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Abstract: Leaf chlorophyll content plays a vital role in plant photosynthesis. The PROSPECT model
has been widely used for retrieving leaf chlorophyll content from remote sensing data over various
plant species. However, despite wide variations in leaf surface reflectance across different plant species
and environmental conditions, leaf surface reflectance is assumed to be the same for different leaves in
the PROSPECT model. This work extends the PROSPECT model by taking into account the variation
of leaf surface reflection. In the modified model named PROSPECT-Rsurf, an additional surface layer
with a variable refractive index is bounded on the N elementary layers. Leaf surface reflectance (Rs)
is characterized by the difference between the refractive indices of leaf surface and interior layers.
The specific absorption coefficients of the leaf total chlorophyll and carotenoids were recalibrated
using a cross-calibration method and the refractive indices of leaf surface and interior layers were
obtained during model inversion. Chlorophyll content (Cab) retrieval and spectral reconstruction
in the visible spectral region (VIS, 400–750 nm) were greatly improved using PROSPECT-Rsurf,
especially for leaves covered by heavy wax or hard cuticles that lead to high surface reflectance.
The root mean square error (RMSE) of chlorophyll estimates decreased from 11.1 µg/cm2 to 8.9 µg/cm2

and the Pearson’s correlation coefficient (r) increased from 0.81 to 0.88 (p < 0.01) for broadleaf samples
in validation, compared to PROSPECT-5. For needle leaves, r increased from 0.71 to 0.89 (p < 0.01),
but systematic overestimation of Cab was found due to the edge effects of needles. After incorporating
the edge effects in PROSPECT-Rsurf, the overestimation of Cab was alleviated and its estimation
was improved for needle leaves. This study explores the influence of leaf surface reflectance on Cab
estimation at the leaf level. By coupling PROSPECT-Rsurf with canopy models, the influence of leaf
surface reflectance on canopy reflectance and therefore canopy chlorophyll content retrieval can be
investigated across different spatial and temporal scales.

Keywords: leaf chlorophyll content; leaf surface reflectance; leaf radiative transfer model; PROSPECT;
hyperspectral remote sensing

1. Introduction

Leaf chlorophyll plays a critical role in plant photosynthesis and the conversion of CO2 into
stored carbohydrate. Accurate measurements of leaf chlorophyll content over different spatial and
temporal extents using remote sensing techniques are needed for monitoring vegetation stress and
productivity, and for forest management and precision agriculture applications. As light directly
reflected from leaf epidermis does not interact with interior materials, it contains little information
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on the leaf biochemistry and therefore should be excluded from the remotely sensed leaf reflectance.
In the visible spectrum (VIS, 400–750 nm), about 3% to 10% (or higher for some species) of the light
striking a leaf surface is directly reflected [1,2], accounting for up to 75% of the total reflected signal
in the blue and red bands where light is strongly absorbed by pigments, and up to 25% of the total
reflectance in the near infrared spectral region (NIR, 750–1300 nm) [3]. As a result, variations in leaf
surface reflectance will introduce uncertainty to the deviation of leaf pigments from reflectance data
across a wide range of species and plant functional types [4,5].

Leaf surface reflectance varies greatly with plant species, leaf development and environmental
conditions [6–8]. It is controlled by epidermal characteristics such as the morphology and density of
epicuticular waxes or trichomes [4,9], which can greatly enhance the leaf reflectance in the VIS [10,11].
Waxes also greatly increase the leaf reflectance in the NIR, whilst the effect of trichomes on NIR
reflectance can be variable [4]. The magnitude and angular distribution of surface reflectance are
dependent on the leaf surface biophysical properties. The highly absorbing visible wavelengths show a
strong specular reflection compared to the more diffuse transmitted light [12]. Leaf specular reflectance
from a surface is usually considered as wavelength-independent [13], as the leaf cuticle usually contains
no pigments [7].

Polarization measurements are classically used to separate leaf surface specular reflectance
(polarized) from interior diffuse reflectance (non-polarized) and obtain the optical properties of the
leaf epidermis [14]. Leaf bidirectional reflectance measurements are also widely used to differentiate
specular and diffuse components and to non-destructively estimate the roughness or refractive index
of the epidermis [1,2]. However, these methods are complex and usually need specialized instruments
that is not commonly used, precluding widespread measurement for model validation, and are hard to
apply at the canopy scale.

Alternatively, efforts have been made to diminish leaf surface reflectance effects on the leaf
chlorophyll content retrieval from remote sensing data. Leaf chlorophyll content estimation methods
can be categorized into (1) parametric regression, (2) non-parametric regression, (3) physically based,
and (4) hybrid methods (reviewed in [15]). Spectral indices, one of the most widely used parametric
regression methods, have been modified to use reflectance in the blue wavelengths (~450 nm) to reduce
the effects of surface reflectance on leaf pigment retrieval across different species [5]. Derivative spectra
have also been found to be relatively insensitive to variations of leaf surface reflectance, especially
using red-edge wavelengths [4,16]. However, regression methods suffer in terms of their transferability
across temporal and spatial scales [17].

In comparison with regression methods, physically based models are underpinned by scientific
theory and therefore have the ability to produce accurate and robust prediction of pigment content across
different species and spatial scales. Bousquet et al. [2] proposed a three-parameter model differentiating
surface reflectance from bidirectional measurements and retrieved values of cuticle refractive index
and roughness parameter for the studied three species, but the model is over-parameterized and
impractical for the commonly used leaf directional-hemispherical spectra. The PROSPECT model [18]
is the most popular leaf radiative transfer model, due to its widespread validation and ease of
inversion [19–21]. In PROSPECT, leaf surface reflectance is calculated from the refractive index of the
leaf and the maximum incident angle, both of which are fixed values [18]. However, high surface
reflectance due to heavy waxes on eucalypts leaves has shown to be a key source of uncertainty in
pigment estimation from PROSPECT [22–24]. Jay et al. [13] proposed a physical model coupled with
PROSPECT (PROCOSINE) to account for leaf surface reflectance and leaf orientation effects on leaf
bidirectional reflectance factor (BRF), and successfully applied the model to close range hyperspectral
images for retrieving foliar biochemistry. Li et al. [25] optimized the inversion strategies of PROSPECT
for alleviating leaf surface reflectance effect, by introducing wavelet coefficient spectra generated
after continuous wavelet transform (CWT) in the cost function, and improved the performance for
foliar pigments retrieval using BRF spectra. Gerber et al. [26] used an additional layer in PROSPECT
to compensate for the surface effects with a refractive index that is different from that of the leaf
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interior. Nevertheless, it is assumed that the surface layer reflectance does not vary with different
leaf samples, despite observations of large variations in leaf surface reflectance across species, growth
stages, and environmental conditions [7,27].

In this study, we aim at extending PROSPECT-5 to consider variable leaf surface reflectance
and alleviate its effect on leaf chlorophyll content estimation from hyperspectral leaf reflectance
data. The objectives of this study are to: (1) introduce an additional surface layer bounded on the N
elementary layers in PROSPECT-5, characterized by variable surface refractive index; (2) determine
leaf surface and interior refractive indices for each samples and recalibrate the specific absorption
coefficients for leaf total chlorophyll and carotenoids; and (3) evaluate the performance and sensitivity
of chlorophyll content retrieval and leaf spectra reconstruction.

