25.3432 190.0378 25.2458 190.0378 25.3091 199.5299 24.8902 192.3651

2

2 13.761 2793.6353 13.761 2793.6353 13.761 2793.6353 13.761 2793.6353 13.761 2793.6353 13.761 2793.6353
3 17.1656 1274.8825 17.1656 1274.8825 17.1656 1274.8825 17.1656 1274.8825 17.1656 1274.8825 17.1656 1274.8825
4 19.8508 690.9693 19.6349 725.6155 19.8508 690.9693 19.5626 738.4191 20.126 638.7005 19.8508 690.9693
5 22.2059 393.4485 21.9532 415.6597 21.962 414.8152 21.8581 424.2548 22.073 403.525 21.8664 423.4967

3

2 14.6099 2250.563 14.6099 2250.563 14.6099 2250.563 14.6099 2250.563 14.6099 2250.563 14.6099 2250.563
3 17.7343 1096.4772 17.0737 1316.3943 17.0737 1316.3943 17.0737 1316.3943 17.7343 1096.4772 17.0737 1316.3943
4 19.5277 729.8596 19.4491 743.2218 19.4491 743.2218 19.4491 743.2218 19.4482 743.4005 19.4491 743.2218
5 24.4587 238.8742 22.7205 395.9433 22.6857 401.4084 22.6857 401.4084 22.6956 401.0393 22.6857 401.4084

4

2 14.1596 2518.0049 14.1596 2518.0049 14.1596 2518.0049 14.1596 2518.0049 14.1596 2518.0049 14.1596 2518.0049
3 17.3051 1316.1756 17.3051 1316.1756 17.3051 1316.1756 17.3051 1316.1756 17.3486 1308.8014 17.3051 1316.1756
4 20.3568 652.8288 20.3524 653.8501 20.3524 653.8501 20.2761 672.0299 19.4048 764.8489 20.3524 653.8501
5 24.0586 266.308 22.6141 375.5379 22.8347 354.1505 22.5577 379.7771 22.9103 356.3137 22.3481 392.8026

5

2 12.3149 3817.5316 12.3149 3817.5316 12.3149 3817.5316 12.3149 3817.5316 12.3149 3817.5316 12.3247 3809.1362
3 14.3753 2377.2328 13.9334 2642.1422 14.3388 2396.5364 14.3753 2377.2328 14.3753 2377.2328 14.3747 2377.5557
4 16.904 1355.9069 16.8586 1368.8135 16.7536 1413.0432 16.8586 1368.8135 16.8158 1381.3574 16.8516 1370.5727
5 18.529 941.6725 17.4932 1166.1194 17.6121 1131.203 17.661 1117.2575 17.5692 1142.5529 17.4611 1174.9531

6

2 15.4096 1875.6465 15.4096 1875.6465 15.4096 1875.6465 15.4096 1875.6465 15.4096 1875.6465 15.4096 1875.6465
3 17.3586 1204.8869 17.3586 1204.8869 17.3586 1204.8869 17.3586 1204.8869 17.3576 1205.2089 17.3217 1213.4404
4 18.6145 906.6325 18.6145 906.6325 18.6145 906.6325 18.6145 906.6325 18.5634 916.8623 18.6145 906.6325
5 20.6141 586.8374 20.6141 586.8374 20.4926 603.118 20.6141 586.8374 20.1165 651.1384 20.6141 586.8374

7

2 12.9658 3316.6781 12.9658 3316.6781 12.9658 3316.6781 12.9658 3316.6781 12.9658 3316.6781 12.9658 3316.6781
3 16.2594 1542.3302 16.2594 1542.3302 16.2594 1542.3302 16.2594 1542.3302 16.2594 1542.3302 16.2594 1542.3302
4 19.9285 710.127 19.8763 720.2965 19.9285 710.127 19.8208 732.3273 19.8763 720.2965 19.9285 710.127
5 22.7765 353.4079 21.725 476.8748 22.5737 406.4345 21.5981 484.4584 21.6863 481.3556 21.725 476.8748

