Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform
Abstract
:1. Introduction
- tackle food security issues, especially in countries where rice is the major staple food;
- identify and forecast rice production in a region;
- manage water security, as paddy rice consumes a large amount of water [1];
- with greenhouse gas accounting, as paddy rice releases methane (CH4) to the atmosphere [2];
- form government policies.
2. Materials and Methods
2.1. Study Sites
2.2. Farming Practices
2.3. Datasets
2.3.1. Sentinel-1 Data and Pre-Processing
2.3.2. Reference Data
2.4. Methodology
- Monthly median Sentinel 1 VH polarization time series data were extracted for rice fields and non-rice areas at both study sites.
- These monthly time series were sampled and classified using the K-means clustering method in GEE, resulting in 50 time series profile clusters.
- The spatial median of the VH polarization time series profiles was extracted for each cluster as a representative VH polarization profile.
- Clusters were then grouped using hierarchical cluster analysis (HCA), based on the similarities of the representative VH polarization cluster profiles. This grouping resulted in seven rice units (rice group A, B, C, D, E, F and G) at site 1 (see Figure 5a and Table S1), and two rice units (rice group X and Y) at site 2 (see Figure 5b and Table S2).
- Rice cropping patterns were identified based on the representative VH polarization profile of each cluster.
- Automated mapping of rice cropping patterns in cluster levels was established using four different machine learning algorithms: SVM, ANN, random forests, and C5.0 classification models. The machine learning methods classified VH polarization profiles into defined rice units (growth stages).
- Rice phenological parameters (tillage and planting, vegetative, reproduction and maturity time) were identified from the representative VH polarization profiles of each rice cluster to determine monthly extents of growth stages.
2.4.1. Analyzing the Time Series Profile of VH Polarization
2.4.2. Classifying Time Series of VH Polarization
2.4.3. Extracting Representative VH Polarization Cluster Profiles
2.4.4. Grouping and Labelling Clusters
- Rice field A (grouping cluster V22, V48, V44 and V8),
- Rice field B (grouping cluster V11, V10, V46, V5 and V2),
- Rice field C (grouping cluster V32, V13, and V35),
- Rice field D (grouping cluster V6, V2 and V39),
- Rice field E (grouping cluster V17, V42, V28 and V41),
- Rice field F (grouping cluster V14, V23 and V40), and
- Rice field G (grouping cluster V21, V24, V16 and V49).
- Rice field X (grouping cluster V46 and V7), and
- Rice field Y (grouping cluster V49, V6 and V9).
2.4.5. Models for Automated Rice Cropping Pattern Mapping
2.4.6. Extracting Phenological Parameters
2.4.7. Accuracy Assessment
3. Results
3.1. Map of Rice Extent and Cropping Patterns
3.2. Spatiotemporal Distribution of Rice Growth Stages
3.3. Accuracy Assessment
3.4. Automated Rice Cropping Pattern Mapping
3.5. Comparison between Temporal VH and VV Polarization Cluster Profiles
4. Discussion
4.1. Near-Real-Time Mapping and Monitoring
4.2. Establishing Time Series Datasets: Intervals and Filtering
4.3. Filtering Speckle Noise
4.4. Automated Mapping
4.5. Comparison with Rice Extent Derived Using MODIS Data
4.6. Underestimation of Rice Extent
5. Conclusions
- The Indonesian rice growing area at four northern districts in West Java is 302,108 ha
- The Malaysian rice growing area in two states, Kedah and Perlis, is 119,637 ha.