2. Data

2.1. Datasets

Seven independent datasets are used in this study. The datasets are fresh leaf samples collected
and measured by different research groups (Table 1). The ANGERS dataset is downloaded online,
shared by its authors. The other six datasets are from our field experiments in China (XS, BM, JTL,
and NX) and Canada (Crop_UT and Needle_Zh). There are 922 fresh leaf samples from 56 species
in total, including broadleaf and needle, dicotyledon and monocotyledon, trees and herbaceous,
and annual and perennial plants, encompassing a wide range of physiological statuses. ANGERS
has been widely used for model calibration, as it contains a large number of leaves from different
species and a wide range of pigment contents [28]. ANGERS and one-fifth of the leaves in XS, BM, JTL,
and NX datasets comprise the calibration dataset, and the rest samples are used as validation data.

Table 1. Main characteristics of the seven datasets used in this study.

ANGERS XS BM JTL NX Crop_UT Needle_Zh

Year 2003 2014 2015 2015 2014 2013 2003–2004
Number of samples 276 175 54 35 140 152 90
Number of species 43 2 (a) 8 (b) 1 (c) 1 (d) 2 (e) 1 (f)

Spectral measurement
devices

ASD FieldSpec
Integrating
sphere (IS)

ASD FieldSpec 3
ASD RTS-3ZC IS

ASD FieldSpec
Pro FR

Li-COR 1800 IS

ASD FieldSpec
Pro FR

Li-COR 1800 IS

Spectral sampling 1.4 nm (400–1000 nm), 2 nm (1000–2500 nm)
Solvent for pigments Ethanol 95% Acetone 100% DMF * DMF
Method for pigments [29] [29] [30] [31]

Chlorophyll (µg/cm2)
Max 106.7 93.8 80.8 83.9 71.7 92.5 62.6
Min 0.8 16.8 1.4 30.1 20.1 0.4 12.0

Mean 33.9 50.9 40.1 56.1 44.0 43.6 29.3
SD ** 21.7 15.5 15.5 15.9 11.2 20.3 9.1

Carotenoids (µg/cm2)
Max 25.3 17.2 16.7 15.2 12.8 \ 10.3
Min 0.0 3.8 4.4 6.8 3.9 \ 3.2

Mean 8.7 9.9 9.9 10.7 8.0 \ 6.3
SD 5.1 2.9 2.7 2.3 1.9 \ 1.6

Water (g/m2) \

Max 340.0 144.8 206.1 312.0 168.8 \ \

Min 43.9 59.0 65.0 143.8 84.4 \ \

Mean 116.2 102.9 115.3 213.6 117.2 \ \

SD 48.6 15.9 29.1 47.0 16.1 \ \

Dry matter (g/m2) \

Max 331.0 166.2 145.6 185.9 56.1 \ \

Min 16.6 55.4 49.0 67.0 8.7 \ \

Mean 52.4 100.9 81.8 122.6 33.2 \ \

SD 36.7 24.7 21.8 26.9 6.0 \ \

(a) Species including Liquidambar formosana L. and Quercus acutissima L.; (b) Species including Koelreuteria paniculata L.,
Sapium sebiferum L., Malus spectabilis L., Lagerstroemia indica L., Cerasus serrulata L., Liquidambar formosana L., Populus
nigra L., and Cyclocarya paliurus L.; (c) Ligustrum lucidum L.; (d) Zea mays L.; (e) Zea mays L. and Triticum aestivum L.;
(f) Picea mariana (Mill.). * Dimethylformamide. ** Standard Deviation
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2.2. Leaf Spectral Measurements

In the experiments for the seven datasets, leaf samples were transported to a laboratory for spectral
measurements immediately after leaf sampling. Leaf directional-hemispherical spectra (<2 nm step over
400–2500 nm) for the upper surface of the leaf samples were measured using a field spectroradiometer
coupled with an integrating sphere (Table 1). For needle optical measurements in Needle_Zh, a special
carrier was used to hold the needles and to present them to the port of the integrating sphere [32,33].
These measurements include both leaf total reflectance and transmittance but does not discriminate
between leaf surface and interior reflectance. The spectra in the ANGERS dataset shared online were
already smoothed and processed to 1 nm interval. The measured spectra in the other six datasets
were resampled to 1 nm interval and smoothed using the Savizky–Golay approach with a third-order
polynomial function using 25 nm bandwidth [34].

2.3. Leaf Biochemical Constituent Determination by Destructive Sampling

Four leaf biochemical constituents were measured, including leaf total chlorophyll (Cab, sum of
chlorophyll a and b), total carotenoids (Cxc), water (EWT for equivalent water thickness), and dry
matter (LMA for leaf mass per area). Right after the leaf spectral measurements, leaf disks were
sampled from the same leaf where spectral measurements took place. A cork-borer of known area
was used to punch out several leaf disks from the same leaf, avoiding main leaf veins if possible.
The sampled needles were scanned on a flatbed scanner for the total projected area. Then the sampled
leaf disks or needles were separated into two groups, one for water and dry matter measurements and
the other for pigment determination after being frozen.

First, the total fresh weight of one group of disks (Fw, in g) was measured and then dried in an
oven at 65 ◦C for at least 48 h and reweighed until there was little change in the dry weight (Dw, in g).
The EWT and LMA was determined as: EWT (in g/m2) = (Fw−Dw)/area of disks and LMA (in g/m2) =

Dw/area of disks. The other group of the disks were frozen after sampling, ground or placed in the
organic solvents (ethanol, acetone, or dimethylformamide (DMF)) in the dark, until the pigments were
fully extracted. After centrifugation, the extracted solution was diluted with the corresponding solvent
to a certain volume. The absorbance of the solution was measured using UV–VIS spectrophotometers
(UV1800, SHIMADZU Corporation, Japan) and converted to pigment content using specific calibration
coefficients for different solvents provided by [29,35,36].

3. Methods

3.1. Addition of a Surface Layer with a Variable Refractive Index

The PROSPECT model simulates leaf directional-hemispherical reflectance and transmittance
(400–2500 nm) according to input leaf biochemical contents (Cab, Cxc, EWT, LMA, etc.) and a structure
parameter N [18,24,28]. It is based on the plate model [37] that treats a leaf as a stack of N homogeneous
elementary layers characterized by an absorption coefficient and a refractive index. When a beam is
incident on the boundary of a plate, the transmissivity (tα) and reflectivity (rα) of the surface depend
on the effective refractive index (n) and the maximum incidence angle (α) defining the solid angle of
the incident beam:

ta = tav(α, n) (1)

ra = 1− ta (2)

where tav is the transmissivity of the surface of the top plate.
Due to the undulating shape of the surface of the leaves, the maximum incidence angle for the top

layer (αsurf) is different from interior layers (αin = 90◦) where the light stream is assumed to be isotropic.
The value of αsurf is set to the optimum value 59◦ in the early versions of PROSPECT and reset to 40◦

in the versions after PROSPECT-4. The surface effects on leaf optical properties are simplified by using
αsurf in all existing versions of the PROSPECT model. Since αsurf is constant and the refractive index
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(n) is a unique spectrum for all leaves and is identical for the N layers, the surface effects in PROSPECT
does not change with leaf samples. The mean reflectance of the upper boundary layer from 400–800 nm
(ra) is 0.037. However, leaf surface reflectance could vary greatly with plant species, leaf development,
and environmental conditions [6–8]. Gerber et al. [26] added an additional non-absorbing surface layer
on top of the N elementary layers in PROSPECT to compensate for the surface effects. The refractive
index of the surface layer (nsurf (λ)) is different from that of the interior elementary layers (nin (λ)),
and their difference determines the surface reflectance as Fresnel coefficients depend on the effective
refractive index of the interface. Nevertheless, since nsurf (λ) and nin (λ) in their study were fixed
spectra, the surface reflectance did not change with the leaf samples.