8

2 14.2476 2953.5281 14.2452 2956.1504 14.2452 2956.1504 14.2452 2956.1504 14.2452 2956.1504 14.2452 2956.1504
3 18.4536 854.9528 16.9544 1753.3657 16.9544 1753.3657 16.9544 1753.3657 16.9544 1753.3657 16.9544 1753.3657
4 24.6745 222.5721 24.5916 227.417 24.5902 227.4794 24.5902 227.4794 20.7867 1039.7204 20.8096 1035.361
5 25.5344 183.0689 25.2902 193.2529 25.0615 204.0797 25.1686 199.832 25.2937 193.1147 25.1855 198.1814
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Table 9. The SSIM values and FSIM values of different algorithms at 2, 3, 4, and 5 levels.

Image K
DHHO/M HHO TLBO WOA-TH IDSA BDE

SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM

1

2 0.3288 0.5472 0.3319 0.549 0.3288 0.5472 0.3288 0.5472 0.3288 0.5472 0.3288 0.5472
3 0.5893 0.7387 0.57 0.7148 0.57 0.7148 0.57 0.7148 0.577 0.7203 0.5776 0.7205
4 0.7415 0.827 0.7415 0.827 0.7415 0.827 0.7415 0.827 0.7415 0.8269 0.7407 0.8261
5 0.7945 0.8763 0.7945 0.8761 0.7945 0.8761 0.7917 0.8738 0.794 0.8755 0.7838 0.866

2

2 0.2696 0.5527 0.2696 0.5527 0.2696 0.5527 0.2696 0.5527 0.2696 0.5527 0.2696 0.5527
3 0.4376 0.6476 0.4376 0.6476 0.4376 0.6476 0.4376 0.6476 0.4376 0.6476 0.4376 0.6476
4 0.5737 0.7436 0.5634 0.7323 0.5737 0.7382 0.56 0.73 0.5829 0.7382 0.5737 0.7382
5 0.6669 0.7981 0.6577 0.7928 0.6584 0.7936 0.6536 0.79 0.663 0.7965 0.6543 0.7902

3

2 0.3643 0.6627 0.3643 0.6627 0.3643 0.6627 0.3643 0.6627 0.3643 0.6627 0.3643 0.6627
3 0.4218 0.7239 0.4209 0.7217 0.4218 0.7217 0.4218 0.7217 0.4209 0.7239 0.4218 0.7217
4 0.4886 0.7808 0.4863 0.7801 0.4863 0.7801 0.4863 0.7801 0.4864 0.78 0.4863 0.7801
5 0.6693 0.8431 0.5795 0.837 0.5785 0.837 0.5785 0.837 0.5788 0.837 0.5785 0.837

4

2 0.4043 0.6463 0.4043 0.6463 0.4043 0.6463 0.4043 0.6463 0.4043 0.6463 0.4043 0.6463
3 0.5746 0.7584 0.5734 0.758 0.5734 0.758 0.5734 0.758 0.5734 0.758 0.5734 0.758
4 0.7328 0.8331 0.7323 0.8331 0.7323 0.8331 0.7291 0.832 0.698 0.813 0.7323 0.8336
5 0.8336 0.8869 0.792 0.8683 0.7966 0.8692 0.7909 0.8678 0.7978 0.8711 0.7883 0.8655

5

2 0.4806 0.6389 0.4806 0.6389 0.4806 0.6389 0.4806 0.6389 0.4806 0.6389 0.4802 0.6385
3 0.5432 0.67 0.619 0.6865 0.4693 0.6537 0.5432 0.67 0.5432 0.67 0.5435 0.67
4 0.6459 0.7142 0.6454 0.7138 0.6398 0.7117 0.6454 0.7138 0.6459 0.7137 0.6456 0.714
5 0.694 0.7515 0.679 0.7417 0.7136 0.7506 0.7093 0.7474 0.7109 0.7485 0.7132 0.7504

