Spectral-Spatial Hyperspectral Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field
Abstract
:1. Introduction
- The robust LRMF method based on modeling the noise as MoG is firstly adopted to tackle complex noise embedded in each local patch of HSI data. By using this method as well as considering the smooth property of labels by MRF, we propose a new method for HSI classification, which can simultaneously extract low-rank spectral-spatial features and remove some complex noise in the stage of feature extraction.
- Experimental results on four benchmark HSI datasets illustrate that the proposed method can obtain better performance compared with other state-of-the-art methods.
2. Spectral-Spatial Feature Extraction Using Robust Low-Rank Matrix Factorization
2.1. Notations
2.2. Spectral-Spatial Feature Extraction Using Robust Low-Rank Matrix Factorization
Algorithm 1 EM algorithm to extract the MoGLRMF feature. |
Input: Spatial neighborhood of original feature . |
Initialization: and low-rank feature . |
while stopping criterion is not satisfied do |
Update via Equation (5) |
Update via Equations (8) and (9) |
Update via DN algorithm [59]. |
End while |
output: and low-rank feature . |
2.3. Classification and Post-Processing
Algorithm 2 HSI Classification Algorithm. |
Input: HSI dataset . |
while stopping criterion is not satisfied do |
Extract low-rank features for via Algorithm 1 |
Train classifier using training set |
Compute class probabilities |
Compute via -Expansion Algorithm |
End while |
output: Labels . |
2.4. Complexity Analysis
3. SHIP Package for Easy Comparison of HSI Classification Methods
4. Experimental Results
4.1. Selecting the Best Classifier Using SHIP
4.2. Synthetic Experiments
4.3. Real Experiments
4.4. Impact of Parameter Settings
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalaitzidis, C.; Vadrevu, K.P. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Kitada, K.; Fukuyama, K. Land-use and land-cover mapping using a gradable classification method. Remote Sens. 2012, 4, 1544–1558. [Google Scholar] [CrossRef]
- Matsuki, T.; Yokoya, N.; Iwasaki, A. Hyperspectral tree species classification of Japanese complex mixed forest with the aid of LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2177–2187. [Google Scholar] [CrossRef]
- Shafri, H.Z.; Taherzadeh, E.; Mansor, S.; Ashurov, R. Hyperspectral remote sensing of urban areas: An overview of techniques and applications. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 1557–1565. [Google Scholar]
- Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sci. 1993, 7, 173–186. [Google Scholar] [CrossRef]
- Bischof, H.; Leonardis, A. Finding optimal neural networks for land use classification. IEEE Trans. Geosci. Remote Sens. 1998, 36, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. Proc. SPIE 1998, 3584. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Gómez-Chova, L.; Calpe-Maravilla, J.; Martín-Guerrero, J.D.; Soria-Olivas, E.; Alonso-Chordá, L.; Moreno, J. Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1530–1542. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4865–4876. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Wei, Z. Spectral–Spatial Classification of Hyperspectral Image Based on Low-Rank Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2370–2380. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, X.; Li, Q. Spectral–Spatial Hyperspectral Image Classification Using Regularized Low-Rank Representation and Sparse Representation-Based Graph Cuts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2473–2484. [Google Scholar] [CrossRef]
- Cao, X.; Xu, L.; Meng, D.; Zhao, Q.; Xu, Z. Integration of three-dimensional, discrete wavelet transform and Markov random field for hyperspectral image classification. Neurocomputing 2017, 226, 90–100. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, Z.; Li, X. Locality adaptive discriminant analysis for spectral–spatial classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2077–2081. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 2002, 62, 115. [Google Scholar]
- Crawford, M.M.; Ma, L.; Kim, W. Exploring nonlinear manifold learning for classification of hyperspectral data. In Optical Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 207–234. [Google Scholar]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 217–231. [Google Scholar] [CrossRef]
- Soltani-Farani, A.; Rabiee, H.R.; Hosseini, S.A. Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 527–541. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Huang, Y.; Zhang, L. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2056–2065. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2462–2471. [Google Scholar] [CrossRef]
- Harsanyi, J.C.; Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Chang, C.I.; Zhao, X.L.; Althouse, M.L.; Pan, J.J. Least squares subspace projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 898–912. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I. Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis. IEEE Trans. Geosci. Remote Sens. 2005, 43, 502–518. [Google Scholar] [CrossRef]