- The overall map accuracy is 96.5% with a kappa coefficient = 0.92. Compared with government statistical data, the method underestimates rice extent by about 14%.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Sass, R.L.; Fisher, F.M., Jr.; Ding, A.; Huang, Y. Exchange of methane from rice fields: National, regional, and global budgets. J. Geophys. Res. Atmos. 1999, 104, 26943–26951. [Google Scholar] [CrossRef]
- Juwana, I.; Muttil, N.; Perera, B.J.C. Application of west java water sustainability index to three water catchments in west java, Indonesia. Ecol. Indic. 2016, 70, 401–408. [Google Scholar] [CrossRef]
- Potin, P.; Rosich, B.; Roeder, J.; Bargellini, P. Sentinel-1 Mission operations concept. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1465–1468. [Google Scholar] [CrossRef]
- Sianturi, R.; Jetten, V.G.; Sartohadi, J. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.; Le Toan, T.; Bouvet, A.; Nguyen, D.L.; Pham Duy, T.; Zribi, M. Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data. Sensors 2018, 18, 316. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Minh, V.-Q. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 2018, 33, 587–601. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping Double and Single Crop Paddy Rice with Sentinel-1A at Varying Spatial Scales and Polarizations in Hanoi, Vietnam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 498–512. [Google Scholar] [CrossRef]
- Setiyono, D.T.; Quicho, D.E.; Gatti, L.; Campos-Taberner, M.; Busetto, L.; Collivignarelli, F.; García-Haro, J.F.; Boschetti, M.; Khan, I.N.; Holecz, F. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model. Remote Sens. 2018, 10, 293. [Google Scholar] [CrossRef]
- Minh, V.H.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of an Giang Province. ISPRS Int. J. Geo-Inf. 2019, 8, 211. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 2018, 39, 1042–1067. [Google Scholar] [CrossRef]
- Tian, H.; Wu, M.; Wang, L.; Niu, Z. Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors 2018, 18, 185. [Google Scholar] [CrossRef] [PubMed]
- Mansaray, R.L.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping Rice Fields in Urban Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets. Remote Sens. 2017, 9, 257. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Zhang, D.; Zhou, Z.; Huang, J. Evaluating the potential of temporal Sentinel-1A data for paddy rice discrimination at local scales. Remote Sens. Lett. 2017, 8, 967–976. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 226–236. [Google Scholar] [CrossRef]
- Clauss, K.; Ottinger, M.; Kuenzer, C. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. Int. J. Remote Sens. 2018, 39, 1399–1420. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Siqueira, P.; Bera, S. Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data with Google Earth Engine. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1947–1951. [Google Scholar] [CrossRef]
- Mohite, J.D.; Sawant, S.A.; Kumar, A.; Prajapati, M.; Pusapati, S.V.; Singh, D.; Pappula, S. Operational Near Real Time Rice Area Mapping Using Multi-Temporal Sentinel-1 SAR Observations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 433–438. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Quicho, E.D.; Holecz, F.H.; Khan, N.I.; Romuga, G.; Maunahan, A.; Garcia, C.; Rala, A.; Raviz, J.; Collivignarelli, F.; et al. Rice yield estimation using synthetic aperture radar (SAR) and the ORYZA crop growth model: Development and application of the system in South and South-east Asian countries AU - Setiyono, T.D. Int. J. Remote Sens. 2018, 1–32. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Wagner, W. European Rice Cropland Mapping with Sentinel-1 Data: The Mediterranean Region Case Study. Water 2017, 9, 392. [Google Scholar] [CrossRef]
- Fikriyah, V.N.; Darvishzadeh, R.; Laborte, A.; Khan, N.I.; Nelson, A. Discriminating transplanted and direct seeded rice using Sentinel-1 intensity data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 143–153. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Van Nguyen, N.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Env. 2006, 100, 1–16. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.H.; De Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Asilo, S.; De Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR. Remote Sens. 2014, 6, 12789–12814. [Google Scholar] [CrossRef] [Green Version]
- Mosleh, K.M.; Hassan, K.Q. Development of a Remote Sensing-Based “Boro” Rice Mapping System. Remote Sens. 2014, 6, 1938–1953. [Google Scholar] [CrossRef]
- Manjunath, K.R.; More, R.S.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Mapping of rice-cropping pattern and cultural type using remote-sensing and ancillary data: A case study for South and Southeast Asian countries. Int. J. Remote Sens. 2015, 36, 6008–6030. [Google Scholar] [CrossRef]
- Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Hamad, A.; Venus, V.; Lymberakis, P. Mapping land cover gradients through analysis of hyper-temporal NDVI imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 301–312. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Wang, F.; Huang, J.; Yang, L.; Kanu, A.S. Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 2019, 1–21. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Env. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Google’s cloud-based platform for digital soil mapping. Comput. Geosci. 2015, 83, 80–88. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Panuju, D.R.; Mizuno, K.; Trisasongko, B.H. The dynamics of rice production in Indonesia 1961–2009. J. Saudi Soc. Agric. Sci. 2013, 12, 27–37. [Google Scholar] [CrossRef]
- Pusat Data dan Analisa Pembangunan Jawa Barat. Available online: http://pusdalisbang.jabarprov.go.id/pusdalisbang/data-49-pertanian.html (accessed on 25 June 2019).