6

2 0.4053 0.6628 0.4053 0.6628 0.4053 0.6628 0.4053 0.6628 0.4053 0.6628 0.4053 0.6628
3 0.4741 0.7409 0.4741 0.7409 0.4741 0.7409 0.4741 0.7409 0.474 0.7408 0.4717 0.74
4 0.5283 0.7827 0.5283 0.7827 0.5283 0.7827 0.5283 0.7827 0.5259 0.7822 0.5283 0.7827
5 0.5595 0.8096 0.5589 0.8092 0.5548 0.8075 0.5589 0.8092 0.5589 0.8092 0.5589 0.8092

7

2 0.4061 0.6178 0.4061 0.6178 0.4061 0.6178 0.4061 0.6178 0.4061 0.6178 0.4061 0.6178
3 0.5456 0.7131 0.5456 0.7131 0.5456 0.7131 0.5456 0.7131 0.5456 0.7131 0.5456 0.7131
4 0.6569 0.7859 0.6557 0.7858 0.6569 0.7859 0.654 0.7853 0.6557 0.7858 0.6569 0.7859
5 0.7557 0.8372 0.7234 0.829 0.7434 0.8306 0.7194 0.8261 0.7219 0.8282 0.7234 0.829

8

2 0.2264 0.4841 0.2261 0.484 0.2261 0.484 0.2261 0.484 0.2261 0.484 0.2261 0.484
3 0.5319 0.659 0.3864 0.6196 0.3864 0.6196 0.3864 0.6196 0.3864 0.6196 0.3864 0.6196
4 0.6547 0.7485 0.6539 0.7473 0.6532 0.7458 0.6539 0.7473 0.5122 0.7049 0.5152 0.7099
5 0.6961 0.7923 0.6829 0.777 0.6724 0.7666 0.6804 0.7752 0.6829 0.7771 0.6744 0.7686
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3.5.2. Statistical Test

The experiments performed by each algorithm are the same, so the statistical test is necessary.
Parametric statistical test is based on various assumptions, such as independence, normality, and
synchronization [56]. However, these assumptions probably not valid when analyzing meta-heuristic
algorithms with stochastic property. Therefore, two famous nonparametric statistical tests are adopted
in this study, namely, Wilcoxon’s rank sum test [54] and Friedman test [55]. As a brief review, the null
hypothesis (H0) assumes that there is no difference between the two compared algorithms (Wilcoxon’s
rank sum test) or the whole (Friedman test); while the alternative hypothesis H1 indicates the difference.
More detailed discussion of these two statistical tests can be found in [55].

The experimental results are given in three tables. Table 10 presents the p-values and h-values of
Wilcoxon’s rank sum test obtained by each comparison. It can be found that DHHO/M gives better
results in 29 out of 32 cases (eight images and four threshold levels) for HHO, 30 cases for TLBO,
31 cases for WOA-TH, 30 cases for IDSA, and 30 cases for BDE, which shows significant difference
between the proposed method and other approaches. As for the average rank of Friedman test given
in Table 11, the proposed method ranks first in all cases, and the value of rank becomes smaller as
the number of threshold level increases, indicating greater advantages over other compared methods
(bold is the best). Table 12 gives the Chi-square (χ2) value and p-value of Friedman test at different
threshold levels. According to the Chi-square distribution table, the critical value for 5 (6 algorithm
- 1) degrees of freedom at 0.05 significant level is 11.07 [57]. It can be observed from the table that
the Chi-square values obtained are much larger than the critical value and the p-values obtained are
much smaller than the significant level. The results illustrate that the advantage of the proposed
algorithm becomes more obvious as the dimension of the optimization problem increases, and there is
a significant difference between the available methods.

Table 10. Results of Wilcoxon’s rank sum test over all available satellite images at 2, 3, 4, and 5 levels.