Therefore, we add a non-absorbing surface layer similar to that of Gerber et al. [26] in PROSPECT-5,
but with variable refractive indices for surface and interior layers. The surface layer is bound to the
first of the N elementary layers without any interspace filled by air. According to Gerber et al. [26],
this additional surface layer can be considered as an equivalent layer compensating surface effects
rather than a true representation of leaf cuticle. Figure 1 shows the basic structure of the modified
model (denoted as PROSPECT-Rsurf).
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Figure 1. Structure of the PROSPECT-Rsurf model. The medium 0, 1, 2 refer to air, surface (refractive
index nsurf), and leaf interior (nin), respectively.

When light incidents on top of the surface layer, the maximum incidence angle (αsurf) is assumed
to be 40◦ and becomes isotropic after transmission through this layer, following the principles in
PROSPECT-5 [28]. The reflectance (RL1) and transmittance (TL1) of the first elementary layer coated
with the surface layer are calculated as,

RL1 = r01 +
t01 · t10 · r120

1− r10 · r120
(3)

TL1 =
t01 · t120

1− r10 · r120
(4)

with r120 = r12 +
t12 · t21 · r20 · θ2

1− r20 · r21 · θ2 (5)

and t120 =
t12 · t20 · θ

1− r20 · r21 · θ2 (6)

where the subscript 0 corresponds to the air, 1 to the surface layer, and 2 to the leaf interior; r120 and t120

are reflectance and transmittance when light emerges from the surface layer and passes through the first
elementary layer; θ is the transmission coefficient of the elementary layer; and rij and tij (i, j = 0, 1, 2) are
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the reflectivity and transmissivity at the interface when light emerges from medium i into j, respectively,
defined by the maximum incident angle (α) and effective refractive index (n′) as:

tij = tav(α, n′) (7)

rij = 1− tij (8)

where n′ = n j/ni. The reflectance ρ90 and transmittance τ90 of the other N-1 elementary layer follow
Equations (1) to (6) in [18]. The total reflectance (R) and transmittance (T) of a leaf is calculated by
stacking the first layer group (a plate coated with surface layer) and the N-1 layers according to [18].

Leaf surface reflectance is specified by the multiple scattering between the surface layer and the
first elementary layer, characterized by the two refractive indices nsurf (λ) and nin (λ). Reflectance of
the additional surface layer (Rs) is defined based on the calculation of the reflectance of the first group
layer (RL1) using Equations (3) to (8), by assuming the transmittance of the first elementary layer (θ) to
be 0:

Rs = r01 +
t01 · t10 · r12

1− r10 · r12
(9)

The transmittance of the surface layer is:

Ts = 1−Rs (10)

Based on the definition, the surface layer reflectance in PROSPECT-Rsurf is the surface
directional-hemispherical reflectance, consistent with leaf reflectance and transmittance simulated in
the model. It is the integration of leaf surface reflectance over the hemisphere from the leaf upper
surface which includes the leaf specular reflectance as well as multiple scattering between the surface
and interior layers.

The surface refractive index nsurf(λ) changes with different epidermal materials with various
morphology and density, while nin(λ) is determined by the internal structure and the organization and
composition of internal leaf tissues and air spaces. According to Kramers–Kronig (K–K) relations [38],
the real (refractive index) and imaginary (absorption coefficient) part of the complex refractive index
are physically linked. Chen and Weng [39] used the K–K relations to derive the effective refractive
index with promising results and demonstrated variations of the leaf refractive index for different leaf
samples. They found that the leaf refractive index decreases almost monotonically with the wavelength
(400–2500 nm), confirming the refractive index spectrum used in PROSPECT-3 (nP3(λ)). However,
since the K–K relations require complete electromagnetic spectrum of the biochemical absorption
coefficient which are difficult to obtain so far, it is impracticable for most of the commonly used leaf
spectral databases covering a limited range of the spectrum [24]. In the latest version PROSPECT-D,
nP3(λ) is adopted instead of the one used in PROSPECT-5 in order to avoid artifacts resulting from
numerical optimization [24]. Since direct measurements of the leaf surface and internal refractive
indices are difficult and the variation of the leaf tissue refractive index with wavelengths remains
unclear, the following two assumptions are made in this study, (1) the spectral variation patterns of
nsurf(λ) and nin(λ) follow the pattern of nP3(λ); and (2) nsurf(λ) is higher than nin(λ). The two refractive
indices nsurf (λ) and nin(λ) are defined by

nsurf(λ) = fsurf · nP3(λ) (11)

nin(λ) = fin · nP3(λ) (12)

where f surf and f in are fractions of the surface and interior refractive indices, respectively, which are
independent of wavelengths but vary with leaf samples. In this way, we can focus on the variations of
the surface and interior refractive indices between different leaves using only two parameters for each
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sample, while the spectral variation characteristics of the two refractive indices are unaltered. In order
to keep nsurf (λ) higher than nin(λ) in the model, nsurf (λ) is expressed as

nsurf(λ) = f ′surf · nin(λ) (13)

with f ′surf higher than 1. The factor f ′surf is the relative refractive index between the leaf surface and
the interior. Therefore, we have two variables f′surf and f in in addition to the structure parameter N
and biochemical contents (Cab, Cxc, EWT, and LMA) in PROSPECT-Rsurf. The main symbols used in
this study and their meanings are listed in Table A1. Considering that leaf pigments absorb light in the
VIS domain and effects of the leaf surface reflectance on leaf spectra are significant in the VIS, we make
the above modifications in PROSPECT-Rsurf in the range from 400 to 800 nm in this study.

3.2. Model Calibration

After adding the new surface layer and the two refractive indices in PROSPECT-Rsurf, the specific
absorption coefficient (SAC) of leaf constituents can be recalibrated from wavelength to wavelength.
Since absorption by leaf dry matter and water is low in the VIS, only the SAC of total chlorophyll
(kCab(λ)) and carotenoids (kCxc(λ)) are recalibrated. The structure parameter N and the refractive index
fractions f′surf and f in change from leaf to leaf and are assumed to be wavelength independent. Since N,
f′surf, and f in cannot be directly measured, they are determined in the recalibration process. In order
to avoid unfeasibly large computation introduced by concurrently optimizing all the parameters (N,
f′surf, f in, kCab(λ), and kCxc(λ) at each wavelength λ from 400–800 nm), the recalibration process is split
into two steps. First, the wavelength-independent N, f′surf, and f in are determined, and then kCab(λ)
and kCxc(λ) are determined wavelength by wavelength. Due to the possible interaction between the
two steps, we performed a cross calibration iteratively until the optimized values of these parameters
remain almost unchanged. Detailed descriptions are as follows.