- Bagan, H.; Yasuoka, Y.; Endo, T.; Wang, X.; Feng, Z. Classification of airborne hyperspectral data based on the average learning subspace method. IEEE Geosci. Remote Sens. Lett. 2008, 5, 368–372. [Google Scholar] [CrossRef]
- Yang, J.M.; Kuo, B.C.; Yu, P.T.; Chuang, C.H. A dynamic subspace method for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2840–2853. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Peng, X.; Feng, J.; Xiao, S.; Yau, W.Y.; Zhou, J.T.; Yang, S. Structured autoencoders for subspace clustering. IEEE Trans. Image Process. 2018, 27, 5076–5086. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Ye, M.; Zhou, J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2276–2291. [Google Scholar] [CrossRef]
- Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Meng, D.; De La Torre, F. Robust matrix factorization with unknown noise. In Proceedings of the IEEE International Conference on Computer Vision, Tampa, FL, USA, 5–8 December 2013; pp. 1337–1344. [Google Scholar]
- Cao, X.; Chen, Y.; Zhao, Q.; Meng, D.; Wang, Y.; Wang, D.; Xu, Z. Low-rank matrix factorization under general mixture noise distributions. In Proceedings of the IEEE International Conference on Computer Vision, Tampa, FL, USA, 5–8 December 2015; pp. 1493–1501. [Google Scholar]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? JACM 2011, 58, 11. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Lake Tahoe, NV, USA, 2012; pp. 1097–1105. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Lin, Z.; Chen, Y.; Zhao, X.; Wang, G. Spectral-spatial classification of hyperspectral image using autoencoders. In Proceedings of the IEEE 9th International Conference on Information, Communications and Signal Processing (ICICS), Tainan, Taiwan, 10–13 December 2013; pp. 1–5. [Google Scholar]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Midhun, M.; Nair, S.R.; Prabhakar, V.; Kumar, S.S. Deep model for classification of hyperspectral image using restricted boltzmann machine. In Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, Amritapuri, India, 10–11 October 2014; ACM: New York, NY, USA, 2014; p. 35. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468–477. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral Image Segmentation with Markov Random Fields and a Convolutional Neural Network. arXiv 2017, arXiv:1705.00727. [Google Scholar]
- Mou, L.; Ghamisi, P.; Zhu, X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Kwak, N. Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Mitra, K.; Sheorey, S.; Chellappa, R. Large-scale matrix factorization with missing data under additional constraints. In Advances in Neural Information Processing Systems; Neural Information Processing Systems, Inc.: San Diego, CA, USA, 2010; pp. 1651–1659. [Google Scholar]
- Cao, X.; Zhao, Q.; Meng, D.; Chen, Y.; Xu, Z. Robust low-rank matrix factorization under general mixture noise distributions. IEEE Trans. Image Process. 2016, 25, 4677–4690. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, N.; Zhang, N.L.; Yeung, D.Y. Bayesian Adaptive Matrix Factorization with Automatic Model Selection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1284–1292. [Google Scholar]
- Zhao, Q.; Meng, D.; Xu, Z.; Zuo, W.; Zhang, L. Robust principal component analysis with complex noise. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 55–63. [Google Scholar]
- Ye, H.; Li, H.; Yang, B.; Cao, F.; Tang, Y. A Novel Rank Approximation Method for Mixture Noise Removal of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4457–4469. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, X.; Zhao, Q.; Meng, D.; Xu, Z. Denoising hyperspectral image with non-iid noise structure. IEEE Trans. Cybern. 2017, 48, 1054–1066. [Google Scholar] [CrossRef]
- Ince, T. Hyperspectral Image Denoising Using Group Low-Rank and Spatial-Spectral Total Variation. IEEE Access 2019, 7, 52095–52109. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 442–446. [Google Scholar] [CrossRef]
- De la Torre, F.; Black, M.J. A framework for robust subspace learning. Int. J. Comput. Vis. 2003, 54, 117–142. [Google Scholar] [CrossRef]
- Buchanan, A.M.; Fitzgibbon, A.W. Damped newton algorithms for matrix factorization with missing data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; pp. 316–322. [Google Scholar]
- Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1222–1239. [Google Scholar] [CrossRef]
- Kolmogorov, V.; Zabin, R. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yedidia, J.S.; Freeman, W.T.; Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 2005, 51, 2282–2312. [Google Scholar] [CrossRef]
- Kolmogorov, V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1568–1583. [Google Scholar] [CrossRef] [PubMed]
- SHIP—Supervised HSI Classification Package. Available online: https://github.com/xiangyongcao/SHIP (accessed on 27 September 2018).