Image K
DHHO/M versus

HHO TLBO WOA-TH IDSA BDE

p h p h p h p h p h

1

2 <0.05 1 <0.05 1 0.4197 0 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 0.0957 0 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

2

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 0.0784 0
4 0.0692 0 <0.05 1 <0.05 1 <0.05 1 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

3

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 0.2117 0 <0.05 1 <0.05 1 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

4

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

5

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 0.2624 0 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

6

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 0.0544 0 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 <0.05 1 0.1342 0
5 0.2744 0 <0.05 1 <0.05 1 <0.05 1 <0.05 1

7

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

8

2 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
3 0.0963 0 <0.05 1 <0.05 1 <0.05 1 <0.05 1
4 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
5 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
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Table 11. Friedman rank of different algorithms considering all experimental data at 2, 3, 4, and 5 levels.

K DHHO/M HHO TLBO WOA-TH IDSA BDE

2 3.10417 3.44792 3.53125 3.41667 3.63542 3.86458
3 2.39583 3.85417 3.83333 3.41667 3.60417 3.89583
4 1.93750 3.61458 3.36458 3.61458 4.67708 3.79167
5 1.29167 3.84375 3.37500 4.21875 3.80208 4.46875

Overall 2.18229 3.69010 3.52604 3.66667 3.92969 4.00521

Table 12. Results of Friedman test over all available satellite images at 2, 3, 4, and 5 levels.

K Chi-Square Value p-Value

2 20.1095890410959 1.19191051533946 × 10−3

3 40.6933911159263 1.08206724960841 × 10−7

4 65.6772334293948 8.10948996472364 × 10−13

5 95.8565989847716 3.94253504591917 × 10−19

Overall 194.274459078081 4.76396506070144 × 10−40

3.5.3. Computational Time

Computational time was also one of the important indicators to measure the efficiency of the
algorithm. The experimental results at different threshold levels can be found in Table 13 (bold is the
best). Obviously, the IDSA algorithm is the fastest, although it cannot give the best results in most cases.
DHHO/M is a little faster than the traditional HHO, because the greedy selection used in exploitation
stage consumes a lot of time; while the dynamic control parameter strategy enables the exploration
phase can be adopted in the later iteration, which reduces the complexity to some extent. It is worth
noting that evaluating a meta-heuristic algorithm should be comprehensive and objective, not just
from a single aspect. The proposed method presents better or at least competitive results in terms of
average fitness value, PSNR, MSE, SSIM, and FSIM, despite not the fastest. Thus, DHHO/M can be
considered as an efficient technique for multilevel color image segmentation.

Table 13. The average computation time (in seconds) of different algorithms at 2, 3, 4, and 5 levels.

K DHHO/M HHO TLBO WOA-TH IDSA BDE

2 2.198133 2.212233 1.797438 1.844933 1.565033 2.057214
3 2.223321 2.229533 1.800174 1.852567 1.654733 2.151333
4 2.263767 2.339267 1.824733 1.896333 1.663767 2.314633
5 2.342478 2.390067 1.828633 1.927133 1.681547 2.323733

3.5.4. Search Capability on High Dimensional Problems

In this section, all available thresholding approaches are compared at K=10, 15, and 20 to assess
the performance on high dimensional tasks. Threshold levels selected are the same as [57]. The average
fitness function values obtained are presented in Table 14 (bold is the best). It can be observed that
DHHO/M gives the best results in 22 out of 24 cases (eight images and three thresholds); TLBO and
WOA-TH only give the best results in one case respectively, while other algorithms give none. As
discussed in above section, the proposed method has shown certain advantages when K = 5, but it
is more obvious in higher dimensions. The reason for this phenomenon is that each image can be
considered as a different optimization problem, and there is no algorithm can handle all tasks [27].
Even the meta-heuristic algorithm with strong search capability cannot show remarkable performance
on all images. Therefore, DHHO/M is more competitive in the field of image segmentation than other
algorithms, because it gives the best results in most cases.
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Table 14. The fitness values obtained by different algorithms at higher threshold levels.