3.2.1. Determination of N, f ′surf and f in

The variables N, f′surf, and f in are estimated for each leaf individually from the measured spectra
(400–800 nm) with measured Cab, Cxc, EWT, and LMA as input through a numerical optimization
process, by finding the best combination of variables that minimizes the merit function:

J
(
N, f ′sur f , fin

)
=

800∑
λ=400

[(
Rmeas,λ −Rmod,λ

(
N, Cab, Cxc, EWT, LMA, f ′sur f , fin

))2

+
(
Tmeas,λ − Tmod,λ

(
N, Cab, Cxc, EWT, LMA, f ′sur f , fin

))2
] (14)

where Rmeas,λ and Tmeas,λ are the measured leaf total reflectance and transmittance at wavelength
λ, respectively, and Rmod,λ and Tmod,λ are simulated by PROSPECT-Rsurf. The bound-constrained
optimization package FMINSEARCHBND.M [40] in the Matlab software is used. The initial values of
N, f′surf, and f in are 1.5 (1–5), 1.1 (1.0001–3), and 1 (0.7–3), respectively, with constrained values given
in brackets. The ranges of f′surf and f in are set according to the measurements and simulation of the
leaf refractive index in previous studies in [1,2,26,39,41].

3.2.2. Adjustment of the Specific Absorption Coefficients

After determining N, f′surf, and f in, the SAC of total chlorophyll and carotenoids are adjusted
through optimization using all leaves comprising the calibration dataset. Similar to the process
described in [28], the SAC values of chlorophyll (kCab,λ) and carotenoids (kCxc,λ) at each wavelength
are obtained by minimizing the merit function:

J
(
kCab,λ, kCxc,λ

)
=

m∑
i=1

(
Ri

meas,λ −Ri
mod,λ

(
ki
λ

))2
+

(
Ti

meas,λ − Ti
mod,λ

(
ki
λ

))2
(15)
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where m is the total sample number, ki
λ

is the total absorption coefficient of the elementary layer at
wavelength λ for sample i, which is calculated from the structure parameter N and the biochemical
contents as follows:

ki
λ =

kCab,λ ·Ci
ab + kCxc,λ ·Ci

xc + kEWT,λ · EWTi + kLMA,λ · LMAi

Ni
(16)

where kEWT,λ and kLMA,λ are SAC of EWT and LMA in PROSPECT-5 at λ, respectively, Ni is the structure
parameter of sample i; and Ci

ab, Ci
xc, EWTi, and LMAi are the measured four biochemical contents of

sample i. The initial values of kCab,λ and kCxc,λ are 0.05 and 0.2, respectively. During the inversion,
their values were limited in the range of 0–0.1 and 0–0.5, respectively.

3.2.3. Cross Calibration

After step (2), the adjusted SACs are used for recalculating the values of N, f ′surf, and f in (step (1)).
Then the SAC values of Cab and Cxc are re-adjusted (step (2)) and new sets of N, f ′surf, and f in can be
subsequently determined (step (1)). We repeat steps (1) and (2) in this way for several times until the
optimized N, f ′surf, and f in values for each sample and the kCab,λ and kCxc,λ spectra from 400 nm to
800 nm remain nearly unchanged (changes less 0.1%).

3.3. Model Validation: Criteria for the Comparison of Model Performance

We performed model inversions on the validation datasets separated into broadleaf and needle leaf
samples with PROSPECT-5 and PROSPECT-Rsurf. The performances of the two models are compared
in terms of Cab estimation and leaf spectral fit. PROSPECT-Rsurf is inverted on the validation datasets
using the following merit function:

J
(
N, Cab, Car, EWT, LMA, f ′sur f , fin

)
=

800∑
λ=400

[(
Rmeas,λ −Rmod,λ

(
N, Cab, Car, EWT, LMA, f ′sur f , fin

))2

+
(
Tmeas,λ − Tmod,λ

(
N, Cab, Car, EWT, LMA, f ′sur f , fin

))2
] (17)

where Rmeas,λ and Tmeas,λ are the measured leaf total reflectance and transmittance at wavelength λ,
respectively, Rmod,λ and Tmod,λ are the ones simulated by PROSPECT-Rsurf.

Standard deviation (σ) and coefficient of variability (CV) are calculated to characterize the
distribution of variables. Pearson’s correlation coefficient (r), root mean square error (RMSE), and bias
(BIAS) between the retrieved and measured variables are calculated to evaluate the differences between
the measured and estimated variables (such as pigment content, leaf reflectance, or transmittance):

CV(%) =
σ

y j
× 100 (18)

RMSE =

√√∑n
j=1

(
y′ j − y j

)2

n
(19)

BIAS =

∑n
j=1

(
y′ j − y j

)
n

(20)

where yj is the measurements, yj their mean, y′j the modeled values, and n the sample numbers.

3.4. Model Sensitivity

Since there are no direct measurements of leaf surface and interior refractive indices in this study,
the uncertainty in determining f ′surf and f in (corresponding to nsurf and nin) from model inversion
using the experimental data and the effect of such uncertainty on the quality of the calibration should be
evaluated. We perform several steps of sensitivity analysis to understand the influence of noise in the
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measured spectral data on surface and interior refractive indices determination, and their uncertainty
on the adjustment of SACs and on the overall model performances.

3.4.1. Global Sensitivity Analysis

A global sensitivity analysis was set up to evaluate the contribution of the variability in each
input variable (N, f ′surf, f in, Cab, Cxc, EWT, and LMA) to output reflectance or transmittance from
PROSPECT-Rsurf. Sobol’s sensitivity analysis was implemented using a Matlab software tool
(GAST) [42]. A dataset of 5000 random parameters was generated using the data range in Table 2
according to measurements and model inversion results.

Table 2. Data range for Sobol sensitivity analysis.

Variable Range of Sobol Set

N 1–3
f ′surf 1–1.1

f in 0.76–1.15
Cab 0–120 (µg/cm2)
Cxc 0–3 (µg/cm2)

EWT 40–345 (g/m2)
LMA 17–330 (g/m2)

3.4.2. Sensitivity of Model Calibration

We first investigate the sensitivity of N, f ′surf, and f in estimation to noise in spectral measurements.
Randomly generated Gaussian noises with standard deviation (σ) set to be 2% of the measured R or T
(the mean valueµ= 0) are added to measured R and T, respectively, at each wavelength from 400–800 nm.
Then N, f ′surf, f in, and biochemical parameters are derived from the calibrated PROSPECT-Rsurf
model inversion following the procedure described in step (1) of Section 3.2. The operation is repeated
100 times for each sample in the validation datasets.

Second, randomly generated Gaussian noises (σ = 0.009 and 0.039, σ of f ′surf and f in derived from
inversion, respectively) are introduced to f ′surf and f in, respectively, and the noisy datasets are used
to determine kCab,λ and kCxc,λ following the method described in step (2) of Section 3.2 in order to
investigate the uncertainty introduced by noise in f ′surf and f in determination.

