Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Legacy Soil Profile Data
2.3. Environmental Covariates
2.4. An Empirical Soil Organic Carbon (SOC) Model (1980–2002)
2.5. Backward Prediction to 1850 and 1938
2.6. Validation and Uncertainty Analysis
2.7. Soil Organic Carbon Stock (SOCS) Change and Percent Projected Natural Vegetation Soil Carbon
3. Results
3.1. Descriptive Statistics of SOC
3.2. Changing Climate and Land Cover from 1850 to 2002
3.3. Distribution of SOCS in Wisconsin
3.4. Importance of Factors Affecting SOC
3.5. SOCS Changes over 150 Years
4. Discussion
4.1. Prediction and Distribution of SOCS
4.2. Soil Carbon under Land Cover Change Only
4.3. Soil Carbon under Climate Change and Agricultural Management
4.4. Implications for Land Use and Management under Climate Change
5. Conclusions
- The loss of SOCS between 1850 and 1980 in Wisconsin, USA, was most likely due to land cover change while the increase of SOCS from 1980 to 2002 was the result of improved soil management practices;
- SOCS changes are affected by land cover and differ by soil type;
- Location-specific management should be developed to increase SOCS under climate change;
- This modified space-for-time substitution approach needs to be tested in other regions of the world to further investigate the influences of the location-specific carbon management practices and climate change on SOCS changes.
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Category | Depth (m) | No. | Min. (%) | Mean (%) | Median (%) | Max. (%) | SD (%) | CV (%) | |
---|---|---|---|---|---|---|---|---|---|
Soil order | Alfisols | 0–0.05 | 263 | 0.2 | 2.9 | 2.3 | 10.9 | 2.0 | 67.5 |
Alfisols | 0.05–0.15 | 263 | 0.2 | 2.0 | 1.8 | 8.0 | 1.1 | 54.2 | |
Alfisols | 0.15–0.30 | 263 | 0.0 | 0.8 | 0.7 | 5.4 | 0.6 | 73.6 | |
Entisols | 0–0.05 | 49 | 0.1 | 2.3 | 1.6 | 19.3 | 3.0 | 128.5 | |
Entisols | 0.05–0.15 | 49 | 0.1 | 1.7 | 1.2 | 17.4 | 2.5 | 140.3 | |
Entisols | 0.15–0.30 | 49 | 0.1 | 0.9 | 0.6 | 9.8 | 1.4 | 151.0 | |
Inceptisols | 0–0.05 | 21 | 0.3 | 3.9 | 3.3 | 16.8 | 3.6 | 92.8 | |
Inceptisols | 0.05–0.15 | 21 | 0.3 | 2.4 | 1.8 | 12.7 | 2.6 | 108.8 | |
Inceptisols | 0.15–0.30 | 21 | 0.1 | 0.8 | 0.5 | 3.9 | 0.9 | 108.0 | |
Mollisols | 0–0.05 | 48 | 0.5 | 1.8 | 1.5 | 5.0 | 1.2 | 64.3 | |
Mollisols | 0.05–0.15 | 48 | 0.4 | 1.6 | 1.4 | 4.5 | 1.0 | 62.0 | |
Mollisols | 0.15–0.30 | 48 | 0.4 | 1.1 | 0.9 | 4.1 | 0.7 | 64.8 | |
Spodosols | 0–0.05 | 152 | 0.0 | 5.5 | 3.3 | 68.4 | 9.5 | 171.7 | |
Spodosols | 0.05–0.15 | 152 | 0.0 | 3.6 | 1.6 | 57.8 | 7.6 | 214.4 | |
Spodosols | 0.15–0.30 | 152 | 0.1 | 1.8 | 0.9 | 42.8 | 4.5 | 259.1 | |
Land cover | Grassland | 0–0.05 | 3 | 1.2 | 2.3 | 2.8 | 3.1 | 1.0 | 43.1 |
Grassland | 0.05–0.15 | 3 | 1.0 | 1.9 | 2.3 | 2.3 | 0.7 | 38.8 | |
Grassland | 0.15–0.30 | 3 | 0.6 | 1.0 | 1.0 | 1.5 | 0.5 | 45.6 | |
Cropland | 0–0.05 | 113 | 0.3 | 2.4 | 2.0 | 9.4 | 1.7 | 70.8 | |
Cropland | 0.05–0.15 | 113 | 0.3 | 1.9 | 1.6 | 8.0 | 1.3 | 66.1 | |
Cropland | 0.15–0.30 | 113 | 0.1 | 0.9 | 0.8 | 5.4 | 0.7 | 77.7 | |
Forest | 0–0.05 | 282 | 0.0 | 4.5 | 2.8 | 68.4 | 7.3 | 161.7 | |
Forest | 0.05–0.15 | 282 | 0.0 | 2.9 | 1.7 | 57.8 | 5.8 | 200.2 | |
Forest | 0.15–0.30 | 282 | 0.0 | 1.3 | 0.8 | 42.8 | 3.4 | 256.2 | |
Pasture | 0–0.05 | 116 | 0.1 | 2.3 | 1.9 | 8.4 | 1.5 | 64.9 | |
Pasture | 0.05–0.15 | 116 | 0.1 | 1.7 | 1.6 | 4.6 | 0.8 | 48.9 | |