Image K DHHO/M HHO TLBO WOA-TH IDSA BDE

1
10 34.2109 34.2098 34.2103 34.2107 34.1789 34.1621
15 43.9417 43.9326 43.9049 43.9337 43.6787 43.8603
20 52.05 52.0305 51.4385 52.0499 51.6164 51.6291

2
10 33.3497 33.3333 33.3479 33.3494 33.2628 33.333
15 42.8291 42.8093 42.7608 42.8261 42.6363 42.7508
20 50.7191 50.5899 50.381 50.67 50.2388 50.3818

3
10 33.8971 33.8945 33.8949 33.8953 33.8526 33.8872
15 43.7344 43.5907 43.5659 43.735 43.5409 43.6546
20 51.8463 51.7497 51.2457 51.8042 51.5 51.443

4
10 33.0248 33.0049 32.9986 33.006 32.8715 32.9839
15 42.5643 42.5557 42.5182 42.5495 42.1679 42.4222
20 50.404 50.2911 49.8884 50.3453 49.9967 50.2819

5
10 32.1816 32.1393 32.1204 32.1081 32.1083 32.0863
15 41.5955 41.5162 41.526 41.4936 41.2365 41.315
20 49.3631 49.1688 48.5774 49.2279 48.3306 49.1217

6
10 33.6055 33.5978 33.5762 33.5641 33.5589 33.5871
15 43.4567 43.3523 43.2951 43.4393 43.2992 43.4059
20 51.706 51.6251 51.1347 51.6806 51.2283 51.4454

7
10 32.8232 32.8055 32.825 32.8192 32.6911 32.6068
15 42.3475 42.3111 42.2273 42.2965 41.9677 42.3149
20 50.3583 50.2802 49.6741 50.331 49.5638 50.1

8
10 32.8858 32.813 32.8833 32.8505 32.8148 32.825
15 42.3784 42.2574 42.3384 42.3509 41.9624 42.2916
20 50.3095 50.2246 50.093 50.2379 49.9046 50.0384

3.5.5. Stability Analysis

The stability of each algorithm is analyzed and discussed in this section, including two performance
measures, namely Std value and boxplot. The Std values obtained on satellite images can be found in
Table 7, respectively. A lower Std value indicates better performance. As can be observed, the proposed
approach presents the lowest Std values in most cases, showing remarkable stability, continuity
and consistency. Furthermore, the boxplot with 20 threshold levels are given in Figure 7, because
the difference between the algorithms is more obvious in high dimensions. It can be found that
DHHO/M outperforms other approaches again. More specifically, the boxplot obtained is higher in
position and more compact, indicating better data consistency. Compared with other algorithms, the
proposed method has no bad points (in our study), which illustrates the superiority of DHHO/M based
thresholding technique in satellite image segmentation.
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Figure 7. The boxplot of each method on satellite images (K = 20).
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3.5.6. Convergence Property

In this section, the convergence property of DHHO/M algorithm is evaluated. The convergence
curves obtained by all algorithms at 20 threshold levels are presented in Figure 8. It is worth mentioning
that these figures are drawn in a semi-logarithmic coordinate system for ease of observation. As can
be seen, WOA-TH and IDSA are prone to premature convergence and local optimization, which is
reflected in the shape of the curve. For example, under the circumstance of “Image3” segmentation,
the fitness function values obtained by these two algorithms no longer change after 100 iterations, and
obviously they do not get the best value at the end of iteration. Although the fast convergence speed is
not a bad characteristic of meta-heuristic algorithm, local optimization seriously affects the accuracy as
well as the quality of segmented image. On the contrary, the propose method can better balance the
exploration and exploitation stages, neither premature convergence nor slow convergence. Therefore,
the DHHO/M based technique can exhibit higher search efficiency in all selected satellite images.
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Figure 8. The convergence curves for fitness function on satellite images (K = 20).