3.4.3. Sensitivity of Model Performance

In order to evaluate the influence of uncertainty in f ′surf and f in estimation on leaf chlorophyll
content retrieval, we add Gaussian noises (σ = 0.009 and 0.039) to f ′surf and f in derived from inversion,
respectively. Then the noisy f ′surf and f in (denoted as f ′surf-noise and f in-noise) are used as input
parameters when retrieving N and the biochemical parameters using the following merit function:

J(N, Cab, Cxc, EWT, LMA) =
800∑
λ=400

(
Rmeas,λ −Rmod,λ

(
N, Cab, Cxc, EWT, LMA, f ′sur f−noise, fin−noise

))2

+
(
Tmeas,λ − Tmod,λ

(
N, Cab, Cxc, EWT, LMA, f ′sur f−noise, fin−noise

))2
(21)

where Rmeas,λ and Tmeas,λ are the measured leaf total reflectance and transmittance at wavelength λ,
respectively, Rmod,λ and Tmod,λ are the ones simulated by PROSPECT-Rsurf. The retrieved groups of
biochemical contents are compared with measurements to evaluate the performance of the model for
both validation and calibration datasets.
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4. Results

4.1. Validation of Model Performances

4.1.1. Recalibrated Specific Absorption Coefficients

Figure 2 displays the SACs of total chlorophyll (kCab,λ) and carotenoids (kCxc,λ) in PROSPECT-Rsurf
(P-Rs) and PROSPECT-5 (P-5). The differences between the two models are subtle, with a little higher
difference between 500 and 550 nm. In P-Rs between 500 and 550 nm, kCab,λ is slightly higher and
kCxc is slightly lower than those in P-5. Considering the variation of leaf surface reflection does not
introduce large changes in the SACs of pigments.
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(P-Rs) to PROSPECT-5 (P-5). The color of the points in Figure 3 corresponds to the surface layer re-
flectance (Rs). The results are demonstrated in three groups: the calibration, broadleaf samples in 
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broad leaves in validation datasets (Figure 3b), with RMSE decreasing from 11.12 to 8.87 µg/cm2, r 
increasing from 0.81 to 0.88, and BIAS adjusted from −3.31 to 0.65. For some of the broadleaf valida-
tion samples with high Rs, the underestimation of Cab using P-5 due to the underestimation of Rs is 

Figure 2. Specific absorption coefficients (SAC) of total chlorophyll (kCab, green lines) and carotenoids
(kCxc, orange lines). The solid lines are from PROSPECT-Rsurf (P-Rs), and the dashed lines from
PROSPECT-5 (P-5).

4.1.2. Chlorophyll Content Estimation

Figure 3 compares the performances of chlorophyll content estimation for PROSPECT-Rsurf (P-Rs)
to PROSPECT-5 (P-5). The color of the points in Figure 3 corresponds to the surface layer reflectance
(Rs). The results are demonstrated in three groups: the calibration, broadleaf samples in validation,
and needle leaves in validation datasets. Estimation of Cab using P-Rs is improved for the broad leaves
in validation datasets (Figure 3b), with RMSE decreasing from 11.12 to 8.87 µg/cm2, r increasing from
0.81 to 0.88, and BIAS adjusted from −3.31 to 0.65. For some of the broadleaf validation samples with
high Rs, the underestimation of Cab using P-5 due to the underestimation of Rs is alleviated in P-Rs
with BIAS close to 0 (0.65). Furthermore, the overestimation of extremely low Cab samples is corrected.

For needle leaves, the Cab estimated using P-Rs is highly correlated with the measurements
(r = 0.89), and much higher than those from P-5 (r = 0.72). However, Cab estimated using P-Rs
is systematically overestimated, resulting in high RMSE and BIAS compared to those using P-5
(Figure 3c,d). According to [33], the main reason for the overestimation is that the assumption in the
PROSPECT model that a leaf is horizontally infinite may not hold for needle leaves since the needle
width is comparable to the needle thickness. The amount of light that escapes from needle edge could
be large, leading to the overestimation of leaf reflectance (R) and transmittance (T) using both P-Rs
and P-5. Consequently, the overestimation of leaf R and T in VIS leads to increases in Cab in order to
lower R and T to fit measured spectra during P-Rs model inversion. However, the overestimation of
Cab using P-5 is minor, since the abovementioned overestimation of R and T caused by needle edge
effects is partially offset by the underestimation of leaf surface reflectance. As illustrated in Figure 3c,
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Cab estimation using P-5 for samples with high Rs (red points) is better than those with relatively lower
Rs (blue points). For samples with high Rs, the underestimation of Rs using constant leaf surface
reflectance in P-5 is higher than that of the sample with low Rs, resulting in higher offset effect on
Cab estimation.
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Figure 3. Estimation of chlorophyll content (Cab) by inverting PROSPECT-5 (P-5) (a–c),
and PROSPECT-Rsurf (P-Rs), (d–f) for calibration (the left column), broad leaves in validation datasets
(the middle column) and needle leaves in validation datasets (the right column). The color of the points
corresponds to the reflectance of the surface layer (Rs). The units of root mean square error (RMSE) and
bias (BIAS) are µg/cm2. All the correlations are significant at 0.01 level.

In order to further investigate the ability of the improved model for estimating needle chlorophyll
content, we incorporated the edge effects of needles using the methods proposed in [33] in the
modified model PROSPECT-Rsurf. According to [33], needle width and thickness, were introduced
into the model to take into account the effects of leaf morphology on Cab retrieval. The performance
of Cab estimation was improved by considering the edge effects in PROSPECT-Rsurf (P-Rs-edge),
as demonstrated in Figure 4. The overestimation of Cab is alleviated compared to PROSPECT-Rsurf in
Figure 3f. The RMSE using P-Rs-edge decreases from 8.98 to 6.08 µg/cm2, with r increasing from 0.72
to 0.77, and BIAS adjusted from 4.39 to −1.61, compared to that of PROSPECT (P-5). Cab estimated
using P-Rs-edge is also better than the results of incorporating the edge effects without considering
the variation of leaf surface reflectance demonstrated in [33] (RMSE = 6.32 µg/cm2, r = 0.77), with the
scattered points closer to the 1:1 line.



Remote Sens. 2019, 11, 1572 12 of 24

Remote Sens. 2019, 11, 1572 12 of 24 

 

Figure 3f. The RMSE using P-Rs-edge decreases from 8.98 to 6.08 µg/cm2, with r increasing from 0.72 
to 0.77, and BIAS adjusted from 4.39 to −1.61, compared to that of PROSPECT (P-5). Cab estimated 
using P-Rs-edge is also better than the results of incorporating the edge effects without considering 
the variation of leaf surface reflectance demonstrated in [33] (RMSE = 6.32 µg/cm2, r=0.77), with the 
scattered points closer to the 1:1 line. 

 
Figure 4. Estimation of needle chlorophyll content (Cab) by considering the edge effects in PRO-
SPECT-Rsurf (P-Rs-edge, red circles) and PROSPECT-5 (P-5, black hollow circles). The units of RMSE 
and BIAS are µg/cm2. All the correlations are significant at 0.01 level. 

4.1.3. Spectra Reconstruction 

We compared the spectral RMSE and r between the measured spectra and spectra reconstructed 
by PROSPECT-5 (P-5) and PROSPECT-Rsurf (P-Rs) after model inversion on calibration and valida-
tion datasets (Figure 5). RMSE for broadleaf validation leaves obtained with P-5 ranges from 0.01 to 
0.03 over 400–800 nm, while for needle leaves RMSE (P-5) is between 0.01 and 0.05 over the VIS and 
is much higher (>0.06) over the NIR. P-Rs outperforms P-5 over 400-800 nm for both broad and 
needle samples, with RMSEs decline to lower than 0.015. P-Rs greatly improve R simulation over the 
VIS for broad leaves. For needle leaves, RMSEs for both R and T decline greatly over 400-800 nm, 
while the improvement over NIR for needle leaves is predominant with RMSE decreased from over 
0.06 to less than 0.01. There are great increases in r for R from 400–700 nm especially over 400–500 
nm, whereas the improvements of r for T is minor. The reconstructed R is highly correlated to 
measurements with r close to 0.9. 

