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Abstract: Machine learning comprises a group of powerful state-of-the-art techniques for land cover
classification and cropland identification. In this paper, we proposed and evaluated two models
based on random forest (RF) and attention-based long short-term memory (A-LSTM) networks that
can learn directly from the raw surface reflectance of remote sensing (RS) images for large-scale
winter wheat identification in Huanghuaihai Region (North-Central China). We used a time series of
Moderate Resolution Imaging Spectroradiometer (MODIS) images over one growing season and the
corresponding winter wheat distribution map for the experiments. Each training sample was derived
from the raw surface reflectance of MODIS time-series images. Both models achieved state-of-the-art
performance in identifying winter wheat, and the F1 scores of RF and A-LSTM were 0.72 and 0.71,
respectively. We also analyzed the impact of the pixel-mixing effect. Training with pure-mixed-pixel
samples (the training set consists of pure and mixed cells and thus retains the original distribution of
data) was more precise than training with only pure-pixel samples (the entire pixel area belongs to
one class). We also analyzed the variable importance along the temporal series, and the data acquired
in March or April contributed more than the data acquired at other times. Both models could predict
winter wheat coverage in past years or in other regions with similar winter wheat growing seasons.
The experiments in this paper showed the effectiveness and significance of our methods.

Keywords: winter wheat identification; random forest; A-LSTM; pixel-mixing effect; variable
importance analysis

1. Introduction

For many years, remote sensing (RS) systems have been widely applied for agricultural monitoring
and crop identification [1–4], and these systems provide many surface reflectance images that can be
utilized to derive hidden patterns of vegetation coverage. In crop identification tasks, the information
of growing dynamics or sequential relationships derived from time-series images is used to perform
classification. Although high-spatial-resolution datasets such as Landsat have clear advantages for
capturing the fine spatial details of the land surface, such datasets typically do not have high temporal
coverage frequency over large regions and are often badly affected by extensive cloud cover. However,
coarse-resolution sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
provide data at a near-daily observational coverage frequency and over large areas [5]. While MODIS
data are not a proper option for resolving smaller field sizes, they do provide a valuable balance
between high temporal frequency and high spatial resolution [6].

Remote Sens. 2019, 11, 1665; doi:10.3390/rs11141665 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9957-3017
http://www.mdpi.com/2072-4292/11/14/1665?type=check_update&version=1
http://dx.doi.org/10.3390/rs11141665
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1665 2 of 21

Many methods for crop identification or vegetation classification using MODIS time series have
been examined and implemented in the academic world [5–7]. A common approach for treating
multitemporal data is to retrieve temporal features or phonological metrics from vegetation index series
obtained by band calculations. According to phenology and simple statistics, several key phenology
metrics, such as the base level, maximum level, amplitude, start date of the season, end date of the
season, and length of the season, extracted from time-series RS images are used as classification features
that are sufficient for accurate crop identification. For example, Cornelius Senf et al. [5] mapped
rubber plantations and natural forests in Xishuangbanna (Southwest China) using multispectral
phenological metrics from MODIS time series, which achieved an overall accuracy of 0.735. They
showed that the key phenological metrics discriminating rubber plantations and natural forests
were the timing of seasonal events in the shortwaved infrared (SWIR) reflectance time series and
the Enhanced Vegetation Index (EVI) or SWIR reflectance during the dry season. Pittman et al. [6]
estimated the global cropland extent and used the normalized difference vegetation index (NDVI) and
thermal data to depict cropland phenology over the study period. Subpixel training datasets were
used to generate a set of global classification tree models using a bagging methodology, resulting in
a global per-pixel cropland probability layer. Tuanmu et al. [7] used phenology metrics generated
from MODIS time series to characterize the phenological features of forests with understory bamboo.
Using maximum entropy modeling together with these phenology metrics, they successfully mapped
the spatial distribution of understory bamboo. To address image noise such as pseudo-lows and
pseudo-hikes caused by shadows, clouds, weather or sensors, many studies have used mathematical
functions or complex models to smooth the vegetation index time series before feature extraction.
Toshihiro Sakamoto et al. [8] adopted wavelet and Fourier transforms for filtering time-series EVI data.
Zhang et al. [9] used a series of piecewise logistic functions fit to remotely sensed vegetation index
data to represent intra-annual vegetation dynamics. Furthermore, weighted linear regression [10],
asymmetric Gaussian smoothing [11,12], Whittaker smoothing [13], and Savitzky-Golay filtering [14]
have also been widely used for the same reason. Yang Shao et al. [15] compared the Savitzky-Golay,
asymmetric Gaussian, double-logistic, Whittaker, and discrete Fourier transformation smoothing
algorithms (noise reduction) and applied them to MODIS NDVI time-series data to provide continuous
phenology data for land cover classifications across the Laurentian Great Lakes Basin, proving that the
application of a smoothing algorithm significantly reduced image noise compared to the raw data.

Although temporal feature extraction-based approaches have exhibited good performance in
crop identification tasks, they have some weaknesses. First, general temporal features or phenological
characteristics may not be appropriate for the specific task. Expert experience and domain knowledge
are highly needed to design proper features and a feature extraction pipeline. Second, the features
extracted from the time series cannot always fully utilize all the data, and information loss is inevitable.
These types of feature extraction processes usually come with limitations in terms of automation and
flexibility when considering large-scale classification tasks [16].

Intelligent algorithms such as random forest (RF) and deep neural networks (DNNs) can learn
directly from the original values of MODIS data. They can apply all the values of a time series as input
and do not need well-designed feature extractors, which could prevent the information loss that often
occurs in temporal feature extraction. These algorithms are convenient for large-scale implementation
and application, and there are many processing frameworks based on RF or DNNs that are being
implemented for cropland identification. Related works will be introduced in the next paragraphs.