3.6. Experimental Series 4: Performance Using Different Objective Functions

In this section, Tsallis entropy and Otsu between-class variance are served as objective function to
assess the feasibility of DHHO/M. Eight different color images are selected from Figure 5. The experiment
are conducted on high threshold levels and can be divided into two parts. For the former part, Tsallis
entropy based thresholding techniques are selected for comparison, namely the MGOA and MABC.
For the latter part, Otsu between-class variance based thresholding approaches are chosen for testing,
namely the MFPA and GWO.

The experimental results of Tsallis entropy and Otsu’s method are presented in Tables 15 and 16,
respectively (bold is the best). As can be observed, DHHO/M gives the best objective function values
in all cases, indicating the strong optimization capability. Considering other metrics, the proposed
algorithm also produces better or at least competitive results, which shows that the segmented images
with more information and details can be obtained. To sum up, the superior performance of the
proposed algorithm is not limited to the objective function adopted in this paper, but has potential in
other image fields.
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Table 15. Comparison of objective value, PSNR, SSIM, and FSIM values based on Tsallis
entropy approaches.

Image K
Objective Value PSNR

DHHO/M MGOA MABC DHHO/M MGOA MABC

1
10 3.6662 3.6649 3.6662 30.5093 27.7705 31.1043
15 5.3316 5.3109 5.3302 34.2626 28.6303 33.4524
20 6.995 6.948 6.9866 36.8371 33.8588 34.1846

3
10 3.6661 3.665 3.6661 25.7383 24.9989 26.0445
15 5.3313 5.3141 5.3299 33.3645 28.9334 30.1357
20 6.9947 6.9516 6.9863 35.3185 32.9205 33.9627

5
10 3.6654 3.6571 3.6654 22.0935 20.8869 21.9164
15 5.3288 5.3084 5.3262 25.5957 27.7061 27.5186
20 6.9896 6.837 6.9741 34.1475 33.0881 28.4798

7
10 3.6659 3.6643 3.6658 28.0284 26.1506 27.273
15 5.3305 5.318 5.3287 33.5291 29.8082 27.8041
20 6.9924 6.9311 6.9836 36.8653 32.2124 34.0468

Image K
SSIM FSIM

DHHO/M MGOA MABC DHHO/M MGOA MABC

1
10 0.9157 0.8811 0.9225 0.9579 0.9236 0.9622
15 0.9579 0.8956 0.9495 0.9806 0.9351 0.9762
20 0.9756 0.9541 0.9638 0.9886 0.9772 0.9773

3
10 0.6904 0.6883 0.6967 0.9156 0.8771 0.9157
15 0.8827 0.8322 0.8095 0.9636 0.9241 0.9442
20 0.9251 0.9018 0.8911 0.976 0.9557 0.9633

5
10 0.816 0.7854 0.8113 0.8522 0.8217 0.8501
15 0.8844 0.8506 0.8368 0.8888 0.8844 0.9139
20 0.9224 0.9107 0.9077 0.9578 0.9344 0.9298

7
10 0.9001 0.8294 0.8861 0.9376 0.8823 0.9324
15 0.952 0.9127 0.8916 0.9725 0.939 0.9371
20 0.9749 0.9468 0.9555 0.9842 0.9549 0.9733

Table 16. Comparison of objective value, PSNR, SSIM, and FSIM values based on Otsu’s methods.

Image K
Objective Value PSNR

DHHO/M MFPA GWO DHHO/M MFPA GWO

2
10 1364.9884 1349.264 1363.1902 27.4462 30.0066 27.6228
15 1376.5148 1365.331 1375.1601 32.3029 33.6342 32.4534
20 1381.0397 1373.8639 1379.5538 36.5965 35.5419 36.5278

4
10 1304.5892 1289.3595 1304.3497 29.0959 29.2216 29.4061
15 1315.0389 1302.8059 1314.4674 33.3247 31.413 34.5001
20 1319.0692 1311.4133 1317.3414 36.1074 36.618 36.1379

6
10 5027.6737 5013.6505 5025.5149 26.5928 23.5726 25.7915
15 5043.2255 5034.3596 5041.6036 32.9168 27.9594 29.957
20 5049.6773 5040.9838 5047.5628 35.0998 33.317 33.8307