- 3-Dimensional Discrete Wavelet Transform. Available online: https://github.com/xiangyongcao/3DDWT-SVM-GC (accessed on 2 July 2015).
- Stack Auto-Encoder. Available online: https://github.com/hantek/deeplearn_hsi (accessed on 1 February 2014).
- ENVI. Available online: https://www.harrisgeospatial.com/Software-Technology/ENVI (accessed on 2 March 2015).
- Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data Softw. Stand. 2017, 2, 15. [Google Scholar] [CrossRef]
- GDAL—Geospatial Data Abstraction Library. Available online: https://www.gdal.org/ (accessed on 5 May 2019).
- Boggs, T. Spectral Python. 2014. Available online: http://www.spectralpython.net (accessed on 17 January 2011).
- Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The remote sensing and GIS software library (RSGISLib). Comput. Geosci. 2014, 62, 216–226. [Google Scholar] [CrossRef]
- Kemker, R.; Gewali, U.B.; Kanan, C. EarthMapper: A Tool Box for the Semantic Segmentation of Remote Sensing Imagery. arXiv 2018, arXiv:1804.00292. [Google Scholar]
Toolbox | Open | Supervised Classification | Low-Level Features (Num ≥ 3) | Deep Feature | Classifiers (Num ≥ 3) | Post-Processing |
---|---|---|---|---|---|---|
ENVI [67] | × | √ | √ | × | × | × |
Orfeo [68] | √ | √ | √ | × | √ | × |
GDAL [69] | √ | × | × | × | × | × |
Spectral [70] | √ | √ | × | × | √ | × |
RSGISLib [71] | √ | √ | × | × | × | × |
EarchMapper [72] | √ | √ | × | √ | × | √ |
SHIP | √ | √ | √ | √ | √ | √ |
Datasets | Material Class | Image Size | Bands | Spatial Resolution (m) | Acquired Sensor |
---|---|---|---|---|---|
Indian Pines | 16 | 145 × 145 | 220 | 20 | AVIRIS |
Pavia University | 9 | 610 × 340 | 103 | 1.3 | ROSIS |
Pavia Center | 9 | 1096 × 715 | 102 | 1.3 | ROSIS |
Kennedy Space Center | 13 | 512 × 614 | 176 | 18 | AVIRIS |
Features | Raw | PCA [19] | Low-Rank [15] | 3DDWT [33] | 3DGabor [34] | SAE [41] | MoGLRMF |
---|---|---|---|---|---|---|---|
Classifiers | Indian Pines (1% samples each) | ||||||
KNN | 57.96 (3.73) | 53.27 (4.22) | 63.70 (4.43) | 61.58 (4.94) | 59.97 (3.51) | 61.32 (3.72) | 66.10 (4.98) |
GNB | 50.52 (4.87) | 54.05 (4.54) | 50.06 (4.56) | 46.27 (3.92) | 55.26 (2.63) | 53.26 (3.36) | 50.07 (4.74) |
LDA | 58.00 (7.08) | 45.18 (6.85) | 59.56 (10.61) | 57.70 (9.62) | 52.55 (7.32) | 47.82 (4.87) | 62.78 (9.69) |
LR | 59.55 (4.93) | 60.48 (6.59) | 77.16 (3.09) | 72.25 (3.53) | 65.72 (3.57) | 63.05 (5.30) | 75.15 (4.94) |