Recently, RF classifiers have been widely used for RS images due to their explicit and explainable
decision-making process, and these classifiers are easily implemented in a parallel structure for
computing acceleration. Rodriguez-Galiano et al. [17] explored the performance of an RF classifier
in classifying 14 different land categories in the south of Spain. Results show that the RF algorithm
yields accurate land cover classifications and is robust to the reduction of the training set size and
noise compared to the classification trees. Charlotte Pelletier et al. [18] assessed the robustness of using
RF to map land cover and compared the algorithm with a support vector machine (SVM) algorithm.
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RF achieved an overall accuracy of 0.833, while SVM achieved an accuracy of 0.771. Works based
on RF usually use a set of decision trees trained by different subsets of samples to make predictions
collaboratively [19]. However, the splitting nodes still used well-designed features with random
selection, and this procedure might be complex and inefficient for the classification of large-scale areas.
In this paper, we proposed an RF-based model that directly learns from the original values of the
MODIS time series for large-scale crop identification in the Huanghuaihai Region to address the task
in an efficient manner.

Considering the successful applications of deep learning (DL) in computer vision, deep models
have also been evaluated for time-series image classification [16,20,21]. Researchers usually use
pretrained baseline architectures of convolutional neural networks (CNNs), such as AlexNet [22],
GoogLeNet [23] and ResNet [24], and fine-tuning to automatically obtain advanced representations
of data, which are usually followed by a softmax layer or SVM to adapt to specific RS classification
tasks. For times series scenarios, recurrent neural networks (RNNs) and long short-term memory
(LSTM) networks are often used to analyze RS images due to their ability to capture long-term
dependencies. Marc Rußwurm et al. [20] employed LSTM networks to extract temporal characteristics
from a sequence of SENTINEL 2A observations and compared the performance with SVM baseline
architectures. Zhong et al. [16] designed two types of DNN models for multitemporal crop classification:
one was based on LSTM networks, and the other was based on one-dimensional convolutional (Conv1D)
layers. Three widely used classifiers were also tested and compared, including gradient boosting
machine (XGBoost), RF, and SVM classifiers. Although LSTM is widely used for sequential data
representation, Zhong et al. [16] revealed that its accuracy was the lowest among all the classifiers.
Considering that the identification of crop types is highly dependent on a few temporal images of
key growth stages such as the green-returning and jointing stages of winter wheat, it is important
for the model to have the ability to pay attention to the critical images of the times series. In early
studies, attention-based LSTM models were used to address sequence-to-sequence language translation
tasks [25], which could generate a proper word each time according to the specific input word and the
context. Inspired by the machine translation community and crop growth cycle intuition, we proposed
an attention-based LSTM model (A-LSTM) to identify winter wheat areas. The LSTM part of the
model transforms original values to advanced representations and then follows an attention layer that
encodes the sequence to one fixed-length vector that is used to decode the output at each timestep.
A final softmax layer is then used to make a prediction.

In this study, we proposed two models, RF and A-LSTM, that can be efficiently used for large-scale
winter wheat identification throughout the Huanghuaihai Region, by building an automatic data
preprocessing pipeline that transforms time-series MODIS tiles into training samples that can be directly
fed into the models. As this study is the first to apply an attention mechanism-based LSTM model to
the classification of time-series images, a comparison with RF and an evaluation of the performance
were also conducted. In addition, we analyzed the impacts of the pixel-mixing effect with two different
training strategies in this paper. Furthermore, with the intuition that there is some difference in wheat
sowing and harvesting time from north to south, we also evaluated the generalizability of the models
to different areas. Finally, our models were used to identify the distribution of winter wheat over
the past year, and we evaluated the performance via visual interpretation. Finally, we discussed the
advantages and disadvantages of our models.

2. Materials

2.1. Study Area

The Huanghuaihai Region, located in the north-central region of China, surrounds the capital city
of Beijing, which is shown in Figure 1. It consists of seven provinces or municipality cities (i.e., Beijing,
Tianjin, Hebei, Shandong, Henan, Anhui, and Jiangsu) stretching over an area of 778.9 thousand square
kilometers. Most of the Huanghuaihai Region lies within the North China Plain, which is formed by
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deposits from the Yellow River, Huai River, Hai River and their hundreds of branches. This region is
bordered to the north by the Yanshan Mountains, to the west by the Taihang Mountains, to the south
by the Dabie Mountains and the Yangtze River, and to the east by the East China Sea [26]. This region
has a typical continental temperate and monsoonal climate with four distinct seasons, including cold
and dry winters and hot and humid summers. The Huanghuaihai Region is one of the most important
agricultural granaries in China, and the chief cereal crops include winter wheat, corn, millet, and
potatoes. Winter wheat is usually planted from September to October and harvested in late May or
June of the following year. Winter wheat is highly dependent on the water conditions, and artificial
irrigation is supplied in this area [27].
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Figure 1. Location of the study area.

2.2. Materials Description

2.2.1. MODIS Data

In this section, we described the time-series images and reference data used for winter wheat
identification in our paper. We downloaded 110 MODIS product images, specifically the MODIS/Terra
vegetation indices 16-Day L3 Global 250-m SIN Grid (MOD13Q1, Collection 6), from NASA Level-1
and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC).
The product has four reflectance bands, i.e., blue, red, near-infrared and middle-infrared, which are
centered at 469 nm, 645 nm, 858 nm, and 3.5 µm, respectively, and two vegetation index bands, NDVI
and EVI, which can be used to maintain sensitivity over dense vegetation conditions [28]. The two
vegetation indices, NDVI and EVI, are computed from atmospherically corrected bidirectional surface
reflectance data that are masked for water, clouds, heavy aerosols, and cloud shadows. Specifically,
the NDVI is computed from the near-infrared and red reflectance, while the EVI is computed from
near-infrared, red, and blue reflectance. The detailed equations are as follows:

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1)
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EVI =
ρNIR − ρRed

1 + ρNIR + 6× ρNIR − 7.5× ρBlue
(2)

where ρNIR, ρRed and ρBlue represent near-infrared, red and blue reflectance, respectively. Global
MOD13Q1 data are provided every 16 days at a 250-m spatial resolution as a gridded level-3 product
in the sinusoidal projection. Cloud-free global coverage is achieved by replacing clouds with the
historical MODIS time-series climatology record. Vegetation indices are used for global monitoring of
vegetation conditions and in products that exhibit land cover and land cover changes. The 110 images
downloaded in this study span the period from October 2017 to July 2018 with a 16-day interval,
resulting in 22 timesteps. Each timestep contains five tiles that can entirely cover the Huanghuaihai
Region. We selected all six bands of each tile in the experiments, and the models could fully capture
the reflectance information, which would be effective for crop identification.