 

Figure 4. Estimation of needle chlorophyll content (Cab) by considering the edge effects in
PROSPECT-Rsurf (P-Rs-edge, red circles) and PROSPECT-5 (P-5, black hollow circles). The units of
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4.1.3. Spectra Reconstruction

We compared the spectral RMSE and r between the measured spectra and spectra reconstructed
by PROSPECT-5 (P-5) and PROSPECT-Rsurf (P-Rs) after model inversion on calibration and validation
datasets (Figure 5). RMSE for broadleaf validation leaves obtained with P-5 ranges from 0.01 to 0.03
over 400–800 nm, while for needle leaves RMSE (P-5) is between 0.01 and 0.05 over the VIS and is
much higher (>0.06) over the NIR. P-Rs outperforms P-5 over 400-800 nm for both broad and needle
samples, with RMSEs decline to lower than 0.015. P-Rs greatly improve R simulation over the VIS for
broad leaves. For needle leaves, RMSEs for both R and T decline greatly over 400-800 nm, while the
improvement over NIR for needle leaves is predominant with RMSE decreased from over 0.06 to less
than 0.01. There are great increases in r for R from 400–700 nm especially over 400–500 nm, whereas
the improvements of r for T is minor. The reconstructed R is highly correlated to measurements with r
close to 0.9.
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and PROSPECT-Rsurf (P-Rs).
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To further illustrate the ability of PROSPECT-Rsurf to simulate leaf optical properties, we selected
samples with a large range of Cab and relatively high Rs values (Figure 6). For the samples with Cab
ranging from 0.9 to 80.9 µg/cm2, R and T simulated values using P-Rs are quite close to the measured
ones. In most cases, the fit using P-Rs is better than that using P-5, especially where Rs values are
high. For example, the measured reflectance spectra of Cornus alba ‘Elegantissima’ and Eucalyptus gunnii
leaves (Figure 6c,e) are high compared to other leaves with similar Cab values, probably due to the
high surface reflectance. R of the two leaves is substantially underestimated by P-5 over 400–700 nm
and T is also underestimated around 550 nm. The underestimation is greatly reduced using P-Rs for
both R and T.
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Figure 6. The measured (black dash line) versus simulated (blue line for PROSPECT-5 and red line
for PROSPECT-Rsuf) reflectance (lower spectra) and transmittance (upper spectra). These samples
include leaves with both low and high N and Cab values. The measured Cab and estimated Rs and
nin at 550 nm (n550) values are listed in the plots. The unit of Cab is µg/cm2. Species for the plots
are (a) Robinia pseudoacacia ‘Frisia’, (b) Zea mays, (c) Cornus alba ‘Elegantissima’, (d) Triticum aestivum,
(e) Eucalyptus gunnii, (f) Picea mariana (Mill.), (g) Salix atrocinerea, (h) Populus nigra, (i) Alnus glutinosa,
and (j) Ligustrum lucidum, respectively.

4.2. Estimated Leaf Surface Reflectance and Refractive Indices

Leaf surface layer reflectance estimated during the inversion process for all the leaves derived
from Equation (9) is illustrated in Figure 7. The nearly flat lines of Rs indicate that spectral variation of
the estimated Rs is minor, with the mean standard deviation of 0.0025 over 400–800 nm. The histogram
(Figure 7b) shows that Rs values at 550 nm for most samples range from 0.03 to 0.07, with a mean value
of 0.0527. Rs can account for a large proportion of leaf total reflectance in VIS. Distributions of the ratio
of Rs to leaf total reflectance at 550 nm (R550) and 680 nm (R680), respectively, for all the samples are
shown in Figure 7c. The average proportion of Rs to R550 is 39.8%, and for more than 90% samples the
proportion of Rs to R550 is between 15% and 65%. The proportion of Rs to R680 is even higher than
that of Rs to R550, with an average proportion to be 86.3% and more than 75% samples having the
Rs-to-R680 ratio higher than 80%.
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Statistics of the mean values of estimated Rs at 550 nm (Rs,550) for each species are shown in
Figure 8 and Table A2. About 93% of all 56 species under study have mean Rs,550 in the range from
0.03 to 0.05. The mean reflectance of the upper boundary layer in PROSPECT-5 from 400–800 nm
(ra = 0.037) is also in this range. Among these species, mean Rs,550 of leaves of cider gum (Eucalyptus
gunnii), black spruce (Picea mariana (Mill.)), and red-barked dogwood (Cornus alba ‘Elegantissima’)
are much higher than others, at 0.112, 0.082, and 0.080, respectively. The high Rs can be ascribed
to the presence of epicuticular wax that reflects a large amount of incident light [11,22,24]. Further
investigation into the surface characteristics of leaves with high Rs reveals that leaves with heavy
wax on the surface, or leathery or hard leaves with glabrous surfaces (Table A2 and Figure A1 in the
Appendix A) usually have high Rs. Leaves of leatherleaf arrowwood (Viburnum rhytidophyllum) are
lustrous but the estimated surface reflectance is not very high (mean Rs,550 = 0.042), probably due to the
deeply veined surface which increases the surface roughness and reduces surface specular reflectance.
The estimated Rs of some pubescence leaves is also high, although not as high as waxy leaves. These
results demonstrate that the estimated Rs is able to represent the main reflectance characteristics of
leaf surfaces.
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The estimated Rs is found to be strongly correlated to leaf reflectance around 445 nm (R445),
except for broad leaves with extremely low Cab (<2 µg/cm2, black cross in Figure 9). There is a slight
difference in the R445 and Rs relationship between broad and needle leaves.
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The estimated leaf interior refractive index (nin) is demonstrated in Figure 10. For most of the
samples, nin values are in the range from 1.2 to 2.0. The refractive index used in PROSPECT-3 and
PROSPECT-5 are in the range of the estimated leaf interior refractive indices. Similar to the refractive
index used in PROSPECT-3 and PROSPECT-D, spectral variation of the estimated leaf interior refractive
index is minor. The estimated spectra of nin conform with the leaf refractive indices derived from K–K
relations [39].
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4.3. Sensitivity to the Uncertainty Associated with Rs

4.3.1. Global Sensitivity Analysis

The results of Sobol’s sensitivity analysis for the total reflectance (R) and transmittance (T)
simulated using PROSPECT-Rsurf are shown in Figure 11. Leaf chlorophyll content (Cab) mainly
influences R and T in the range over 500 to 750 nm, while N mainly affects the NIR spectrum
(750–800 nm). The effects of leaf carotenoids content (Car) on R and T are minor, mainly over 450 to
550 nm, while leaf dry matter content (LMA) mainly contributes to the absorption in NIR. The internal
refractive index (represented by f in) can be considered as another variable influencing the leaf internal
structure and contributes to R and T mainly over NIR. Leaf surface reflectance (Rs), represented by
the ratio of the refractive index of leaf surface layer to that of interior layers (f′surf), is the main factor
contributing to R at blue wavelengths (400–500 nm), and has little contribution to T. In the red-edge
region over 690–720 nm, Cab and N are the two main contributors, while the influence of Rs (i.e., f′surf)
on R is low. The red edge reflectance is more sensitive to variations in Cab and N rather than in Rs.
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Figure 11. First order sensitivity coefficients of the input variables and their interactions to total leaf
reflectance (R, left) and transmittance (T, right) for PROSPECT-Rsurf. N is the leaf structure parameter,
Cab, Car, LMA, and EWT are the biochemical contents, and f′surf and f in are the two factors related to
the refractive index of leaf surface and interior materials, respectively.

