Comparison of Radar-Based Hail Detection Using Single- and Dual-Polarization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Variables and Methods
2.2. Hail Reports and Input Data
3. Results and Discussion
3.1. Hail Detection Results
3.2. Comparing Hail Size Detection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novák, P.; Kyznarová, H. Upgrade of the CZRAD meteorological radar network in 2015. Meteorol. Bull. 2016, 69, 17–24. [Google Scholar]
- Germann, U.; Boscacci, M.; Gabella, M.; Sartori, M. Radar design for prediction in the Swiss Alps. Meteorol. Technol. Int. 2015, 4, 42–45. [Google Scholar]
- Řezáčová, D.; Szintai, B.; Jakubiak, D.; Yano, J.-I.; Turner, S. Verification of High-Resolution Precipitation Forecast with Radar-Based Data. In Parameterization of Atmospheric Convection (In 2 Volumes): Volume 1: Theoretical Background and Formulation; Volume 2: Current Issues and New Theories; Series on the Science of Climate Change; Imperial College Press: London, UK, 2015; Volume 1, pp. 173–214. ISBN 978-1-78326-690-6. [Google Scholar]
- Bringi, V.N.; Seliga, T.A.; Aydin, K. Hail Detection with a Differential Reflectivity Radar. Science 1984, 225, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Skripniková, K.; Řezáčová, D. Radar-based hail detection. Atmos. Res. 2014, 144, 175–185. [Google Scholar] [CrossRef]
- Dual Polarization IRIS and RDA User Guide. Available online: Ftp://ftp.sigmet.com/outgoing/manuals/IRIS_and_RDA_Dual_Polarization_Users_Manual.pdf (accessed on 29 May 2018).
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Mitchell, E.D.W.; Johnson, J.T.; Thomas, K.W. Evaluating the Performance of WSR-88D Severe Storm Detection Algorithms. Weather Forecast. 1998, 13, 513–518. [Google Scholar] [CrossRef]
- Depue, T.K.; Kennedy, P.C.; Rutledge, S.A. Performance of the Hail Differential Reflectivity (HDR) Polarimetric Radar Hail Indicator. J. Appl. Meteorol. Climatol. 2007, 46, 1290–1301. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Keränen, R.; Lim, S.; Moisseev, D. Recent advances in classification of observations from dual polarization weather radars. Atmos. Res. 2013, 119, 97–111. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnic, D.S. An Algorithm to Deduce Hydrometeor Types and Contents from Multiparameter Radar Data; American Meteor Society: Norman, OK, USA, 1993. [Google Scholar]
- Höller, H.; Hagen, M.; Meischner, P.F.; Bringi, V.N.; Hubbert, J. Life Cycle and Precipitation Formation in a Hybrid-Type Hailstorm Revealed by Polarimetric and Doppler Radar Measurements. J. Atmos. Sci. 1994, 51, 2500–2522. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Ellis, S.M.; Oye, R.; Zrnic, D.S.; Ryzhkov, A.V.; Straka, J. Cloud Microphysics Retrieval Using S-band Dual-Polarization Radar Measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems and In Situ Verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Heinselman, P.L.; Giangrande, S.E.; Zrnic, D.S. The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification. Bull. Am. Meteorol. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Ortega, K.L.; Krause, J.M.; Ryzhkov, A.V. Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination. J. Appl. Meteorol. Climatol. 2016, 55, 829–848. [Google Scholar] [CrossRef]
- Waldvogel, A.; Federer, B.; Grimm, P. Criteria for the Detection of Hail Cells. J. Appl. Meteorol. 1979, 18, 1521–1525. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Chandrasekar, V.; Bringi, V.N. Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 792–801. [Google Scholar] [CrossRef]
- Kaltenboeck, R.; Ryzhkov, A. Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res. 2013, 123, 323–336. [Google Scholar] [CrossRef]
- Puhakka, T.; Leskinen, M.; Puhakka, P.; Niemi, S.; Konkola, L.; Tollman, N. University of Helsinki research radar setup. In Proceedings of the 4th European Conference on Radar Meteorology and Hydrology, Barcelona, Spain, 18–22 September 2006. [Google Scholar]
- Aydin, K.; Seliga, T.A.; Balaji, V. Remote Sensing of Hail with a Dual Linear Polarization Radar. J. Clim. Appl. Meteorol. 1986, 25, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Dotzek, N.; Groenemeijer, P.; Feuerstein, B.; Holzer, A.M. Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res. 2009, 93, 575–586. [Google Scholar] [CrossRef]
- Novák, P. Overview of the Czech Weather Radar Network—Calibration and monitoring. In Proceedings of the Weather Radar Calibration & Monitoring workshop (WXRCalMon), Offenbach, Germany, 18–20 October 2017. [Google Scholar]
- ESWD Event Reporting Criteria. Available online: https://www.essl.org/cms/wp-content/uploads/20140509-ESWD_criteria.pdf (accessed on 31 January 2017).