To evaluate the generalizability of the models on historical data, we collected the same MOD13Q1
product data for the 2016–2017 growing season for additional experiments.

2.2.2. Reference Data

It is very challenging to collect reference data. Fortunately, we acquired a crop map of the winter
wheat distribution for the 2017–2018 growing season in the Huanghuaihai Region from the Chinese
Academy of Agricultural Sciences. The wheat map has a spatial resolution of 16 m and is in the Albers
equal-area conic projection. Each pixel in the map is assigned a value of 0 or 1, which represent winter
wheat or no winter wheat growth. Since we were not provided any details regarding how the map was
completed or the reliability of the data, we simply reassessed the map by manually collecting samples.
Specifically, we randomly selected 1000 pixels in the map and interpreted the pixels visually based on
images acquired from the Planet Explorer API (https://www.planet.com/explorer/). We acquired two
high-resolution images in March 2018 and June 2018 from the Planet Explorer API, which are shown in
Figure 2. First, it is easy to distinguish non-vegetation areas such as water, residential areas and bare
land using images acquired in the two stages via visual interpretation. Practically, most vegetation in
the Huanghuaihai Region is a deciduous forest, which is gray and still not germinated in March, while
winter wheat has entered the green-returning stage. The few evergreen forests, such as pines and
cypresses, will not turn yellow like mature wheat in June. To the best of our knowledge, the main crop
during the period from October 2017 to June 2018 was winter wheat, and there were no other crops or
vegetation with growing stages similar to those of winter wheat in March and June. According to the
images acquired from the two critical growing periods of winter wheat, a pixel was assumed to be
winter wheat when it appeared green in March and yellow in June. The evaluation results show that
the overall accuracy of the crop map is 0.95, the precision of winter wheat is 0.89, the recall of winter
wheat is 0.83 and the F1 score is 0.86 (The detailed explanations of overall accuracy, precision, recall
and F1 score are shown in Section 4.3).
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Figure 2. Two images of the same parcel acquired in March 2018 (a) and June 2018 (b) from the
Planet Explorer API. In March, winter wheat enters the green-returning stage, while most of the other
vegetation is still not germinated. In June, winter wheat enters maturation stage and turns yellow,
while other vegetation is green. Therefore, it is easy to distinguish wheat areas and other land cover
types using images acquired in the two stages via visual interpretation.

Similarly, we visually interpreted 1000 pixels at the same locations during the 2016–2017 growing
season from the Planet Explorer API in the same manner to form our historical testing dataset. These
collected samples were used to evaluate the accuracy of the prediction map informed by the trained
models using historical (2016–2017) MODIS data.

2.3. Data Preprocessing

In this study, we built a data preprocessing pipeline to extract training samples from the MODIS
time series. First, image mosaics were applied to the five image tiles at each timestep. Then, mosaic
images were projected to the Albers equal-area conic coordinate system, which was coincident with the
reference data, thus stably maintained the area of each cell. Next, a mask of the Huanghuaihai Region
was used to extract the data within the study boundary. Since the spatial resolution of MODIS data was
250 m, we resampled the 250-m-spatial-resolution MODIS data to a spatial resolution of 224 m with
the nearest neighbor resampling method and aligned them with the reference data, which have a 16-m
spatial resolution. Therefore, 196 pixels of the reference map were aligned using a 0-1 annotation
within a single MODIS cell. Furthermore, we counted the quantities of 0s and 1s in each MODIS cell,
which were used to distinguish pure cells that were completely filled with 0 or 1 values from mixed
cells that were filled with both 0 and 1 values. Some crop map pixels within the MODIS cells inside the
border had no values, and we simply removed these incomplete data. To extract training samples,
each pure MODIS cell was annotated with 0 or 1, which represented winter wheat or no winter wheat
growth, respectively. For mixed MODIS cells, a threshold was selected to determine whether the cell
should be labeled as positive or negative, and these cells were labeled as 1_ (mixed pixel wheat) or 0_

(mixed pixel no-wheat). The following inequality shows the labeling process.

y =


1, (c = 196)
1_, (c ≥ θ)
0_, (c < θ)
0, (c = 0)

(3)

where y denotes the label of a MODIS cell, c denotes the quantities of wheat pixels of reference map
within one MODIS cell, and θ is the threshold which is used to determine the label of mixed MODIS
cell. We simply set θ to 98. As mentioned in Section 2.2.1, each timestep of a MODIS image has 6 bands,
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which are blue, red, near-infrared, middle-infrared, NDVI and EVI. We took the digital value from
each MODIS cell throughout the 22 timesteps and the corresponding labels as the training samples;
each sample has 132 variables and one class annotation. Throughout the Huanghuaihai Region, we
acquired approximately 13 million samples, and the distribution of samples is shown in Table 1.

Table 1. Data samples extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) images.

Pure Wheat
(1)

Pure
No-wheat (0)

Mixed Pixels
Wheat (1_)

Mixed Pixels
No-Wheat (0_) Total

620287 6338524 2679611 3566889 13205311

2.4. Dataset Partition

To train and evaluate our model, the datasets must be partitioned into training sets and testing
sets. As the MODIS data have a cell size of 250 m, the spatial correlation might be nonsignificant.
We assume that each MODIS cell is independent of the others. The total dataset was partitioned in the
following manner:

• Pure-mixed pixel set. The entire dataset was first randomly partitioned into a training set and
testing set with a ratio of 4:1. Both the training set and testing set consist of pure-pixel samples
and mixed-pixel samples. We call this type of training set a pure-mixed pixel set.