4.3.2. Sensitivity of Model Calibration

After adding groups of noise to the measured spectra, group values of N, nsurf, and nin and the
corresponding Rs are obtained for each sample. The distributions of the coefficient of variability (CV)
of N, nsurf, nin, and Rs are shown in Figure 12. Most CV values of N are lower than 2.5%, with a mean
value of 1.0%. The max CV of nsurf and nin are lower than 1.5%, and the mean values are less than
0.5%. The CV values of the corresponding Rs calculated from nsurf and nin are between 0.4% to 1.4%.
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respectively) are illustrated in Figure 14. For the calibration dataset, the performance of PRO-
SPECT-Rsurf (P-Rs) and PROSPECT-5 (P-5) are comparable, and it introduces slight uncertainty in 
Cab estimation after adding noise to f′surf and fin. For broadleaf validation samples (V(b) in Figure 14), 
the uncertainty in Cab estimation using P-Rs with noise added is small. RMSE changes from 8.90 to 
10.81 µg/cm2 with a mean value of 9.63 (8.6% increase comparing to that of P-Rs), and r varies from 
0.85–0.88 (mean = 8.71). Nevertheless, Cab retrieval using P-Rs with noises introduced is still better 

Figure 12. Distributions of the coefficient of variability (CV) of retrieved N, nsurf, nin, and Rs after
adding noise to measured R and T and repeating the inversion 100 times. Cross marks correspond to
the mean values.

The variability in SACs of chlorophyll (kCab) derived from noisy f′surf and f in (corresponding to
nsurf and nin, respectively) is limited to the 400–450 nm wavelength range, while that of carotenoids
(kCxc) is in 400–480 nm (Figure 13). The influence of introducing noises to noisy f′surf and f in on kCab is
lower than that on kCxc. The mean standard deviation (σ) of kCab and kCxc over 400–450 nm is 0.0016
(CV = 4.6%) and 0.0052 (CV = 14.2%), respectively.
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mean value ±1 standard deviation).

4.3.3. Chlorophyll Content Retrieval

Cab retrieved using PROSPECT-Rsurf with the noisy f′surf and f in (corresponding to nsurf and
nin, respectively) are illustrated in Figure 14. For the calibration dataset, the performance of
PROSPECT-Rsurf (P-Rs) and PROSPECT-5 (P-5) are comparable, and it introduces slight uncertainty in
Cab estimation after adding noise to f′surf and f in. For broadleaf validation samples (V(b) in Figure 14),
the uncertainty in Cab estimation using P-Rs with noise added is small. RMSE changes from 8.90 to
10.81 µg/cm2 with a mean value of 9.63 (8.6% increase comparing to that of P-Rs), and r varies from
0.85–0.88 (mean = 8.71). Nevertheless, Cab retrieval using P-Rs with noises introduced is still better
than that of P-5 (RMSE = 11.12 µg/cm2, r = 0.81), with lower RMSE and higher r values. It proves
that P-Rs is effective and better than P-5 in Cab estimation for tested broadleaf samples. For black
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spruce needles (V(n)) with relatively high surface reflectance, wide variations in RMSE are found,
indicating that Cab estimation for needles is sensitive to the noise added to f′surf and f in. However,
the estimated Cab using P-Rs is better correlated with measurements than that using P-5, no matter
noise is introduced or not. As mentioned before there is an overestimation of leaf spectra since the
edge effects are ignored, leading to systematic overestimation of retrieved Cab. This systematic error in
Cab can explain the higher RMSE by P-Rs than by P-5.
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5. Discussion

5.1. Effects of Leaf Surface Reflectance on Chlorophyll Estimation

The existing versions of PROSPECT were proved to be effective for retrieving foliar biochemical
contents for the majority of the tested samples. However, the spectral fit and pigments retrieval using
PROSPECT models are poor for leaves with extremely high surface reflectance [22,24]. In this study,
we incorporate variable leaf surface reflectance in PROSPECT-Rsurf to improve chlorophyll content
(Cab) retrieval and spectral reconstruction, especially for samples coated with heavy wax or hard
cuticle leading to high leaf surface reflectance. Leaf surface reflectance can occupy over 40% of the
total reflectance at around 550 nm, and large variations across different species and plant functional
types are observed, indicating the important influence of leaf surface reflectance on leaf chlorophyll
content retrieval.

PROSPECT-5 and PROSPECT-Rsurf performed similarly in Cab retrieval for leaves with lower
Rs, since the slight differences between the leaf surface reflectance used in the two models were
compensated by adjusting the structure parameter N during model inversion. However, when the
actual leaf surface reflectance is much higher than the surface reflectance used in PROSPECT-5, the error
in spectral simulation probably cannot be compensated by adjusting N during inversion, leading to
error in Cab estimation. Notwithstanding the compensating effects of N adjustment on Cab estimation
using PROSPECT-5, PROSPECT-Rsurf shows notable improvements in Cab estimation as well as spectral
simulation over 400–800 nm. Two new variables representing leaf surface and interior refractive
indices are introduced in PROSPECT-Rsurf. The inversion procedure may consequently increase the
computing time and the applicability of the model at the canopy scale is limited as the additional
parameters may increase the ill-posed problem of model inversion. However, we demonstrate that the
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leaf surface reflectance effect on chlorophyll content retrieval can be alleviated by introducing variable
leaf surface layer reflectance.

Sensitivity analysis shows that leaf reflectance at the red-edge region (690–720 nm) is found to be
less sensitive to the variation of Rs than that at other VIS wavelengths (Figure 11), suggesting that the
red-edge reflectance can be used to build spectral indices that is less sensitive to leaf surface reflectance
variation. This agrees with the spectral indices for Cab estimation developed from empirical data in
previous studies [4,16]. The difference between the reflectance at two VIS bands reduced the effect of
surface reflectance, since surface reflectance was considered as wavelength independent. Sims and
Gamon [5] found that modified spectral indices incorporating reflectance at 445 nm (R445) is able to
eliminate the effect of surface reflectance and is better correlated with chlorophyll content. The high
correlation between leaf surface layer reflectance and R445 found in this study provides support for
these spectral indices from the perspective of a radiative transfer model.

The improvement in chlorophyll estimation and spectral reconstruction using PROSPECT-Rsurf
is important for the study of the interaction between photosynthetic pigments and solar radiation.
Given that leaf chlorophyll content can drive about 60% of the canopy reflectance variation in VIS [43],
the effects of variable leaf surface reflectance on canopy reflectance in VIS cannot be ignored. Future
studies by coupling PROSPECT-Rsurf with canopy models are needed to explore the influence of leaf
surface reflectance on canopy reflectance and therefore canopy chlorophyll content retrieval.