- Yanto; Rajagopalan, B.; Zagona, E. Space–time variability of Indonesian rainfall at inter-annual and multi-decadal time scales. Clim. Dyn. 2016, 47, 2975–2989. [Google Scholar] [CrossRef]
- Nasution, C.; Syaifullah, D. Analisis spasial indeks kekeringan daerah pantai utara (Pantura) Jawa Barat. J. Air Indones. 2005, 1, 235–243. [Google Scholar]
- De Dapper, J.; Debaveye, M. Geomorphology and soils of the Padang Terap District, Kedah, Peninsular Malaysia. Bul. Persat. Geol. Malays. Bull. Geol. Soc. Malays. 1986, 20, 765–790. [Google Scholar] [Green Version]
- Othman, M.; Ash’aari, Z.H.; Muharam, F.M.; Sulaiman, W.N.A.; Hamisan, H.; Mohamad, N.D.; Othman, N.H. Assessment of drought impacts on vegetation health: A case study in Kedah. IOP Conf. Ser. Earth Env. Sci. 2016, 37, 12072. [Google Scholar] [CrossRef]
- Tan, K.C. Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007–2016. J. Phys. Conf. Ser. 2018, 995, 12121. [Google Scholar] [CrossRef]
- Department of Agriculture Peninsular Malaysia. Paddy Statistics of Malaysia 2015; Department of Agriculture Peninsular Malaysia: Kuching, Malaysia, 2016. [Google Scholar]
- Nelson, A.; Setiyono, T.; Rala, B.A.; Quicho, D.E.; Raviz, V.J.; Abonete, J.P.; Maunahan, A.A.; Garcia, A.C.; Bhatti, Z.H.; Villano, S.L.; et al. Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sens. 2014, 6, 10773–10812. [Google Scholar] [CrossRef] [Green Version]
- Nazuri, N.S.; Man, N. Acceptance and Practices on New Paddy Seed Variety Among Farmers in MADA Granary Area. Acad. J. Interdiscip. Stud. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Muda Agriculture Development Authority (MADA). Available online: http://www.mada.gov.my/?page_id=13023&lang=en (accessed on 25 June 2019).
- What are the technical specifications for Google Imagery? Available online: https://support.google.com/mapsdata/answer/6261838?hl=en&ref_topic=6250082 (accessed on 25 June 2019).
- De Bie, C.A.J.M.; Nguyen, T.T.H.; Ali, A.; Scarrott, R.; Skidmore, A.K. LaHMa: A landscape heterogeneity mapping method using hyper-temporal datasets. Int. J. Geogr. Inf. Sci. 2012, 26, 2177–2192. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2016. Available online: http://www.R-project.org/ (accessed on 2 January 2019).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab—An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 1. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer Publishing Company: New York, NY, USA, 2002; ISBN 0387954570. [Google Scholar]
- Liaw, A.; Wiener, M. Package ‘randomForest’. Breiman and Cutler’s random forests for classification and regression. CRAN Ref. Man. 2014, 4, 6–10. [Google Scholar]
- Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: Burlington, MA, USA, 1993. [Google Scholar]
- Kuhn, M.; Weston, S.; Culp, M.; Coulter, N.; Quinlan, R. C50: C5.0 Decision Trees and Rule-Based Models; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A. Caret: Classification and Regression Training. Available online: https://Cran.R-Project.Org/Package=Caret (accessed on 27 March 2019).