• Pure pixel set. Then, we further selected all the pure-pixel samples (the entire MODIS cell is either
covered with winter wheat or there is no winter wheat) from the pure-mixed pixel set as the new
training dataset, which was called the pure pixel set, with the intuition that pure-pixel samples
might be representative of the characteristics of wheat areas, while mixed-pixel samples might
include noise. We kept the testing dataset unchanged but trained models using the pure-mixed
pixel set and pure pixel set for further studies.

2.5. North-South Partition

To evaluate the generalizability of our model to different areas, we also divided our dataset into
several parts according to the pixel location from north to south and utilized three parts for training
and the rest parts for testing. As shown in Figure 3, the dataset was equally partitioned into eight parts
according to latitude. The number of samples in each part is reported in Table 2. As the numbers of
samples in Part 1 and Part 2 were small, we combined part 1, part 2 and part 3 to form the training
set and testing set with the ratio of 4:1, and used part 4, part 5, part 6, part 7 and part 8 to evaluate
the generalizability.

Table 2. The number of samples in each geographically partitioned dataset.

Quantity Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8

Pure Pos 1069 34154 159010 117132 135805 158393 14014 710
Pure Neg 1313370 773568 816377 829138 736828 924470 685303 259470

Mixed 82532 339855 1034789 785234 1568533 1802182 565074 68301
Total 1396971 1147577 2010176 1731504 2441166 2885045 1264391 328481
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Figure 3. Geographical partitioning strategy. The whole region was partitioned into eight regions from
north to south.

3. Methods

3.1. RF Method for Crop Identification

The RF method is an ensemble learning algorithm that consists of many decision trees that are
combined to create a prediction. Each tree in the ensemble is trained using a bootstrap sampling
strategy (sample drawn with replacement), in which the training dataset of an individual tree is
a subset randomly picked from the whole dataset [19]. In addition, when splitting a node during the
construction of the tree, the split point that is chosen is the best split among a random subset of the
features. The final output is the average of all the trees, thus decreasing the variance of the results.
Although the bias of the forest usually increases slightly due to the randomness in the tree, this increase
is less than the increase in bias required to compensate for the decrease in variance. As a result, the
method performs better.

As shown in Section 2.2.1, our datasets are composed of 22 timesteps, and each timestep includes
four raw reflectance bands and two vegetation index bands; thus, each sample contains 132 variables
with an annotated label. RF operates by constructing multiple random classification trees, and each
tree randomly selects several variables to make decision rules. In our experiment, n and k denote the
number of trees and the number of selected variables, respectively. The number of trees n represents
the complexity and ability of RF to learn patterns from the data. Therefore, n needs to be large enough
in case some samples or variables are selected only once or even missed in all subspaces. As n increases,
the performance of RF tends to remain unchanged, however, the computing resource needs to increase.
An increase in the selected variables k generally improves the performance of an individual tree, but
the variance of an individual tree decreases, and the computing resources required for the individual
tree increase. Hence, we need to strike a balance and find the two optimal parameters n and k. To do so,
we built many RF models with n increasing from 100 to 1000 and k increasing from 2 to 132. The overall
accuracy was used to evaluate the performance of the model. In addition, the minimum number of
samples required to split a node was set to 2, while the minimum number of samples of a leaf node
was set to 1. The maximum tree depth was not fixed, and the nodes were expanded until all leaves
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were pure or until all leaves contained less than the minimum number of samples. For each individual
tree, Gini impurity was used to measure the quality of a split. When making an inference, RF combines
all the equally weighted tree classifiers by averaging their probabilistic predictions instead of letting
each classifier vote for a single class. The predicted class is the one with the highest probability.

3.2. A-LSTM Architecture for Crop Identification

LSTM is a kind of special RNN architecture that is designed for long-term dependency problems.
Both the standard RNN and LSTM have repeated neural units that can be thought of multiple copies of
the same network and have the form of a chain of repeating modules in a neural network. In standard
RNNs, the repeating module will have a very simple structure, such as a single tanh layer, as shown in
Figure 4. LSTMs also utilize this chain structure, but the repeating module has a different structure.
Instead of having a single neural network layer, there are four gates, which are the forget gate, input
gate, modulation gate, and output gate, as shown in Equation (4)–(7), respectively, and these gates
interact in a specific manner [20].

ft = σ f
(
W f

dataxt + W f
stateht−1 + b f

)
, (4)

it = σi
(
Wi

dataxt + Wi
stateht−1 + bi

)
, (5)

gt = σg
(
Wg

datagt + Wg
stateht−1 + bg

)
, (6)

ot = σo
(
Wo

dataxt + Wo
stateht−1 + bo

)
, (7)

These gates influence the ability of LSTM cells to discard old information, gain new information
and use that information to create an output vector. The cell state vector ct stores the internal memory
and is then updated using the Hadamard operator �, which performs elementwise multiplication,
while the layerwise hidden state vector is further derived from the LSTM output gate vector ot [20].

ct = ft � ct−1 + it � gt, (8)

ht = ot � σh(ct), (9)
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To address the original crop identification problem with time-series MODIS images, we proposed
an end-to-end encoder-decoder architecture, which is shown in Figure 5. The encoder consists of
three bidirectional LSTM layers that are stacked together with the full sequence returned. The input
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sequence x, which is shown in Equation (10), has 22 timesteps and six variables in each step, which is
coincident with our time-series data:

x = (x1, . . . , xi, . . . , xt), xi ∈ Rk (10)

where t is the length of input sequence and k is the dimensionality of data.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 22 
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decoder network uses these context vectors to make a prediction.