Pasture | 0.15–0.30 | 116 | 0.0 | 0.8 | 0.7 | 2.7 | 0.4 | 50.8 | |
Wetland | 0–0.05 | 19 | 0.7 | 3.9 | 3.4 | 10.9 | 3.1 | 79.8 | |
Wetland | 0.05–0.15 | 19 | 0.5 | 2.1 | 1.7 | 5.3 | 1.4 | 66.9 | |
Wetland | 0.15–0.30 | 19 | 0.2 | 0.6 | 0.5 | 1.5 | 0.4 | 64.8 |
Soil Order | Land Cover | 1850–1938 | 1938–1980 | 1980–2002 |
---|---|---|---|---|
Alfisols | Forest | <–0.1 | <+0.1 | <+0.1 |
Grassland | <–0.1 | <–0.1 | 0.2 | |
Cropland | – | <+0.1 | 0.1 | |
Pasture | – | <+0.1 | 0.1 | |
Wetland | <–0.1 | <+0.1 | 0.1 | |
Entisols | Forest | <–0.1 | <+0.1 | 0.1 |
Grassland | <–0.1 | <–0.1 | 0.1 | |
Cropland | – | – | – | |
Pasture | – | – | – | |
Wetland | <–0.1 | <+0.1 | 0.2 | |
Inceptisols | Forest | <–0.1 | <–0.1 | 0.2 |
Grassland | <–0.1 | <–0.1 | 0.2 | |
Cropland | – | – | – | |
Pasture | – | – | – | |
Wetland | <–0.1 | <+0.1 | 0.2 | |
Mollisols | Forest | –0.1 | <+0.1 | 0.1 |
Grassland | <–0.1 | <–0.1 | 0.1 | |
Cropland | – | – | – | |
Pasture | – | – | – | |
Wetland | –0.1 | <+0.1 | 0.1 | |
Spodosols | Forest | <–0.1 | <–0.1 | 0.3 |
Grassland | <–0.1 | <–0.1 | 0.5 | |
Cropland | – | <+0.1 | 0.1 | |
Pasture | – | – | – | |
Wetland | <–0.1 | <+0.1 | 0.3 |
References
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104. [Google Scholar] [CrossRef] [PubMed]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, T.A.; Ruhland, C.T.; Xiong, F.S. Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Glob. Chang. Biol. 2008, 14, 1827–1843. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Forbes, B.C.; Zetterberg, P.; Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Chang. 2012, 2, 613. [Google Scholar] [CrossRef]
- Todd-Brown, K.E.O.; Randerson, J.T.; Hopkins, F.; Arora, V.; Hajima, T.; Jones, C.; Shevliakova, E.; Tjiputra, J.; Volodin, E.; Wu, T.; et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 2014, 11, 2341–2356. [Google Scholar] [CrossRef] [Green Version]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef]
- Ballantyne, A.; Smith, W.; Anderegg, W.; Kauppi, P.; Sarmiento, J.; Tans, P.; Shevliakova, E.; Pan, Y.; Poulter, B.; Anav, A.; et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 2017, 7, 148. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018. [Google Scholar] [CrossRef]
- Brye, K.R.; Kucharik, C.J. Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in southern Wisconsin. Am. Midl. Nat. 2003, 149, 90–103. [Google Scholar] [CrossRef]
- Neill, C.; Melillo, J.M.; Steudler, P.A.; Cerri, C.C.; de Moraes, J.F.L.; Piccolo, M.C.; Brito, M. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 1997, 7, 1216–1225. [Google Scholar] [CrossRef]
- Churchman, G.J.; Noble, A.; Bailey, G.; Chittleborough, D.; Harper, R. Clay Addition and Redistribution to Enhance Carbon Sequestration in Soils. In Soil Carbon; Hartemink, A.E., McSweeney, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 327–335. [Google Scholar]
- Hoyle, F.C.; D’Antuono, M.; Overheu, T.; Murphy, D.V. Capacity for increasing soil organic carbon stocks in dryland agricultural systems. Soil Res. 2013, 51, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.M.; Arneth, A.; Olin, S.; Ahlström, A.; Bayer, A.D.; Goldewijk, K.K.; Lindeskog, M.; Schurgers, G. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environ. Res. Lett. 2015, 10, 124008. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Reg. 2017, 10, 115–125. [Google Scholar] [CrossRef]