KSVM | 52.07 (2.75) | 51.76 (3.35) | 58.10 (5.49) | 56.21 (4.15) | 56.52 (3.30) | 56.24 (2.90) | 57.50 (5.63) |
DT | 54.72 (4.74) | 53.84 (5.73) | 65.33 (4.56) | 56.56 (4.05) | 51.03 (2.77) | 56.63 (3.12) | 67.28 (3.10) |
RF | 60.90 (2.55) | 58.62 (2.09) | 72.01 (4.11) | 64.72 (2.74) | 57.48 (1.71) | 63.35 (3.10) | 76.84 (2.78) |
GB | 55.40 (2.84) | 55.74 (3.60) | 70.09 (3.01) | 64.37 (3.59) | 53.33 (3.13) | 60.52 (3.25) | 70.53 (3.31) |
MLP | 66.13 (4.02) | 63.78 (4.99) | 75.68 (3.55) | 71.11 (3.16) | 68.97 (3.82) | 69.81 (3.26) | 74.58 (4.87) |
Classifiers | Pavia University (50 samples each) | ||||||
KNN | 87.48 (3.47) | 67.04 (8.72) | 92.39 (1.96) | 90.45 (1.65) | 90.90 (2.29) | 86.67 (1.90) | 91.22 (0.76) |
GNB | 70.32 (1.71) | 89.89 (1.66) | 63.10 (3.52) | 61.80 (3.28) | 70.35 (1.61) | 73.32 (1.77) | 63.62 (3.55) |
LDA | 83.12 (9.70) | 83.93 (10.36) | 80.70 (7.94) | 65.16 (15.24) | 76.35 (14.07) | 63.76 (17.36) | 83.92 (1.36) |
LR | 89.31 (2.59) | 89.33 (2.07) | 86.93 (4.02) | 91.88 (1.28) | 92.31 (2.12) | 91.83 (1.95) | 86.22 (1.63) |
KSVM | 88.94 (3.36) | 91.92 (1.78) | 91.28 (3.49) | 92.26 (1.15) | 93.69 (1.63) | 92.24 (2.19) | 92.94 (0.90) |
DT | 79.01 (3.16) | 83.28 (5.04) | 84.63 (2.97) | 87.47 (2.69) | 85.14 (1.94) | 84.10 (3.55) | 89.95 (1.40) |
RF | 90.00 (3.51) | 93.66 (2.01) | 94.40 (1.38) | 91.84 (1.66) | 90.74 (2.84) | 94.67 (2.26) | 94.72 (1.07) |
GB | 88.38 (3.61) | 90.34 (1.87) | 90.83 (2.28) | 93.72 (1.37) | 89.61 (2.41) | 92.05 (2.95) | 92.07 (0.94) |
MLP | 75.78 (3.62) | 88.82 (4.25) | 75.35 (6.73) | 74.95 (11.01) | 80.94 (5.33) | 84.83 (4.19) | 71.85 (3.20) |
Methods | Clean Dataset | Noisy Dataset | Low-Rank | GLSSTV | NMoGLRMF | MoGLRMF |
---|---|---|---|---|---|---|
Gaussian noise | ||||||
OA (%) | 82.92 (0.75) | 69.48 (0.96) | 76.59 (0.84) | 76.98 (0.68) | 77.19 (0.61) | 79.69 (0.77) |
Mixture of Gaussian and stripe noise | ||||||
OA (%) | 82.92 (0.75) | 71.50 (0.87) | 75.48 (0.57) | 77.12 (0.79) | 77.36 (0.82) | 79.75 (0.68) |
Mixture of Gaussian and deadline noise | ||||||
OA (%) | 82.92 (0.75) | 71.25 (0.64) | 75.82 (0.74) | 77.29 (0.90) | 77.48 (0.54) | 79.45 (1.07) |
Mixture of Gaussian and impulse noise | ||||||
OA (%) | 82.92 (0.75) | 70.98 (0.65) | 74.34 (0.64) | 76.20 (0.59) | 76.36 (0.64) | 78.48 (0.71) |
Methods | Raw+RF | PCA+KSVM | Low-Rank+RF | 3DDWT+GB | 3DGabor+KSVM | SAE+RF | MoGLRMF+RF |
---|---|---|---|---|---|---|---|
Proportion/dataset | Indian Pines | ||||||
1% | 61.85 (3.05) | 51.74 (3.12) | 72.36 (3.45) | 64.75 (3.32) | 56.52 (3.30) | 64.00 (2.73) | 72.80 (3.24) |