In the encoder, each LSTM layer has 128 hidden units and returns the full sequence to the next layer.
The output of the three-layer encoder, which is shown in Equation (11), is a sequence of hidden states:

h = (h1, . . . , hi, . . . , ht), hi ∈ Rk (11)

hi = f (xi, hi−1) (12)

where hi represents the hidden state at time i and f is a nonlinear function.
In the decoder section, considering that it is difficult for the network to address long sequences,

we included an attention mechanism in our network [25]. This mechanism looks at the complete
encoded sequence to determine which encoded steps to weight highly and generates a context vector
c j for each class. Each encoded step hi includes the information of the whole input sequence due to the
recurrent layers, and it has a strong focus on the parts surrounding the i-th step of the input sequence.
The context vector c j is computed by the weighted sum of these annotations hi:

cj =
t∑

i=1

αjihi (13)

where the weight α ji for each hi is computed by

αji =
exp

(
eji

)
∑t

i=1 exp
(
eji

) (14)

where t is the length of the encoded sequence and e ji is an alignment model, which is shown Equation
(15), represents how well the output at position j and the hidden annotation hi match.

e ji = g
(
s j, hi

)
(15)
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y = softmax(s) (16)

where s j is the hidden neuron of the output at position j and y represents the probability distribution
of wheat and no-wheat.

3.3. Comparison and Evaluation of the Model Performance

In this paper, we used four metrics to evaluate the performance in the context of the binary
classification problem. The precision, recall, overall accuracy, and F1 score were derived from the
confusion matrix charted by the predicted and actual classification results [29]. The confusion matrix is
shown in Table 3. In the table, positive and negative represent winter wheat and no-wheat, respectively.
TP and FP refer to the number of predicted positives that were correct and incorrect, and TN and FN
refer to the number of predicted negatives that were correct and incorrect. The four metrics are defined
in Equations (17)–(20), respectively. Specifically, the precision denotes the proportion of predicted
positives that are actual positives, while the recall denotes the proportion of actual positives that are
correctly predicted positives. The overall accuracy is the proportion of the total cases that are correctly
predicted, while the F1 score represents the harmonic mean of the recall and precision.

precision =
TP

TP + FP
(17)

recall =
TP

TP + FN
(18)

overallaccuracy =
TP + TN

TP + FP + FN + TN
(19)

f 1score = 2×
precision× recall
precision + recall

(20)

Table 3. Confusion matrix charted by the predicted and actual classification.

Positive (predicted) Negative (predicted)

Positive (actual) True positives (TP) False negatives (FN)

Negative (actual) False positives (FP) True negatives (TN)

First, the two models were trained with the pure-mixed pixel set consisting of pure pixel samples
and mixed pixel samples. Considering that pure-pixel samples are representative of the characteristics
of wheat areas, while mixed-pixel samples might include noises, we also used the pure pixel set to train
the two models. We kept the testing set unchanged to evaluate the performances of the two models
trained with the two different datasets. Moreover, we evaluated the generalizability of the models via
the north-south dataset partitioning strategy. In practice, our models could also be used to identify
croplands in historical datasets. Field-collected reference data were used for analysis and evaluation.
More details about the experimental results and analysis are provided in the next section.

4. Experiments and Results Analysis

4.1. RF Fine-Tuning

We used the Python Scikit-learn [30] package to implement our RF experiments following the
instructions in Section 3.1. Hundreds of RF models were built to fine-tune the RF parameters n (number
of trees) and k (number of selected variables) with different combinations, which are shown in Figure 6.
We used the overall accuracy score to measure the performance of each model. To balance performance
and the cost of computation, the parameter combination with the highest score was chosen. Figure 6
shows the changes in model performance with n values from 100 to 1000 and k values from 2 to 132.
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When n equals 500 and k equals 40, the performance of the RF method remains stable; thus, we selected
this combination for the following experiments.
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implement our model. The cross-entropy loss was calculated, and the RMSprop (Root Mean Square 
Prop) algorithm was used to optimize the model [33]. During training, we used the mini-batch 
strategy and set the batch size to 128. We used an NVIDIA TESLA V100 graphics card to train the 
model, and after 500 epochs (an epoch is an iteration over the entire dataset), the model converged 
to the global optimum. Figure 7 shows the training procedure and validation results with each step 
iteration. Finally, our LSTM model achieved an overall accuracy score of 0.85 on the pure-mixed pixel 
set and 0.82 on the pure pixel set. We will discuss the performance thoroughly below. 

Figure 6. Fine-tuning of the parameters n and k of the random forest (RF) model, (a) the overall
accuracy of the RF trained on pure-mixed pixel set, (b) the overall accuracy of the RF trained on Pure pixel
set. When n equals 500 and k equals 40, the performances of RF models converge; thus, we selected this
combination for further experiments.

4.2. A-LSTM Training and Evaluation

For the A-LSTM method, we used Python TensorFlow [31] and the Keras [32] package to
implement our model. The cross-entropy loss was calculated, and the RMSprop (Root Mean Square
Prop) algorithm was used to optimize the model [33]. During training, we used the mini-batch strategy
and set the batch size to 128. We used an NVIDIA TESLA V100 graphics card to train the model,
and after 500 epochs (an epoch is an iteration over the entire dataset), the model converged to the
global optimum. Figure 7 shows the training procedure and validation results with each step iteration.
Finally, our LSTM model achieved an overall accuracy score of 0.85 on the pure-mixed pixel set and
0.82 on the pure pixel set. We will discuss the performance thoroughly below.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 22 

 

  
(a) (b) 

Figure 7. Training logs for the A-LSTM model, (a) model trained on a mixed dataset, (b) model trained 
on a pure dataset. 

4.3. Identification Metrics 

The overall accuracy of the RF trained on the pure-mixed pixel set was 0.87 (±0.01), and the 
overall accuracy of the RF trained on the pure pixel set was 0.85 (±0.01), while the overall accuracies 
of the A-LSTM trained on these two datasets were 0.85 (±0.01) and 0.82 (±0.01), respectively. The 
overall accuracy scores were high because the no-wheat class accounts for approximately 85 percent 
of the dataset. Thus, the accuracy scores were dominated by the majority class. However, the F1 score 
is the weighted average of the precision and recall, which is a better metric for such an uneven dataset. 
Specifically, the F1 scores of RF and A-LSTM trained on the pure-mixed pixel set were 0.72 and 0.71, 
while the scores of the two models trained on the pure pixel set were 0.68 and 0.66. More details 
regarding the performance score are shown in Table 3.  