- Wapler, K. The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics. Atmos. Res. 2017, 193, 60–72. [Google Scholar] [CrossRef]
- Webb, J.D.C.; Elsom, D.M.; Meaden, G.T. TheTORRO hailstorm intensity scale. J. Meteorol. 1986, 11, 337–339. [Google Scholar]
- Počakal, D.; Večenaj, Ž.; Štalec, J. Hail characteristics of different regions in continental part of Croatia based on influence of orography. Atmos. Res. 2009, 93, 516–525. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Taylor, N.M. Verification of the MESH Product over the Canadian Prairies Using a High-Quality Surface Hail Report Database Sourced from Social Media. Available online: https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Session/44003 (accessed on 20 November 2018).
Nr. | Date, Time (UTC) | Location | Size Information |
---|---|---|---|
1 | 23.5. 12:50 | Lnáře | |
2 | 23.5. 13:05 | Strakonice | Larger amount of hailstones up to 2 cm |
3 | 23.5. 13:50 | Březnice | Hailstones up to 4 cm |
4 | 23.5. 14:15 | Příbram | Hailstones up to 3 cm |
5 | 23.5. 14:30 | Hořovice | Large amount of smaller hailstones |
6 | 23.5. 14:40 | Soběslav | Hailstones up to 3 cm |
7 | 23.5. 15:20 | Bratronice | Hailstones up to 2 cm, large amount |
8 | 23.5. 15:45 | Čestice | |
9 | 23.5. 16:40 | Libochovice | Average diameter of hailstones 2 cm |
10 | 23.5. 17:10 | Ludvíkovice | Continuous hail cover |
11 | 23.5. 17:35 | Verneřice | Large amount of hailstones up to 2.5 cm |
12 | 23.5. 18:00 | Jetřichovice | Hailstones up to 4 cm |
13 | 23.5. 18:15 | Krásná Lípa | Hailstones up to 4 cm |
14 | 28.5. 13:00 | Žebnice | Hailstones up to 5 cm, damaged cars, greenhouses |
15 | 28.5. 13:05 | České Budějovice | Hailstones up to 3 cm |
16 | 28.5. 13:10 | Hadačka | Large amount of smaller hailstones |
17 | 28.5. 13:40 | Bujesily | Hailstones up to 3 cm |
18 | 28.5. 14:20 | Očelice | Large amount of hailstones up to 3 cm, trees defoliated |
19 | 28.5. 14:30 | Olšany | Hailstones up to 3 cm, damage to crops and greenhouse |
20 | 31.5. 12:55 | Prague–Točná | Hailstones up to 2 cm |
21 | 31.5. 13:30 | Prague–Suchdol | Hailstones up to 4 cm |
22 | 16.6. 16:45 | Příbram | Large amount of hailstones up to 2 cm |
23 | 16.6. 17:40 | Merklín | Hailstones up to 2 cm |
24 | 16.6. 18:00 | Strakonice | Large amount of hailstones up to 3 cm |
25 | 25.6. 13:30 | Viteň | Hailstones up to 5 cm |