5% | 81.85 (2.45) | 72.76 (4.92) | 92.44 (1.95) | 89.09 (1.01) | 85.80 (2.77) | 82.75 (1.21) | 92.46 (2.34) |
10% | 88.57 (1.37) | 84.34 (2.59) | 95.70 (0.58) | 94.64 (0.73) | 94.86 (0.85) | 90.55 (1.93) | 95.77 (0.73) |
Average Time (s) | 13.22 | 15.60 | 768.72 | 365.15 | 210.24 | 525.36 | 843.57 |
Pavia University | |||||||
1% | 84.16 (1.07) | 85.81 (1.51) | 89.70 (0.78) | 90.17 (0.69) | 90.31 (0.75) | 89.00 (0.91) | 91.21 (0.95) |
5% | 92.39 (0.84) | 93.23 (0.62) | 95.63 (0.48) | 95.20 (0.31) | 95.13 (0.26) | 94.46 (0.46) | 96.36 (0.51) |
10% | 96.00 (0.32) | 94.75 (0.55) | 97.60 (0.29) | 98.20 (0.18) | 98.01 (0.15) | 96.30 (0.26) | 98.26 (0.22) |
Average Time (s) | 20.78 | 90.82 | 1235.42 | 752.38 | 482.80 | 689.36 | 1556.90 |
Pavia Center | |||||||
1% | 98.61 (0.49) | 98.68 (0.42) | 98.22 (0.56) | 96.95 (0.04) | 98.35 (0.30) | 98.69 (0.32) | 98.92 (0.66) |
5% | 99.45 (0.20) | 99.51 (0.15) | 99.16 (0.32) | 98.57 (0.10) | 99.47 (0.23) | 99.59 (0.14) | 99.60 (0.27) |
10% | 99.64 (0.14) | 99.73 (0.08) | 99.45 (0.16) | 99.37 (0.06) | 99.73 (0.17) | 99.70 (0.07) | 99.76 (0.10) |
Average Time (s) | 7.24 | 8.56 | 525.29 | 487.54 | 296.30 | 566.23 | 805.76 |
Kennedy Space Center | |||||||
1% | 74.08 (6.54) | 75.07 (7.04) | 84.67 (4.85) | 68.93 (2.52) | 67.20 (6.75) | 71.48 (2.44) | 86.59 (4.59) |
5% | 91.63 (2.95) | 93.01 (2.55) | 96.16 (1.41) | 90.37 (3.31) | 93.80 (1.47) | 89.45 (2.30) | 96.84 (1.46) |
10% | 96.05 (1.07) | 96.70 (1.48) | 97.82 (1.03) | 95.49 (1.90) | 97.12 (1.22) | 95.05 (1.34) | 98.36 (0.98) |
Average Time (s) | 8.30 | 8.47 | 495.60 | 438.11 | 275.42 | 510.34 | 788.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Xu, Z.; Meng, D. Spectral-Spatial Hyperspectral Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field. Remote Sens. 2019, 11, 1565. https://doi.org/10.3390/rs11131565
Cao X, Xu Z, Meng D. Spectral-Spatial Hyperspectral Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field. Remote Sensing. 2019; 11(13):1565. https://doi.org/10.3390/rs11131565
Chicago/Turabian StyleCao, Xiangyong, Zongben Xu, and Deyu Meng. 2019. "Spectral-Spatial Hyperspectral Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field" Remote Sensing 11, no. 13: 1565. https://doi.org/10.3390/rs11131565
APA StyleCao, X., Xu, Z., & Meng, D. (2019). Spectral-Spatial Hyperspectral Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field. Remote Sensing, 11(13), 1565. https://doi.org/10.3390/rs11131565