In general, the two models behaved better when they were trained on the pure-mixed pixel set. 
For comparison, when the pure pixel set was utilized, the precision of the two models improved, 
while the recall worsened. In total, the two models trained with the pure-mixed pixel set were more 
stable, traded precision for recall and achieved high F1 scores and overall accuracy, which are highly 
recommended in practical applications. This result occurred because the data distribution of the test 
dataset was the same as that of the pure-mixed pixel set. This phenomenon might cause severe 
overfitting problems when the models are trained on only pure-pixel samples. In some classification 
cases that require large amounts of manually collected training data, whether the selected samples 
include mixed pixels needs to be reconsidered, and the impact of including these cells needs to be 
evaluated. 

The classified wheat map resulting from the RF and A-LSTM models trained with the pure-
mixed set is shown in Figure 8a,b, while the reference wheat map is shown in Figure 8c. The numbers 
of wheat pixels in the three maps were 3296256, 3327509, and 3269754. According to the map, most 
of the crop areas were correctly predicted in the plain area, while there were extensive differences 
between the prediction and reference data in the border between wheat areas and no-wheat areas or 
some isolated wheat areas. Thus, the many mixed cells that might include crops, buildings, and 
mountains result in irregular spectral reflectance. In addition, although the numbers of wheat pixels 
in the prediction map and reference map were similar, there was a slight visual difference. In Figure 
9a,b, wheat pixels are more likely to be clustered together, while there are many isolated wheat areas 
in the reference map. Generally, wheat areas among continuous no-wheat areas or no-wheat areas 
among continuous wheat areas were very likely to be misclassified.  
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on a pure dataset.

4.3. Identification Metrics

The overall accuracy of the RF trained on the pure-mixed pixel set was 0.87 (±0.01), and the overall
accuracy of the RF trained on the pure pixel set was 0.85 (±0.01), while the overall accuracies of the
A-LSTM trained on these two datasets were 0.85 (±0.01) and 0.82 (±0.01), respectively. The overall
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accuracy scores were high because the no-wheat class accounts for approximately 85 percent of the
dataset. Thus, the accuracy scores were dominated by the majority class. However, the F1 score is
the weighted average of the precision and recall, which is a better metric for such an uneven dataset.
Specifically, the F1 scores of RF and A-LSTM trained on the pure-mixed pixel set were 0.72 and 0.71,
while the scores of the two models trained on the pure pixel set were 0.68 and 0.66. More details
regarding the performance score are shown in Table 4.

Table 4. Precision, recall, overall accuracy and F1 scores for the two models trained on different datasets.

Pure Pixel Set Pure-Mixed Pixel Set

RF A-LSTM RF A-LSTM

Precision 0.75 0.74 0.72 0.71
Recall 0.62 0.60 0.71 0.70

Overall Accuracy 0.85 (±0.01) 0.82 (±0.01) 0.87 (±0.01) 0.85 (±0.01)
F1 score 0.68 (±0.01) 0.66 (±0.01) 0.72 (±0.01) 0.71 (±0.01)

In general, the two models behaved better when they were trained on the pure-mixed pixel set. For
comparison, when the pure pixel set was utilized, the precision of the two models improved, while the
recall worsened. In total, the two models trained with the pure-mixed pixel set were more stable, traded
precision for recall and achieved high F1 scores and overall accuracy, which are highly recommended
in practical applications. This result occurred because the data distribution of the test dataset was the
same as that of the pure-mixed pixel set. This phenomenon might cause severe overfitting problems
when the models are trained on only pure-pixel samples. In some classification cases that require large
amounts of manually collected training data, whether the selected samples include mixed pixels needs
to be reconsidered, and the impact of including these cells needs to be evaluated.

The classified wheat map resulting from the RF and A-LSTM models trained with the pure-mixed
set is shown in Figure 8a,b, while the reference wheat map is shown in Figure 8c. The numbers of
wheat pixels in the three maps were 3296256, 3327509, and 3269754. According to the map, most
of the crop areas were correctly predicted in the plain area, while there were extensive differences
between the prediction and reference data in the border between wheat areas and no-wheat areas
or some isolated wheat areas. Thus, the many mixed cells that might include crops, buildings, and
mountains result in irregular spectral reflectance. In addition, although the numbers of wheat pixels in
the prediction map and reference map were similar, there was a slight visual difference. In Figure 9a,b,
wheat pixels are more likely to be clustered together, while there are many isolated wheat areas in the
reference map. Generally, wheat areas among continuous no-wheat areas or no-wheat areas among
continuous wheat areas were very likely to be misclassified.
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4.4. Feature Importance

The relative depth of a feature used as a decision node in a tree can be used to assess the relative
importance of that feature with respect to the predictability of the target variable. Features used at the
top of the tree contribute to the final prediction of a large fraction of the input samples. The expected
fraction of samples that these features contribute to can thus be used as an estimate of the relative
importance of the features. In the Scikit-learn package, the fraction of samples a feature contributes
to is combined with the decrease in impurity from splitting them to create a normalized estimate of
the predictive power of that feature. By averaging the estimates of predictive ability over several
randomized trees, one can reduce the variance in such an estimate and use it for feature selection. This
process is known as the mean decrease in impurity [30].

In this paper, we visualized the feature importance of 132 variables in RF, which is shown in
Figure 9a. The importance scores were the mean scores of all individual trees. The top 10 variables
are shown in Table 5; these variables are 2018081_EVI, 2018081_NDVI, 2018097_EVI, 2018081_NIR,
2018097_NIR, 2018161_NDVI, 2018097_NDVI, 2018113_EVI, 2018065_EVI and 2018245_NDVI, where
the first part of each variable represents the day of the year, and the last part represents the band.
Furthermore, we summed six importance scores per timestep and 22 importance scores per band,
which are shown in Figure 9b,c. Generally, variables in March or April 2018 were more important than
others. Moreover, EVI and NDVI had higher importance scores than raw reflectance bands.