8
10 934.5128 925.9764 934.3473 31.6049 31.1744 30.8108
15 943.6876 934.3932 942.2697 35.8537 32.9725 35.0404
20 947.3744 941.3551 945.2916 37.3744 37.2122 37.3125

Image K
SSIM FSIM

DHHO/M MFPA GWO DHHO/M MFPA GWO

2
10 0.9218 0.8962 0.9106 0.9395 0.9352 0.9337
15 0.9651 0.9459 0.9577 0.9746 0.9702 0.9688
20 0.9796 0.9686 0.9779 0.987 0.9824 0.9829

4
10 0.9532 0.9343 0.9487 0.9561 0.9525 0.9533
15 0.9854 0.954 0.9796 0.9853 0.968 0.979
20 0.99 0.985 0.9892 0.9899 0.989 0.988

6
10 0.8141 0.7369 0.7833 0.9151 0.8877 0.9125
15 0.9405 0.8123 0.8654 0.9496 0.9328 0.9619
20 0.9633 0.9028 0.9269 0.9752 0.9658 0.9723

8
10 0.9271 0.9029 0.9155 0.9571 0.9433 0.9474
15 0.9655 0.9314 0.9611 0.979 0.9579 0.9798
20 0.9764 0.9625 0.9745 0.9876 0.9799 0.9856
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3.7. Experimental Series 5: Oil Pollution Image Segmentation

In order to further verify the effectiveness of the proposed algorithm in solving practical engineering
problems, four oil pollution images are selected for the experiment. These images were taken by the
drone in the area of the eighth oil production plant, which can be found in Figure 9 [58]. As can
be observed, the oil pollution area of (b) is relatively obvious; while the remaining three images all
have strong interference, especially (d). This phenomenon undoubtedly increases the difficulty of
segmentation operation, which can be considered as a challenging engineering problem.
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Figure 9. Original oil pollution images and the corresponding histograms for each of color channels
(red, green and blue).

The segmented results of the proposed method are presented in Figure 10. Because there is no
absolute standard for a real engineering problem, the authors manually labeled the target region and
separated it. Then took it as the ground truth for experimental comparison. It can be found from the
figures that the oil pollution in (a)–(c) has been successfully separated from the complex background,
which is similar to the ground truth. Considering figure (d), the ideal oil pollution area consists of
two parts, while the DHHO/M based thresholding technique incorrectly classifies them as a whole.
But in fact, it has achieved the desired goal, because the main area of oil pollution has been efficiently
identified. To sum up, although the proposed method cannot achieve perfect results for complex
images with mixed background and strong interference, it is competent for most cases and can still be
considered as a competitive technique for the segmentation of oil pollution image.
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4. Conclusions

An efficient satellite image segmentation technique based on DHHO/M is proposed in this paper.
Dynamic control parameter strategy and mutation mechanism are used to avoid trapping into the
local optimum and improve the search efficiency. In order to validate the superiority of the proposed
method, a series of experiments are conducted on various images. For the first part of the experiment,
the experimental results indicate that both the improvement strategies adopted can enhance the
optimization capability. For the second part of the experiment (the most crucial part), it can be observed
that the DHHO/M based technique gives better results for satellite images in terms of objective function
value, Std, PSNR, SSIM, FSIM, and convergence property as well as the Wilcoxon’s rank sum test and
Friedman test. For the third part of the experiment, the robustness of the proposed approach is assessed
by the segmentation based on other criteria. For the last part of the experiment, the proposed method
is applied to a real engineering problem, namely the segmentation of oil pollution image to further
evaluate its practicality and feasibility. The experimental results strongly illustrate the remarkable
performance of the DHHO/M based thresholding technique.
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In the future, the authors will introduce more efficient technique to handle the images with mixed
background and strong interference. Furthermore, due to the conflicts between different criteria,
multi-objective optimization for image thresholding is also the research direction.
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