- Halaman web rasmi Lembaga Kemajuan Pertanian Muda (MADA). Available online: http://www.mada.gov.my/?page_id=1715 (accessed on 30 June 2019).
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Env. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zribi, M.; Escorihuela, J.M.; Baghdadi, N.; Segui, Q.P. Irrigation Mapping Using Sentinel-1 Time Series at Field Scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Env. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornos, L.; Huesca, M.; Dominguez, J.A.; Moyano, M.C.; Cicuendez, V.; Recuero, L.; Palacios-Orueta, A. Assessment of MODIS spectral indices for determining rice paddy agricultural practices and hydroperiod. ISPRS J. Photogramm. Remote Sens. 2015, 101, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Clauss, K.; Yan, H.; Kuenzer, C. Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series. Remote Sens. 2016, 8, 434. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Zhu, Z.; Zhang, G.; Du, G.; Jin, C.; Kou, W.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, Y.; Rustiadi, E.; Yoshino, K.; Liyantono; Effendi, H. Assessing the Seasonal Dynamics of the Java’s Paddy Field Using MODIS Satellite Images. ISPRS Int. J. Geo-Inf. 2014, 3, 110–129. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef]
Predicted Class | Producer Accuracy | |||||
---|---|---|---|---|---|---|
Non-Rice (Pixels) | Rice (Pixels) | Total (Pixels) | Percent Correct | Omission Error (%) | ||
Reference class | Non-rice (pixels) | 299 | 2 | 301 | 99.3 | 0.7 |
Rice (pixels) | 24 | 175 | 199 | 87.9 | 12.1 | |
Total (pixels) | 323 | 177 | 500 | |||
Users accuracy | ||||||
Percent correct | 92.6 | 98.9 | 94.80 | |||
Commission error (%) | 7.4 | 1.1 | ||||
Kappa | 0.89 |
Predicted Class | Producer Accuracy | |||||
---|---|---|---|---|---|---|
Non-rice (Pixels) | Rice (Pixels) | Total (Pixels) | Percent Correct | Omission Error (%) | ||
Reference class | Non-rice (pixels) | 438 | 3 | 441 | 99.3 | 0.7 |
Rice (pixels) | 6 | 53 | 59 | 89.8 | 10.2 | |
Total (pixels) | 444 | 56 | 500 | |||
Users accuracy | ||||||
Percent correct | 98.6 | 94.6 | 98.20 | |||
Commission error (%) | 1.4 | 5.4 | ||||
Kappa | 0.94 |
Predicted Class | Producer Accuracy | |||||
---|---|---|---|---|---|---|
Non-rice (Pixels) | Rice (Pixels) | Total (Pixels) | Percent Correct | Omission Error (%) | ||
Reference class | Non-rice (pixels) | 737 | 5 | 742 | 99.3 | 0.7 |
Rice (pixels) | 30 | 228 | 258 | 88.4 | 11.6 | |
Total (pixels) | 767 | 233 | 1000 | |||
Users accuracy | ||||||
Percent correct | 96.1 | 97.9 | 96.50 | |||
Commission error (%) | 3.9 | 2.1 | ||||
Kappa | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudiyanto; Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sens. 2019, 11, 1666. https://doi.org/10.3390/rs11141666
Rudiyanto, Minasny B, Shah RM, Che Soh N, Arif C, Indra Setiawan B. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing. 2019; 11(14):1666. https://doi.org/10.3390/rs11141666
Chicago/Turabian StyleRudiyanto, Budiman Minasny, Ramisah M. Shah, Norhidayah Che Soh, Chusnul Arif, and Budi Indra Setiawan. 2019. "Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform" Remote Sensing 11, no. 14: 1666. https://doi.org/10.3390/rs11141666
APA StyleRudiyanto, Minasny, B., Shah, R. M., Che Soh, N., Arif, C., & Indra Setiawan, B. (2019). Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing, 11(14), 1666. https://doi.org/10.3390/rs11141666