Table 5. Top 10 variables in order of decreasing importance in the RF model. The first column lists the
index in the 132-variable sequence. The second column represents the feature name, which consists of
the day of the year and the band name. The third column represents the importance score.

Index Band/Feature name Importance

79 2018081_EVI 0.029
81 2018081_NDVI 0.024
85 2018097_EVI 0.023
82 2018081_NIR 0.023
88 2018097_NIR 0.022

111 2018161_NDVI 0.020
87 2018097_NDVI 0.020
91 2018113_EVI 0.018
73 2018065_EVI 0.015

105 2018245_NDVI 0.014

The differences of feature importance among variables could be explained by several points.
According to the typical growing cycles of winter wheat, wheat enters the green-returning stage in
late February or early March, while most other vegetation in the Huanghuaihai Region is deciduous
forest, which is gray and still not germinated; this phenomenon leads to a higher importance of data
captured in March or April, such as 2018081_EVI, 2018081_NDVI, 2018097_EVI. For the comparison
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between vegetation index bands and spectral reflectance bands, vegetation indices are more sensitive
over dense vegetation conditions and have high importance scores.

For the A-LSTM model, the context vector c j of output class j determines which encoded steps to
weigh highly and is calculated as the weighted sum of these encoded steps. As shown in Section 3.2, the
weight αji can be considered the probability that the j-th class is aligned to the i-th step of the encoded
sequence. Since different samples have different weight distributions and the weight distribution of
a single sample is usually noisy or not sufficiently representative of the alignment pattern, we simply
used the mean of the weight distribution of the whole test dataset for visualization. As shown in
Figure 10, the two curves represent the weight distribution along the encoded sequence for the two
classes, and the integral of each curve is equal to 1. According to the figure, the wheat class is highly
aligned with the 16th step of the encoded sequence, which was acquired in April 2018 (the 113th day of
the year 2018). Thus, there is a very high probability that the wheat class is aligned with the 16th step
of the encoded sequence, which contains all the information of the input sequence, with a strong focus
on the parts surrounding the 16th step of the input sequence. Compared to the variable importance
scores of RF, they both show that sequence data acquired in April are more important for the winter
wheat identification problem using time-series data.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 22 
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4.5. Generalizability in Different Areas

To evaluate the generalizability in different areas, we divided the entire dataset into eight parts
from north to south, the details of which are presented in Section 2.5. The evaluation results are
reported in Table 6. None of the precision, recall, and accuracy metrics exhibited significant patterns
except for the F1 score. Specifically, the F1 score of the RF model decreased as the evaluation dataset
moved away from the training set. Since the F1 score represents the harmonic mean of the recall and
precision, it is appropriate to use it to represent the generalizability of the model. According to the
experiments, the model achieved the best performance when the testing set and training set were in
the same part, because they had the same data distribution. When the trained model was required
to perform prediction in other areas, the performance worsened. The main reason for this difference
is that the winter wheat growing season in the Huanghuaihai Region changes slightly from north to
south. We divided the growing season into six growth stages: sowing, overwintering, green-returning,
jointing, flowering, and maturation. The maps of the starting times of the six growth stages are
shown in Figure 11. Each raster pixel represents the day of the year when winter wheat entered the
corresponding stage. The first two maps show the growing times in 2017, and the other maps show
the growing times in 2018. Contour lines are also shown on the maps. The six raster maps were
interpolated from data recorded from 82 agricultural stations distributed in the Huanghuaihai Region.
The time interval of the same growing stage from south to north was 30 or 40 days at most. Therefore,
to obtain the best model performance, the growing season in the predicting area must be as close as
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possible to that of the training area, and a new model should be retrained in the prediction area for
practical applications if necessary.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 22 
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used the annotation strategy described in Section 2.2.2. Then, two confusion matrices with the 
predicted and reference samples were generated. They are reported in Tables 6 and 7, respectively. 
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Figure 11. The winter wheat growing season in the Huanghuaihai Region, (a) sowing; (b) overwintering;
(c) green-returning; (d) jointing; (e) flowering; (f) maturation. The cell values of the raster map represent
the day of the year on which winter wheat enters the growing stage. Contour lines are shown on the
map. The first two maps show the growing times in 2017, and the others show the growing times
in 2018.

Table 6. Generalization performance scores of the RF model.

Metrics Testing
Generalization Evaluation

Fold 4 Fold 5 Fold 6 Fold 7 Fold 8

Precision 0.752 0.724 0.660 0.746 0.747 0.602
Recall 0.682 0.664 0.682 0.603 0.410 0.073

Total accuracy 0.906 0.845 0.759 0.786 0.913 0.972
F1 score 0.715 0.693 0.671 0.667 0.529 0.130

4.6. Inference on Historical Data

To determine the historical winter wheat distribution, we also applied the two models to historical
MODIS data from the Huanghuaihai Region. Specifically, we collected time-series data for the 2016–2017
growing season, which were processed by the same data preprocessing pipeline. Using the two models
trained on Pure-mixed pixel set, which is described in Section 2.4, we obtained two historical winter
wheat distribution maps of the Huanghuaihai Region, which are shown in Figure 12a,b. To evaluate the
accuracy of the two prediction maps, we randomly selected 1000 cells from the Huanghuaihai Region
and interpreted them visually via the Planet Explorer API, which was introduced in Section 2.2.2.
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The distribution of the 1000 cells is shown in Figure 12c. Similarly, we used the annotation strategy
described in Section 2.2.2. Then, two confusion matrices with the predicted and reference samples
were generated. They are reported in Tables 7 and 8, respectively. For the winter wheat class, the
recall, precision and F1 score predicted by the RF model were 0.720, 0.739 and 0.729, while these values
for the A-LSTM model were 0.703, 0.741 and 0.721, respectively. Generally, the two models achieved
comparative performance in the 2016–2017 growing season, which proved our concept.
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Table 7. Confusion matrix of the prediction map informed by RF.

Reference
Prediction

Winter Wheat No-Wheat Recall

Winter Wheat 85 33 0.720
No-Wheat 30 852 0.966
Precision 0.739 0.963

Table 8. Confusion matrix of the prediction map informed by A-LSTM.