- Adhikari, K.; Owens, P.R.; Libohova, Z.; Miller, D.M.; Wills, S.A.; Nemecek, J. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Sci. Total Environ. 2019, 667, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Kucharik, C.J.; Brye, K.R.; Norman, J.M.; Foley, J.A.; Gower, S.T.; Bundy, L.G. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems 2001, 4, 237–258. [Google Scholar] [CrossRef]
- Al-Adamat, R.; Rawajfih, Z.; Easter, M.; Paustian, K.; Coleman, K.; Milne, E.; Falloon, P.; Powlson, D.S.; Batjes, N.H. Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC Modelling System. Agric. Ecosyst. Environ. 2007, 122, 35–45. [Google Scholar] [CrossRef]
- Ciais, P.; Wattenbach, M.; Vuichard, N.; Smith, P.; Piao, S.; Don, A.; Luyssaert, S.; Janssens, I.A.; Bondeau, A.; Dechow, R.; et al. The European carbon balance. Part 2: Croplands. Glob. Chang. Biol. 2010, 16, 1409–1428. [Google Scholar] [CrossRef]
- Janssens, I.; Freibauer, A.; Schlamadinger, B.; Ceulemans, R.; Ciais, P.; Dolman, A.; Heimann, M.; Nabuurs, G.J.; Smith, P.; Valentini, R.; et al. The carbon budget of terrestrial ecosystems at country-scale—A European case study. Biogeosciences 2005, 2, 15–26. [Google Scholar] [CrossRef]
- Luyssaert, S.; Ciais, P.; Piao, S.; Schulze, E.D.; Jung, M.; Zaehle, S.; Schelhaas, M.J.; Reichstein, M.; Churkina, G.; Papale, D.; et al. The European carbon balance. Part 3: Forests. Glob. Chang. Biol. 2010, 16, 1429–1450. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Minasny, B.; McBratney, A.B.; Padarian, J.; Triantafilis, J. The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe. Sci. Total Environ. 2018, 615, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C.; Jackson, S.T.; Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. USA 2013, 110, 9374–9379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickett, S.T. Space-for-Time Substitution as an Alternative to Long-Term Studies; Long-Term Studies in Ecology; Springer: Berlin, Germany, 1989; pp. 110–135. [Google Scholar]
- Adhikari, K.; Hartemink, A.E. Digitalmapping of topsoil carbon content and changes in the Driftless Area of Wisconsin, USA. Soil Sci. Soc. Am. J. 2015, 79, 155–164. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2016, 261, 204–221. [Google Scholar] [CrossRef]
- Waring, C.; Stockmann, U.; Malone, B.P.; Whelan, B.; McBratney, A.B. Is Percent ‘Projected Natural Vegetation Soil Carbon’ a Useful Indicator of Soil Condition; Soil Carbon; Springer: Berlin, Germany, 2014; pp. 219–227. [Google Scholar]
- Bockheim, J.G.; Hartemink, A.E. The Soils of Wisconsin; Springer: Berlin, Germany, 2017. [Google Scholar]
- Hartemink, A.E.; Lowery, B.; Wacker, C. Soil maps of Wisconsin. Geoderma 2012, 189–190, 451–461. [Google Scholar] [CrossRef]
- Wisconsin Economy. Available online: http://www.netstate.com/economy/wi_economy.htm (accessed on 22 June 2019).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties. Adv. Agron. 2014, 125, 93–134. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 2009, 154, 138–152. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital mapping of soil carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- USGS. Landcover Modeling. Available online: https://landcover-modeling.cr.usgs.gov/projects.php (accessed on 22 June 2019).