5.2. Improvements on Needle Leaf Chlorophyll Content Retrieval

When applying PROSPECT-5 to needle leaves, the amount of light that escapes from needle
edges cannot be ignored. In PROSPECT-5 inversion the overestimation of leaf R and T caused by the
edge effects is partially compensated by the underestimation of leaf surface reflectance. Therefore,
Cab estimation using PROSPECT-5 appears good with low BIAS. When leaf surface reflectance is
adjusted in PROSPECT-Rsurf, the edge effects show up, leading to the overestimation in Cab but higher
correlation coefficients compared to measurements. Zhang et al. [33] introduced needle width and
thickness in a scheme to adjust measured leaf total reflectance and transmittance for considering the edge
effects on chlorophyll content retrieval, and showed that Cab estimation is improved compared to that
of PROSPECT-3. Based on this study, we incorporated the edge effects of needles in PROSPECT-Rsurf.
The performance of Cab is improved after considering both leaf edge and surface effects, compared to
both PROSPECT-5 and the results in [33]. The result indicates that appropriate representation of needle
structure is required in order to estimate needle chlorophyll content with good accuracy. There are still
large uncertainties in the estimated Cab compared to measurements. This necessitates further model
refinements specific for the morphology and internal structure of needle samples, as well as accurate
measurements of needle spectra.

5.3. Leaf Surface Reflectance and Refractive Indices

The estimated Rs differs widely for leaves with different surface features. Our results show
that some leaves with heavy wax or hard cuticle, or white trichomes, usually have high leaf surface
reflectance. Leaf surfaces coated with heavy waxes or hard cuticle reflect large amounts of light,
most of which is specular, while trichomes increase the ability to scatter light [11]. However, due to the
variety of the morphology and density of epicuticular waxes or trichomes, quantitative evaluation of
the effects of waxes and trichomes on leaf total reflectance is difficult and needs further exploration.

The surface layer reflectance (Rs) is characterized by the refractive indices of the additional surface
layer (nsurf) and the interior layers (nin) in PROSPECT-Rsurf. The leaf surface layer and interior
refractive indices derived from model inversion are comparable to the leaf refractive index obtained
by Kramers–Kronig (K–K) transformations [39]. The derived leaf surface and interior layer refractive
indices should not be considered as true representations of leaf surface and interior refractive indices
but as equivalent parameters compensating for leaf surface reflectance and internal multiple scattering,
respectively. The spectral variations of nsurf and nin are minor, resulting in relatively flat leaf surface
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layer reflectance spectra in 400–800 nm, which are consistent with the findings that leaf specular
reflectance from a surface is usually considered as wavelength-independent [13], as the cuticle and cell
walls of leaf epidermis usually contain no pigments [7].

The improvements in spectral reconstruction and chlorophyll content retrieval using
PROSPECT-Rsurf suggest that the leaf surface reflectance obtained in this study is a better estimate of
the actual surface reflectance than the original reflectance spectrum used in PROSPECT-5. The derived
surface layer reflectance is effective in revealing the variations in leaf surface reflectance features
across different species, functional types and growing stages. Therefore, although a certain degree of
uncertainty exists in the estimated Rs, we believe that the surface layer reflectance estimated in this
study is reasonably accurate. Measurements on the surface reflectance and quantitative evaluation of
the two refractive indices are needed to further validate our modified model and develop methods to
nondestructively estimate the surface reflectance more accurately for pigments retrieval.

6. Conclusions

In this study, we demonstrated that incorporating variable leaf surface layer reflectance in the
PROSPECT-Rurf model is effective in improving the leaf chlorophyll content retrieval as well as
spectral simulation, especially for leaves with high surface reflectance. The root mean square error
(RMSE) of Cab estimates decreased from 11.1 µg/cm2 to 8.9 µg/cm2 and the Pearson’s correlation
coefficient (r) increased from 0.81 to 0.88 (p < 0.01) for broadleaf samples in validation datasets,
compared to PROSPECT-5. For needle leaves, r increased from 0.71 to 0.89 (p < 0.01), but systematic
overestimation of Cab was found to be due to the edge effects of needles. After incorporating the edge
effects in PROSPECT-Rsurf, the overestimation of Cab was alleviated and its estimation was improved.
The result indicates that accurate representation of needle structure is required in order to appropriately
estimate Cab.

Although a certain degree of uncertainty exists, the estimated Rs is able to capture the variation of
leaf surface reflection features across different plant species. Sensitivity analysis indicated that the
influence of the uncertainty in estimation of Rs on chlorophyll content retrieval is small (8.6% increase
on average). The estimated leaf surface reflectance was found to be highly correlated with leaf total
reflectance at 445 nm (R445), providing evidence for using R445 in spectral indices to eliminate the
effect of surface reflectance on Cab estimation. We also found that the red-edge leaf reflectance is less
sensitive to variation in leaf surface reflectance, confirming the usefulness of red-edge wavelengths for
chlorophyll retrieval.

The coupling of PROSPECT-Rsurf with canopy models will allow exploration of the influence
of leaf surface reflectance on canopy reflectance and therefore canopy chlorophyll content retrieval,
for the purpose of monitoring plant physiological statuses and vegetation productivity across different
spatial and temporal scales.
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Appendix A

Table A1. List of symbols used in this study.

N The structure parameter in PROSPECT
Cab Leaf total chlorophyll content
Cxc Leaf total carotenoids content

EWT Equivalent water thickness (leaf water content)
LMA Leaf mass per area (leaf dry matter content)

R Leaf total directional-hemispherical reflectance
T Leaf total directional-hemispherical transmittance
Rs Leaf surface layer reflectance

nP3 (λ) The refractive index used in PROSPECT-3
nsurf (λ) The refractive index of the surface layer
nin (λ) The refractive index of interior layers
f′surf nsurf (λ) / nin (λ)
fin nin (λ) / nP3 (λ)

Table A2. Estimated Rs at 550 nm and leaf surface characteristics of species with high Rs.

ID Species (Latin Name)
Rs Characteristics of Leaf Upper

SurfaceMean Min Max

(a) Eucalyptus gunnii 0.112 0.111 0.112 waxy; grey-green; thick
(b) Picea mariana (Mill.) 0.082 0.042 0.164 waxy; needle

(c) Cornus alba ‘Elegantissima’ 0.080 0.069 0.095 glabrous green; pubescent with
short white appressed trichomes

(d) Triticum aestivum 0.063 0.036 0.093 waxy, or pubescent
(e) Zea mays 0.057 0.050 0.065 waxy, or pubescent
(f) Schefflera arboricola ‘Gold Capella’ 0.057 0.028 0.075 leathery; glabrous
(g) Populus nigra 0.055 0.047 0.060 thin leathery; glabrous
(h) Alnus glutinosa 0.054 0.049 0.059 leathery; glabrous; dark green
(i) Populus alba 0.052 0.050 0.054 glabrous
(j) Ilex aquifolium ‘Golden Milkboy’ 0.049 0.049 0.049 leathery; shiny; dark green; hard

(k) Salix atrocinerea 0.048 0.047 0.051 dull or slightly glossy; pubescent
or pilose (hairs white)

(l) Cyclocarya paliurus 0.046 0.044 0.049 glabrous
(m) Quercus acutissima 0.045 0.037 0.057 glabrous
(n) Ligustrum lucidum 0.044 0.039 0.050 leathery or papery; glabrous
(o) Liquidambar formosana 0.044 0.040 0.054 glabrous



Remote Sens. 2019, 11, 1572 22 of 24
Remote Sens. 2019, 11, 1572 22 of 24 

 

 
Figure A1. Pictures of leaves of species with high estimated surface reflectance (Rs-vi). The species of 
leaves in each picture numbered with letters from (a) to (o) correspond to the species ID in the first 
column of Table A2. 
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