Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex
Abstract
:1. Introduction
- Comparing spectral indices and monitoring yearly surface water frequency maps using all available Landsat images during the entire study period;
- Analyzing the spatio-temporal variations of the compositional and configurational patterns of water patches using landscape metrics;
- Studying the relationship between yearly surface water dynamics and different LULC types based on the existing multi-date LULC maps.
2. Study Area
3. Data collection and Preprocessing
3.1. Landsat Time Series Images
3.2. Validation Data
3.3. Multi-Date Land Use and Land Cover Datasets
4. Methodology
4.1. Spectral Index-Based Algorithms for Surface Water Extraction
4.2. Choice of the Optimal Index for Surface Water Extraction
4.3. Analysis of Spatio-Temporal Variations of Surface Water Pattern
4.3.1. Inter-Annual Variation of Surface Water Pattern
4.3.2. Spatial Variation of Surface Water Pattern
4.4. Implications of Land Use and Land Cover to Surface Water Dynamic
5. Results
5.1. Choice of the Optimal Index Based on Qualitative and Quantitative Evaluation for Surface Water Extraction
5.2. Inter-Annual Dynamic of the Pattern of Surface Water Scenarios
5.3. Spatial Variation of the Pattern of Surface Water Dynamic Scenarios
5.4. Link between Land Use/Land Cover Types and Surface Water Frequency Scenarios
6. Discussion
6.1. Identification of Water Dynamic Scenarios
6.2. Spatio-Temporal Analysis of the Pattern of Water Dynamic Scenarios
6.3. Quantitative Link between Land Use/Land Cover Types and Water Dynamic Scenarios
6.4. Limitations and Further Considerations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bird, E.C.F. Coastal Geomorphology: An Introduction, 2nd ed.; Wiley: Chichester, UK, 2008. [Google Scholar]
- Ghai, R.; Hernandez, C.M.; Picazo, A.; Mizuno, C.M.; Ininbergs, K.; Diez, B.; Valas, R.; DuPont, C.L.; McMahon, K.D.; Camacho, A.; et al. Metagenomes of Mediterranean coastal lagoons. Sci. Rep. 2012, 2, 490. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Phys. Chem. Earth Parts A/B/C 2011, 36, 160–166. [Google Scholar] [CrossRef]
- Berlanga-Robles, C.A.; Ruiz-Luna, A. Land use mapping and change detection in the Coastal zone of Northwest Mexico Using Remote Sensing Techniques. J. Coast. Res. 2002, 18, 514–522. [Google Scholar]
- Ruiz-Luna, A.; Berlanga-Robles, C.A. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landsc. Ecol. 2003, 18, 159–171. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Mediterranean Coastal Lagoons: Sustainable Management and Interactions among Aquaculture, Capture Fisheries and the Environment: Studies and Reviews; Rome, Italy, 2015; Available online: http://agris.fao.org/agris-search/search.do?recordID=XF2016025618 (accessed on 6 May 2019).
- Ramsar Convention Committee. Convention on Wetlands of International Importance Especially as Waterfowl Habitat; Ramsar, Iran, 2 February 1971; Available online: https://www.ramsar.org (accessed on 6 May 2019).
- European Commission. Natura. 2000. Available online: http://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 26 April 2019).
- Pôle-Relais Lagunes Méditerranéennes. Contribution à la Méthodologie d’Évaluation de Conservation de l’Habitat d’Intérêt Communautaire Prioritaire 1150-2* Lagunes Côtières Méditerranéennes à l’Échelle du Site Natura 2000. March 2014. Available online: https://pole-lagunes.org (accessed on 6 May 2019).