26 | 25.6. 13:45 | Dolní Chabry | Large amount of hailstones up to 2.5 cm |
27 | 25.6. 20:25 | Žďár | Large amount of hailstones up to 2 cm |
Nr. | Date, Time (UTC) | Location | Nr. | Date, Time (UTC) | Location |
---|---|---|---|---|---|
1 | 23.5. 13:50 | Míšov | 12 | 28.5. 13:20 | Šindelová |
2 | 23.5. 14:20 | Konstantinovy Lázně | 13 | 25.6. 13:20 | Hejnice |
3 | 23.5. 15:10 | Strašice | 14 | 25.6. 15:40 | Byňov |
4 | 23.5. 15:30 | Husinec | 15 | 25.6. 20:20 | Staňkov |
5 | 23.5. 16:30 | Zlonice | 16 | 25.6. 20:30 | Prášily |
6 | 23.5. 16:30 | Radošice | 17 | 25.6. 20:50 | Stříbro |
7 | 23.5. 17:00 | Mrtník u Hořovic | 18 | 25.6. 21:20 | Brandýs nad Labem |
8 | 23.5. 17:50 | Verneřice | 19 | 25.6. 21:20 | Rokycany |
9 | 23.5. 18:00 | Benešov nad Ploučnicí | 20 | 25.6. 22:10 | Úlice |
10 | 23.5. 18:10 | Děčín | 21 | 25.6. 23:00 | Děčínský Sněžník |
11 | 23.5. 18:30 | Střekov |
Statistics | Zdr [dB] | ρHV | Kdp [deg/km] | φdp [deg] | maxZh [dBZ] | |||||
---|---|---|---|---|---|---|---|---|---|---|
COMBI | HC | COMBI | HC | COMBI | HC | COMBI | HC | COMBI | HC | |
max | 7.9 | 7.9 | 1.0 | 1.0 | 10.0 | 10.0 | 177.2 | 170.1 | 66.0 | 70.0 |
min | −7.9 | −5.9 | 0.1 | 0.6 | −2.1 | −2.6 | 1.4 | 20.6 | 48.5 | 42.0 |
mean | 0.1 | 3.0 | 0.8 | 0.9 | 1.0 | 1.6 | 70.0 | 66.2 | 57.2 | 54.2 |
median | 0.3 | 3.4 | 0.9 | 0.9 | 0.4 | 1.2 | 62.4 | 61.7 | 57.0 | 54.0 |
10th percentile | −4.6 | −0.6 | 0.7 | 0.9 | −0.5 | −0.1 | 37.6 | 44.7 | 54.0 | 48.0 |
90th percentile | 4.7 | 6.2 | 1.0 | 1.0 | 3.2 | 3.9 | 112.7 | 94.3 | 60.5 | 60.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skripniková, K.; Řezáčová, D. Comparison of Radar-Based Hail Detection Using Single- and Dual-Polarization. Remote Sens. 2019, 11, 1436. https://doi.org/10.3390/rs11121436
Skripniková K, Řezáčová D. Comparison of Radar-Based Hail Detection Using Single- and Dual-Polarization. Remote Sensing. 2019; 11(12):1436. https://doi.org/10.3390/rs11121436
Chicago/Turabian StyleSkripniková, Kateřina, and Daniela Řezáčová. 2019. "Comparison of Radar-Based Hail Detection Using Single- and Dual-Polarization" Remote Sensing 11, no. 12: 1436. https://doi.org/10.3390/rs11121436
APA StyleSkripniková, K., & Řezáčová, D. (2019). Comparison of Radar-Based Hail Detection Using Single- and Dual-Polarization. Remote Sensing, 11(12), 1436. https://doi.org/10.3390/rs11121436