- Sohl, T.L.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Friesz, A.M.; Bennett, S.L.; Sleeter, B.M.; Sleeter, R.R.; Wilson, T.; Knuppe, M.; et al. Spatially explicit modeling of 1992–2100 land cover and forest stand age for the conterminous United States. Ecol. Appl. 2014, 24, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Sohl, T.; Reker, R.; Bouchard, M.; Sayler, K.; Dornbierer, J.; Wika, S.; Quenzer, R.; Friesz, A. Modeled historical land use and land cover for the conterminous United States. J. Land Use Sci. 2016, 11, 476–499. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. R package version: 4.6-12. R News, 2015; Volume 2, 18–22. [Google Scholar]
- Kuhn, M. The Caret Package. R Foundation for Statistical Computing: Vienna, Austria, 2012. Available online: https://cran.r-project.org/package=caret (accessed on 22 June 2019).
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Sci. Soc. Am. J. 2018, 82, 186–201. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Osborn, T.J.; Harpham, C.; Salmon, M.; Morice, C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- NASA. Observed Land Surface Precipitation Data: 1850–1995. Available online: https://data.giss.nasa.gov/precip_dai/ (accessed on 22 June 2019).
- Dai, A.; Fung, I.Y.; Genio, A.D.D. Surface observed global land precipitation variations during 1900–88. J. Clim. 1997, 10, 2943–2962. [Google Scholar] [CrossRef]
- Finley, R.W. Vegetation of Wisconsin in the Mid-1800s; University of Wisconsin–Madison: Madison, WI, USA, 1976. [Google Scholar]
- Curtis, J.T. The Vegetation of Wisconsin; University of Wisconsin Press: Madison, WI, USA, 1959. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Bae, J.; Ryu, Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Europe’s forest management did not mitigate climate warming. Science 2016, 351, 597–600. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, E.; Jones, P.D. On increasing global temperatures: 75 years after Callendar. Q. J. R. Meteorol. Soc. 2013, 139, 1961–1963. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2016. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 22 June 2019).
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Department of Natural Resouces. Wisconsin Water Use. 2016. Available online: https://dnr.wi.gov/topic/WaterUse/documents/WithdrawalReportDetail.pdf (accessed on 22 June 2019).
- Knox, J.C. Long- and short-term episodic storage and removal of sediment in watersheds of southwestern Wisconsin and northwestern Illinois. Sediment Environ. 1989, 184, 157–164. [Google Scholar]
- USDA Economic Research Service. Fertilizer Use and Price. 2018. Available online: https://www.ers.usda.gov/data-products/fertilizer-use-and-price/summary-of-findings/ (accessed on 22 June 2019).
- Vanotti, M.B.; Bundy, L.G.; Peterson, A.E. Nitrogen Fertilizer and Legume-Cereal Rotation Effects on Soil Productivity and Organic Matter Dynamics in Wisconsin. In Soil Organic Matter in Temperate Ecosystems: Long-Term Experiments in North America; Paul, E.A., Paustian, K., Elliott, E.T., Cole, C.V., Eds.; CRC Press: New York, NY, USA, 1997; pp. 105–119. [Google Scholar]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.D.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, B.P.; Whitehead, W.F. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Tillage Res. 2002, 63, 167–179. [Google Scholar] [CrossRef]
- Cates, A.M.; Ruark, M.D.; Hedtcke, J.L.; Posner, J.L. Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil Tillage Res. 2016, 155, 371–380. [Google Scholar] [CrossRef]
- Harden, J.W.; Hugelius, G.; Ahlström, A.; Blankinship, J.C.; Bond-Lamberty, B.; Lawrence, C.R.; Loisel, J.; Malhotra, A.; Jackson, R.B.; Ogle, S.; et al. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Chang. Biol. 2018, 24, e705–e718. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C.; Berry, E.C.; Swan, J.B.; Eash, N.S.; Jordahl, J.L. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 1994, 31, 149–167. [Google Scholar] [CrossRef]
- Swan, J.B.; Higgs, R.L.; Bailey, T.B.; Wollenhaupt, N.C.; Paulson, W.H.; Peterson, A.E. Surface residue and in-row treatment effects on long-term no-tillage continuous corn. Agric. J. 1994, 86, 711–718. [Google Scholar] [CrossRef]
- USDA Economic Research Service. Improved Seed is a Major Contributor to Crop Yield Gains and Agricultural Productivity. The Seed Industry in U.S. Agriculture (AIB-786). 2000. Available online: https://www.ers.usda.gov/webdocs/publications/42517/13599_aib786d_1_.pdf?v=0 (accessed on 22 June 2019).