- Ji, L.; Gong, P.; Wang, J.; Shi, J.; Zhu, Z. Construction of the 500-m Resolution Daily Global Surface Water Change Database (2001–2016). Water Resour. Res. 2018, 54, 10270–10292. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Xu, M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series. Nat. Hazards 2011, 62, 93–100. [Google Scholar] [CrossRef]
- Fisher, A.; Danaher, T. A Water Index for SPOT5 HRG Satellite Imagery, New South Wales, Australia, Determined by Linear Discriminant Analysis. Remote Sens. 2013, 5, 5907–5925. [Google Scholar] [CrossRef] [Green Version]
- Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the extent of floods in Bangladesh using SPOT data. Remote Sens. Environ. 1992, 39, 167–178. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Zeng, W.; Fang, X. A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int. J. Digit. Earth 2016, 9, 925–941. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Powell, S.L.; Pflugmacher, D.; Kirschbaum, A.A.; Kim, Y.; Cohen, W. Moderate resolution remote sensing alternatives: A review of Landsat-like sensors and their applications. J. Appl. Remote Sens. 2007, 1, 012506. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Xu, N. Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA. Atmosphere 2018, 9, 107. [Google Scholar] [CrossRef]
- Xu, N.; Gong, P. Significant coastline changes in China during 1991–2015 tracked by Landsat data. Sci. Bull. 2018, 63, 883–886. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued decrease of open surface water body area in Oklahoma during 1984-2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10–14 December 1973. [Google Scholar]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Qin, Y.; Sun, Y.; Huang, H.; Ling, F.; Tian, L.; Ding, Y. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sens. Lett. 2015, 7, 121–130. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Jiang, W.; Jia, K.; Rao, P.; Lv, J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water 2018, 10, 1616. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Satellite-based detection of water surface variation in China’s largest freshwater lake in response to hydro-climatic drought. Int. J. Remote Sens. 2014, 35, 4544–4558. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Zhou, H.; Li, Y.; Qian, Y.; Zhang, L. Assessment of wetland fragmentation in the Tarim River basin, western China. Environ. Geol. 2009, 57, 455–464. [Google Scholar] [CrossRef]
- Fortin, M.J.; Drapeau, P.; Jacquez, G.M. Quantification of the spatial co-occurrences of ecological boundaries. Oikos 1996, 77, 51–60. [Google Scholar] [CrossRef]
- Neeson, T.M.; Mandelik, Y. Pairwise measures of species co-occurrence for choosing indicator species and quantifying overlap. Ecol. Indic. 2014, 45, 721–727. [Google Scholar] [CrossRef]
- Gotelli, N.J. Null model analysis of species co-occurrence patterns. Ecology 2000, 81, 2606–2621. [Google Scholar] [CrossRef]
- Araújo, M.B.; Rozenfeld, A.; Rahbek, C.; Marquet, P.A. Using species co-occurrence networks to assess the impacts of climate change. Ecography 2011, 34, 897–908. [Google Scholar] [CrossRef]
- Parc Naturel Régional de la Narbonnaise en Méditerranée. Available online: http://www.parc-naturel-narbonnaise.fr/natura-2000 (accessed on 26 April 2019).
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classfication and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Evans, I.S.; Robinson, D.T.; Rooney, R.C. A methodology for relating wetland configuration to human disturbance in Alberta. Landsc. Ecol. 2017, 32, 2059–2076. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 26 April 2019).
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Lustig, A.; Stouffer, D.B.; Roigé, M.; Worner, S.P. Towards more predictable and consistent landscape metrics across spatial scales. Ecol. Indic. 2015, 57, 11–21. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of spatial heterogeneity—A comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Li, Z.; Roux, E.; Dessay, N.; Girod, R.; Stefani, A.; Nacher, M.; Moiret, A.; Seyler, F. Mapping a Knowledge-Based Malaria Hazard Index Related to Landscape Using Remote Sensing: Application to the Cross-Border Area between French Guiana and Brazil. Remote Sens. 2016, 8, 319. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151. [Google Scholar] [CrossRef]
- Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing. Int. J. Envrion. Res. Public Health 2018, 15, 468. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Catry, T.; Dessay, N.; Roux, E.; Mahe, E.; Seyler, F. Multi-sensor data fusion for identifying malaria environmental features. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2529–2532. [Google Scholar] [CrossRef]
- Catry, T.; Pottier, A.; Marti, R.; Li, Z.; Roux, E.; Herbreteau, V.; Mangeas, M.; Demagistri, L.; Gurgel, H.; Dessay, N. Apports de la combinaison d’images satellites optique et RADAR dans l’étude des maladies à transmission vectorielle: Cas du paludisme à la frontière Guyane française—Brésil. Confins 2018. [Google Scholar] [CrossRef]
- Barbaree, B.A.; Reiter, M.E.; Hickey, C.M.; Elliott, N.K.; Schaffer-Smith, D.; Reynolds, M.D.; Page, G.W. Dynamic surface water distributions influence wetland connectivity within a highly modified interior landscape. Landsc. Ecol. 2018, 33, 829–844. [Google Scholar] [CrossRef] [Green Version]
Band | Spectral Range (μm) | Path/Row | Resolution (m) | ||
---|---|---|---|---|---|
TM | ETM+ | OLI | |||
Blue | 0.45–0.52 | 0.45–0.52 | 0.45–0.52 | 197/030 | 30 |
Green | 0.52–0.60 | 0.52–0.60 | 0.53–0.60 | 197/030 | 30 |
Red | 0.63–0.69 | 0.63–0.69 | 0.63–0.68 | 197/030 | 30 |
NIR | 0.76–0.90 | 0.78–0.90 | 0.85–0.89 | 197/030 | 30 |
SWIR1 | 1.55–1.75 | 1.55–1.75 | 1.56–1.67 | 197/030 | 30 |
SWIR2 | 2.08–2.35 | 2.09–2.35 | 2.10–2.29 | 197/030 | 30 |
2002/01/28 | 2008/12/22 | 2016/07/29 | |
---|---|---|---|
Water | 123 | 122 | 175 |
Non-water | 407 | 352 | 425 |
Total | 530 | 474 | 600 |
Reference Samples | |||
---|---|---|---|
Water | Non-Water | ||
Classified data | Water | TP | FP |
Non water | FN | TN |
Metric (Abbreviation) | Description (Adapted from [57]) | Units | Range |
---|---|---|---|
Percentage (PLAND) | Proportional abundance of patches in the computation unit | Percent | (0, 100) |
Patch density (PD) | Total number of patches per surface in the computation unit, per square meter | Number/m2 | >0 |
Edge density (ED) | Total length of patch edges in the computation unit, per hectare | Meters/hectare | ≥0 |
Area-weighted mean shape index (SHAPE_AM) | Normalized ratio of patch perimeter to area, in which the complexity of patch shape is compared to a square of the same size, for each patch in the computation unit | No unit | ≥1 |
Aggregation index (AI) | The degree of patch clustering | Percent | [0, 100] |
Landscape division index (DIVISION) | Probability that two randomly chosen pixels in the computation unit are not situated in the same patch | Proposition | (0, 1) |
01/28/2002 | 12/22/2008 | 07/29/2016 | ||||
---|---|---|---|---|---|---|
OA (%) | kappa | OA (%) | kappa | OA (%) | Kappa | |
NDVI | 97.9 | 0.94 | 94.5 | 0.85 | 96.0 | 0.90 |
NDWI | 97.5 | 0.93 | 95.6 | 0.88 | 95.7 | 0.90 |
MNDWI | 97.0 | 0.90 | 97.5 | 0.92 | 97.3 | 0.93 |
PLAND | PD | ED | SHAPE_AM | DIVISION | AI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
NW | 86.49 | 0.54 | 0.36 | 0.07 | 9.38 | 0.48 | 6.77 | 0.38 | 0.28 | 0.01 | 99.04 | 0.04 |
NPW | 3.26 | 0.51 | 2.13 | 0.30 | 13.37 | 0.99 | 5.09 | 0.97 | 0.99 | 0.00 | 68.49 | 3.08 |
PW | 10.25 | 0.35 | 0.46 | 0.04 | 6.34 | 0.41 | 3.51 | 0.10 | 0.99 | 0.00 | 95.57 | 0.23 |
Class 5 | Class 10 | Class 11 | Class 12 | Class 13 | |
---|---|---|---|---|---|
2003 | 0.22 | 0.21 | 0.42 | 0.24 | 0.41 |
2012 | 0.25 | 0.21 | 0.45 | 0.22 | 0.37 |
2015 | 0.16 | 0.22 | 0.44 | 0.25 | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Feng, Y.; Dessay, N.; Delaitre, E.; Gurgel, H.; Gong, P. Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sens. 2019, 11, 1425. https://doi.org/10.3390/rs11121425
Li Z, Feng Y, Dessay N, Delaitre E, Gurgel H, Gong P. Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sensing. 2019; 11(12):1425. https://doi.org/10.3390/rs11121425
Chicago/Turabian StyleLi, Zhichao, Yujie Feng, Nadine Dessay, Eric Delaitre, Helen Gurgel, and Peng Gong. 2019. "Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex" Remote Sensing 11, no. 12: 1425. https://doi.org/10.3390/rs11121425
APA StyleLi, Z., Feng, Y., Dessay, N., Delaitre, E., Gurgel, H., & Gong, P. (2019). Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sensing, 11(12), 1425. https://doi.org/10.3390/rs11121425