Reference
Prediction

Winter Wheat No-Wheat Recall

Winter wheat 83 35 0.703
No-wheat 29 853 0.967
Precision 0.741 0.961

5. Discussion

Our two models achieved F1 scores of 0.72 and 0.71 for identifying the winter wheat distribution in
the Huanghuaihai Region. Previous works such as Senf et al. [5], Tuanmu et al. [7], Rodriguez-Galiano
et al. [17], Charlotte Pelletier et al. [18], and Marc Rußwurm et al. [20] regarding land cover classification
or crop identification usually focused on only a small area, such as a county or city, which resulted in
a classification map that was more detailed than ours. However, our trained models could also easily
recognize the approximate winter wheat distribution, but in a large-scale area, and these models could
be especially used in some close areas or historical cropland area identification. All the procedures are
very simple to implement, and the results can be rapidly obtained.

Although the RF and A-LSTM methods achieved comparable performance according to our
experiments, the computation costs are different. As the score tables above show, the overall accuracy
and F1 score of RF is slightly higher than that of A-LSTM, but the computation time required to
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train an RF model is much greater than that required to train an A-LSTM model. As there are many
samples throughout the study area, RF needs to traverse almost all samples and find the optimal
split orders and split points to build a decision tree each time. In addition, it required almost 2 h to
train a complete RF model on our 24-core working station with parallel computation. For A-LSTM,
a high-performance graphics card could be used to accelerate the computation, and an early stop
strategy [34] (automatically stop training when the model converges) could be employed in practical
applications. In this manner, approximately 50 min are required to train an A-LSTM model with a Tesla
V100 GPU card.

Furthermore, the overall accuracies of our two models were 0.87 and 0.85. However, the precision
and recall were approximately 0.70, which is not sufficiently precise for the detailed mapping of
winter wheat. This result is mainly due to three phenomena. (1) the cell size of MODIS data is 250 m,
and a cell might contain multiple land cover types, thus making the reflectance spectra unstable
and unpredictable. (2) Our ground truth map, which was provided by the Chinese Academy of
Agricultural Sciences, was assumed to be totally accurate in each cell. Since we did not receive any
instructions regarding how to complete the map or information on the data accuracy, we reassessed
the data via manually collected field data, as described in Section 2.2.2. The results indicated that
the overall accuracy of the ground truth map was 0.95, the precision of winter wheat was 0.89, and
the recall was 0.83, which might result in noise in the training sample labels. (3) Although many
works have demonstrated the effectiveness of RF and DNNs, they still have limitations in learning the
characteristics of such a large and complex area. Using a more complex RF or A-LSTM (a larger number
of trees with RF or a deeper network with A-LSTM) could increase the inference ability. However,
this usually causes severe overfitting problems, and experiments have shown that the validation score
remains almost unchanged when the models reach saturation.

In this paper, we also visualized the feature importance of RF. Generally, the features derived
from March or April had high importance scores. In early March, the first joint emerges above the soil
line. This joint provides visual evidence that the plants have initiated their reproduction [35]. Then,
winter wheat enters a fast-growing period until maturation. Thus, features in this period tend to be
significant. For the feature importance of different bands, vegetation indices such as NDVI or EVI
represent the reflectance differences between vegetation and soil in the visible and NIR bands. Green
vegetation usually exhibits a large spectral difference between the red and NIR bands, thus making the
vegetation index more important than a single band. In our study, features were derived from the six
bands provided by the MOD13Q1, Collection 6 product. Future work could add additional bands in
the models, which might provide better results.

When the trained models are used to make predictions in other areas, close areas usually have
reliable results. The main reason behind this result is that the winter wheat growing season varies by
area. Specifically, in the Huanghuaihai Region, winter wheat crops at the same latitudes likely have
similar growing seasons. In addition, the experiments above support our point of view. Practically,
there must be other reasons that result in the poor performance, such as the terrain, elevation, climate,
crop species or different land cover compositions of the negative samples. Thus, the MODIS data
distribution in the prediction area varies compared to that in the training areas. Our future work
will focus on revealing the detailed mechanisms underlying this difference. Fortunately, when we
applied our model to historical MODIS data, the performance was stable, as described in Section 4.6.
However, exceptions sometimes exist that result in noise in the prediction, such as improved winter
wheat species, climate changes, and land cover changes. Regrettably, we did not conduct additional
experiments over more past years because of the extensive labor required to collect validation data.

6. Conclusions

In this paper, we developed two models for large-scale winter wheat identification in the
Huanghuaihai Region. To the best of our knowledge, this study was the first to use raw digital
numbers derived from time-series MODIS images to implement classification pipelines and make
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predictions over a large-scale land area. According to our experiments, we can draw the following
general conclusions. (1) Both the RF and A-LSTM models were efficient for identifying winter wheat
areas, with F1 scores of 0.72 and 0.71, respectively. (2) The comparison of the two models indicates that
RF achieved a slightly better score than A-LSTM, while A-LSTM is much faster with GPU acceleration.
(3) For time-series winter wheat identification, the data acquired in March or April are more important
and contribute more than the data acquired at other times. Vegetation indices such as EVI and NDVI
are more helpful than single reflectance bands. (4) Predicting in local or nearby areas is more likely
to yield reliable results. (5) The models are also capable of efficiently identifying historical winter
wheat areas.

Our models were applied to only winter wheat identification due to the limitations of the crop
distribution data, but they could potentially solve multiclass problems. Further research regarding
multiple crop types or other land cover types over large regions could be more meaningful and
useful. Moreover, due to the scarcity and acquisition difficulties of high-spatiotemporal-resolution
images, the cell size of each training sample was 250 m, which is too large to avoid the mixed-pixel
problem. We believe that using time-series images with finer scales could help improve the accuracy
and generalizability of our models. Obviously, it is easy to determine how predictions are determined
in RF models, but this information is difficult to determine in the A-LSTM model. Future research will
likely devote more attention to the inference mechanisms of DNNs.
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