- Mason, J.A.; Knox, J.C. Age of colluvium indicates accelerated late Wisconsinan hillslope erosion in the Upper Mississippi Valley. Geology 1997, 25, 267–270. [Google Scholar] [CrossRef]
- Trimble, S.W. A sediment budget for Coon Creek basin in the Driftless Area, Wisconsin, 1853–1977. Am. J. Sci. 1983, 283, 454–474. [Google Scholar] [CrossRef]
- Trimble, S.W.; Crosson, P. US soil erosion rates—Myth and reality. Science 2000, 289, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.V.; Renwick, W.H.; Buddemeier, R.W.; Crossland, C.J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 2001, 15, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.J.; Jordan, C.; Kilpatrick, D.; McCarney, B.; Stewart, R. Impact of grazed grassland management on total N accumulation in soil receiving different levels of N inputs. Soil Use Manag. 2007, 23, 121–128. [Google Scholar] [CrossRef]
- Black, K.; Reidy, B.; Tobin, B.; Osborne, B.; Green, C.; Farrell, E.T.; Saiz, G.; Nieuwenhuis, M.; Bolger, T.; Byrne, K.A.; et al. Carbon stock and stock changes across a Sitka spruce chronosequence on surface-water gley soils. For. Int. J. For. Res. 2009, 82, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Wieder, W.R.; Cleveland, C.C.; Smith, W.K.; Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 2015, 8, 441. [Google Scholar] [CrossRef]
- Von Haden, A.; Marin-Spiotta, E.; Jackson, R.D.; Kucharik, C.J. Diurnal Patterns of Heterotrophic and Autotrophic Soil Respiration in Maize and Switchgrass Bioenergy Cropping Systems. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Chou, W.W.; Silver, W.L.; Jackson, R.D.; Thompson, A.W.; Allen-Diaz, B. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob. Chang. Biol. 2008, 14, 1382–1394. [Google Scholar] [CrossRef]
- Wilson, B.T.; Woodall, C.W.; Griffith, D.M. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Manag. 2013, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Sanford, G.R.; Posner, J.L.; Jackson, R.D.; Kucharik, C.J.; Hedtcke, J.L.; Lin, T.-L. Soil carbon lost from Mollisols of the North Central U.S.A. with 20 years of agricultural best management practices. Agric. Ecosyst. Environ. 2012, 162, 68–76. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Kätterer, T.; Reichstein, M.; Andrén, O.; Lomander, A. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models. Biol. Fertil. Soils 1998, 27, 258–262. [Google Scholar] [CrossRef]
- Brovkin, V.; Sitch, S.; Von Bloh, W.; Claussen, M.; Bauer, E.; Cramer, W. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob. Chang. Biol. 2004, 10, 1253–1266. [Google Scholar] [CrossRef]
- Franko, U.; Ruehlmann, J. SOC sequestration as affected by historic and present management. Geoderma 2018, 321, 15–21. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Chen, Q.; Ye, Y.; Shi, Z.; Liu, J.; Ding, Q.; Li, X. Analyzing spatial patterns of urban carbon metabolism and its response to change of urban size: A case of the Yangtze River Delta, China. Ecol. Ind. 2019, 104, 615–625. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Barker, D.W.; Helmers, M.J.; Miguez, F.E.; Olk, D.C.; Sawyer, J.E.; Six, J.; Castellano, M.J. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef] [PubMed]
- Wisconsin Initiative on Climate Change Impacts. Soil Conservation Working Group Report. 2011. Available online: https://www.wicci.wisc.edu/report/soil-conservation.pdf (accessed on 22 June 2019).
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Variables | Spatial Resolution | Temporal Scale | Source |
---|---|---|---|---|
Soil | Clay | 100 m | Stable | [37] |
Silt | 100 m | Stable | [37] | |
Sand | 100 m | Stable | [37] | |
Bulk density | 100 m | Stable | [37] | |
pH | 100 m | Stable | [37] | |
Climate | Annual temperature | 1 km | Yearly, 1980-2002 | Daymet Version 3 |
Annual precipitation | 1 km | Yearly, 1980-2002 | Daymet Version 3 | |
Annual temperature | 1 km | 1938 | Same as 1980 | |
Annual precipitation | 1 km | 1938 | Same as 1980 | |
Annual temperature | 1 km | 1850 | [41] | |
Annual precipitation | 1 km | 1850 | [42,43] | |
Organism | Land cover | 250 m | Yearly, 1938-2002 | Resampled from [44] |
Land cover | – | 1850 | [45,46] | |
Topography | Elevation (m) | 30 m | Stable | Downloaded from the USGS |
Slope | 30 m | Stable | Calculated using SAGA GIS [39] | |
Aspect | 30 m | Stable | Calculated using SAGA GIS [39] | |
Hillshade | 30 m | Stable | Calculated using SAGA GIS [39] | |
Topographic wetness index (TWI) | 30 m | Stable | Calculated using SAGA GIS [39] | |
Multiresolution index of valley bottom flatness (MRVBF) | 30 m | Stable | Calculated using SAGA GIS [39] |
Category | No. | 1980–1990 | No. | 1991–2002 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0–0.05 m | 0.05–0.15 m | 0.15–0.30 m | 0–0.05 m | 0.05–0.15 m | 0.15–0.30 m | |||||
Soil order | Alfisols | 154 | 3.2 | 2.1 | 0.8 | 109 | 2.6 | 1.8 | 0.8 | |
Entisols | 20 | 3.2 | 2.3 | 1.3 | 29 | 1.7 | 1.4 | 0.6 | ||
Inceptisols | 12 | 3.2 | 1.7 | 0.9 | 9 | 4.7 | 3.4 | 0.8 | ||
Mollisols | 18 | 1.9 | 1.7 | 1.1 | 30 | 1.7 | 1.6 | 1.1 | ||
Spodosols | 100 | 6.4 | 4.0 | 2.1 | 52 | 3.9 | 2.8 | 1.1 | ||
Land cover | Forest | 169 | 5.4 | 3.3 | 1.6 | 121 | 3.2 | 2.3 | 0.9 | |
Grassland | 3 | 2.3 | 1.9 | 1.0 | – | – | – | – | ||
Cropland | 61 | 2.6 | 2.0 | 1.0 | 57 | 2.1 | 1.7 | 0.9 | ||
Pasture | 70 | 2.6 | 1.9 | 0.8 | 49 | 1.9 | 1.5 | 0.7 | ||
Wetland | 12 | 2.8 | 1.7 | 0.7 | 8 | 6.7 | 3.1 | 0.5 |
Dataset | Soil Profiles | SOC Samples | R2 | Lin’s Concordance | RMSE (%) | ME (%) |
---|---|---|---|---|---|---|
Calibration | 412 | 2,207 | 0.89 | 0.90 | 2.04 | 0.01 |
Validation | 138 | 734 | 0.48 | 0.67 | 2.22 | 0.62 |
Period | Rate of Change (ton ha−1 year−1) | Total (Mton) | Potential Causes |
---|---|---|---|
1850–1938 | –0.1–0 | –41.4 | Land cover changes, mainly deforestation (conversion of forest to cropland and pasture). High erosion rates |
1938–1980 | 0–+0.1 | +0.5 | Relatively stable climate and a balance between deforestation (1938–1950) and afforestation (1950–1980); erosion controlled in large parts of the state |
1980–2002 | +0.2 | +39.8 | Increased carbon production due to increasing temperature, increased irrigation and N fertilization and better soil management (e.g., decreased erosion, reduced tillage, crop rotation and use of legume and cover crops) In some areas, increased carbon loss due to soil erosion, deforestation, and cultivation |
1850–1938 | 1938–1980 | 1980–2002 | ||
---|---|---|---|---|
Soil order | Alfisols | <–0.1 | <+0.1 | +0.1 |
Entisols | <–0.1 | <+0.1 | +0.1 | |
Inceptisols | <–0.1 | <–0.1 | +0.2 | |
Mollisols | –0.1 | <+0.1 | +0.1 | |
Spodosols | <–0.1 | <–0.1 | +0.4 | |
Land cover | Forest | <–0.1 | <+0.1 | +0.1 |
Grassland* | <–0.1 | <–0.1 | +0.3 | |
Cropland | – | <+0.1 | +0.1 | |
Pasture | <–0.1 | <+0.1 | +0.1 | |
Wetland | – | <+0.1 | +0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Hartemink, A.E.; Zhang, Y. Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sens. 2019, 11, 1504. https://doi.org/10.3390/rs11121504
Huang J, Hartemink AE, Zhang Y. Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sensing. 2019; 11(12):1504. https://doi.org/10.3390/rs11121504
Chicago/Turabian StyleHuang, Jingyi, Alfred E. Hartemink, and Yakun Zhang. 2019. "Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA" Remote Sensing 11, no. 12: 1504. https://doi.org/10.3390/rs11121504
APA StyleHuang, J., Hartemink, A. E., & Zhang, Y. (2019). Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sensing, 11(12), 1504. https://doi.org/10.3390/rs11121504